64 research outputs found

    A Type-Directed Operational Semantics For a Calculus with a Merge Operator

    Get PDF

    Types and Semantics for Extensible Data Types (Extended Version)

    Full text link
    Developing and maintaining software commonly requires (1) adding new data type constructors to existing applications, but also (2) adding new functions that work on existing data. Most programming languages have native support for defining data types and functions in a way that supports either (1) or (2), but not both. This lack of native support makes it difficult to use and extend libraries. A theoretically well-studied solution is to define data types and functions using initial algebra semantics. While it is possible to encode this solution in existing programming languages, such encodings add syntactic and interpretive overhead, and commonly fail to take advantage of the map and fold fusion laws of initial algebras which compilers could exploit to generate more efficient code. A solution to these is to provide native support for initial algebra semantics. In this paper, we develop such a solution and present a type discipline and core calculus for a language with native support for initial algebra semantics.Comment: Extended version (28 pages) of the eponymous paper to appear in the conference proceedings of APLAS 202

    An Algebraic Theory for Shared-State Concurrency

    Get PDF

    A Framework for Resource Dependent EDSLs in a Dependently Typed Language (Pearl)

    Get PDF
    Idris' Effects library demonstrates how to embed resource dependent algebraic effect handlers into a dependently typed host language, providing run-time and compile-time based reasoning on type-level resources. Building upon this work, Resources is a framework for realising Embedded Domain Specific Languages (EDSLs) with type systems that contain domain specific substructural properties. Differing from Effects, Resources allows a language’s substructural properties to be encoded within type-level resources that are associated with language variables. Such an association allows for multiple effect instances to be reasoned about autonomically and without explicit type-level declaration. Type-level predicates are used as proof that the language’s substructural properties hold. Several exemplar EDSLs are presented that illustrates our framework’s operation and how dependent types provide correctness-by-construction guarantees that substructural properties of written programs hold

    The High-level Benefits of Low-level Sandboxing

    Get PDF

    Space-Efficient Gradual Typing in Coercion-Passing Style

    Get PDF
    Herman et al. pointed out that the insertion of run-time checks into a gradually typed program could hamper tail-call optimization and, as a result, worsen the space complexity of the program. To address the problem, they proposed a space-efficient coercion calculus, which was subsequently improved by Siek et al. The semantics of these calculi involves eager composition of run-time checks expressed by coercions to prevent the size of a term from growing. However, it relies also on a nonstandard reduction rule, which does not seem easy to implement. In fact, no compiler implementation of gradually typed languages fully supports the space-efficient semantics faithfully. In this paper, we study coercion-passing style, which Herman et al. have already mentioned, as a technique for straightforward space-efficient implementation of gradually typed languages. A program in coercion-passing style passes "the rest of the run-time checks" around - just like continuation-passing style (CPS), in which "the rest of the computation" is passed around - and (unlike CPS) composes coercions eagerly. We give a formal coercion-passing translation from ?S by Siek et al. to ?S?, which is a new calculus of first-class coercions tailored for coercion-passing style, and prove correctness of the translation. We also implement our coercion-passing style transformation for the Grift compiler developed by Kuhlenschmidt et al. An experimental result shows stack overflow can be prevented properly at the cost of up to 3 times slower execution for most partially typed practical programs

    CommCSL: Proving Information Flow Security for Concurrent Programs using Abstract Commutativity

    Full text link
    Information flow security ensures that the secret data manipulated by a program does not influence its observable output. Proving information flow security is especially challenging for concurrent programs, where operations on secret data may influence the execution time of a thread and, thereby, the interleaving between different threads. Such internal timing channels may affect the observable outcome of a program even if an attacker does not observe execution times. Existing verification techniques for information flow security in concurrent programs attempt to prove that secret data does not influence the relative timing of threads. However, these techniques are often restrictive (for instance because they disallow branching on secret data) and make strong assumptions about the execution platform (ignoring caching, processor instructions with data-dependent runtime, and other common features that affect execution time). In this paper, we present a novel verification technique for secure information flow in concurrent programs that lifts these restrictions and does not make any assumptions about timing behavior. The key idea is to prove that all mutating operations performed on shared data commute, such that different thread interleavings do not influence its final value. Crucially, commutativity is required only for an abstraction of the shared data that contains the information that will be leaked to a public output. Abstract commutativity is satisfied by many more operations than standard commutativity, which makes our technique widely applicable. We formalize our technique in CommCSL, a relational concurrent separation logic with support for commutativity-based reasoning, and prove its soundness in Isabelle/HOL. We implemented CommCSL in HyperViper, an automated verifier based on the Viper verification infrastructure, and demonstrate its ability to verify challenging examples
    • …
    corecore