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Abstract
Herman et al. pointed out that the insertion of run-time checks into a gradually typed program
could hamper tail-call optimization and, as a result, worsen the space complexity of the program.
To address the problem, they proposed a space-efficient coercion calculus, which was subsequently
improved by Siek et al. The semantics of these calculi involves eager composition of run-time
checks expressed by coercions to prevent the size of a term from growing. However, it relies also
on a nonstandard reduction rule, which does not seem easy to implement. In fact, no compiler
implementation of gradually typed languages fully supports the space-efficient semantics faithfully.

In this paper, we study coercion-passing style, which Herman et al. have already mentioned,
as a technique for straightforward space-efficient implementation of gradually typed languages.
A program in coercion-passing style passes “the rest of the run-time checks” around – just like
continuation-passing style (CPS), in which “the rest of the computation” is passed around – and
(unlike CPS) composes coercions eagerly. We give a formal coercion-passing translation from λS
by Siek et al. to λS1, which is a new calculus of first-class coercions tailored for coercion-passing
style, and prove correctness of the translation. We also implement our coercion-passing style
transformation for the Grift compiler developed by Kuhlenschmidt et al. An experimental result
shows stack overflow can be prevented properly at the cost of up to 3 times slower execution for
most partially typed practical programs.
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1 Introduction

1.1 Space-Efficiency Problem in Gradual Typing
Gradual typing [36, 40] is one of the linguistic approaches to integrating static and dynamic
typing. Allowing programmers to mix statically typed and dynamically typed fragments
in a single program, it advocates the “script to program” evolution [40]. Namely, software
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8:2 Space-Efficient Gradual Typing in Coercion-Passing Style

development starts with simple, often dynamically typed scripts, which evolve to more robust,
fully statically typed programs through intermediate stages of partially typed programs. To
make this evolution work in practice, it is important that the performance of partially typed
programs at intermediate stages is comparable to that of (the slower of) the two ends, that
is, dynamically typed scripts and statically typed programs.

However, it has been pointed out that gradual typing suffers from serious efficiency
problems from both theoretical and practical viewpoints [19, 20, 39]. In particular, Takikawa
et al. [39] showed that even a state-of-the-art gradual typing implementation could show
catastrophic slowdown for partially typed programs due to run-time checking to ensure safety.
Worse, such slowdown is not easy to predict because it depends on implicit run-time checks
inserted by the language implementation and it requires fairly deep knowledge about the
underlying gradual type system to understand when and where run-time checks are inserted
and how they behave. Since then, several pieces of work have investigated the performance
issues [4, 27, 31, 29, 24, 12].

Earlier work by Herman et al. [19, 20] pointed out a related problem. They showed that,
when values are passed between a statically typed part and a dynamically typed part many
times, delayed run-time checks may accumulate and make space complexity of a program
worse than an unchecked semantics.

To make the discussion more concrete, consider the following mutually recursive functions
(written in ML-like syntax):

let rec even (x : int) : ? =
if x = 0 then true〈bool!〉 else (odd (x - 1))〈bool!〉

and odd (x : int) : bool =
if x = 0 then false else (even (x - 1))〈bool?p〉

Ignoring the gray part (in angle brackets), which will be explained shortly, this is a tail-
recursive definition of functions to decide whether a given integer is even or odd, except that
the return type of one of the functions is written ?, which is the dynamic type, which can
be any tagged value. This definition expresses a situation where a statically typed and a
dynamically typed function call each other.1 The gray part represents inserted run-time
checks, written using Henglein’s coercion syntax [18]: bool! is a coercion from bool to ? and
true〈bool!〉 means that (untagged) Boolean value true will be tagged with bool to make a
value of the dynamic type; bool?p is a coercion from ? to bool and (even (x - 1))〈bool?p〉
means that the value returned from recursive call even (x - 1) will be tested whether it
is tagged with bool – if so, the run-time check removes the tag and returns the untagged
Boolean value, and, otherwise, it results in blame, which is an uncatchable exception (with
label p to indicate where the check has failed).

The crux of this example is that the insertion of run-time checks has broken tail recursion:
due to 〈bool!〉 and 〈bool?p〉, the recursive calls are not in tail positions any longer. So,
according to the original semantics of coercions [18], evaluation of odd 4 is as follows:

odd 4 7−→∗ (even 3)〈bool?p〉 7−→∗ (odd 2)〈bool!〉〈bool?p〉
7−→∗ (even 1)〈bool?p〉〈bool!〉〈bool?p〉 7−→∗ (odd 0)〈bool!〉〈bool?p〉〈bool!〉〈bool?p〉
7−→∗ false〈bool!〉〈bool?p〉〈bool!〉〈bool?p〉 7−→∗ false

1 In this sense, the argument of even should have been ?, too, but it would clutter the code after inserting
run-time checks.
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odd 4
7−→∗ (even 3)〈bool?p〉
7−→ (odd (3− 1))〈bool!〉〈bool?p〉
7−→ (odd (3− 1))〈bool! # bool?p〉
= (odd (3− 1))〈idbool〉
7−→ (odd 2)〈idbool〉
7−→ (even (2− 1))〈bool?p〉〈idbool〉
7−→ (even (2− 1))〈bool?p # idbool〉
= (even (2− 1))〈bool?p〉
7−→ (even 1)〈bool?p〉
7−→ . . .

oddk (4, idbool)
7−→ evenk (4− 1, bool?p ;; idbool)
7−→ evenk (4− 1, bool?p)
7−→ evenk (3, bool?p)
7−→ oddk (3− 1, bool! ;; bool?p)
7−→ oddk (3− 1, idbool)
7−→ oddk (2, idbool)
7−→ evenk (2− 1, bool?p ;; idbool)
7−→ evenk (2− 1, bool?p)
7−→ evenk (1, bool?p)
7−→ . . .

Figure 1 Reduction from odd 4 in λS (left) and reduction from odd (4, idbool) in λS1 (right).

Thus, the size of a term being evaluated is proportional to the argument n at its longest,
whereas unchecked semantics (without coercions) allows for tail-call optimization and constant-
space execution. This is the space-efficiency problem of gradual typing.

1.2 Space-Efficient Gradual Typing

Herman et al. [19, 20] also presented a solution to this problem. In the evaluation sequence of
oddn above, we could immediately “compress” nested coercion applications M 〈bool!〉〈bool?p〉
before computation of the target term M ends, because 〈bool!〉〈bool?p〉 – tagging immediately
followed by untagging – is equivalent to the identity function. By doing so, we can maintain
that the order of the size of a term in the middle of evaluation is constant. This idea is
formalized in terms of a “space-efficient” extension of the coercion calculus [18]. Since then,
a few space-efficient coercion/cast calculi have been proposed [37, 38, 35].

Among them, Siek et al. [37] have proposed a space-efficient coercion calculus λS. λS
is equipped with a composition function that compresses consecutive coercions in certain
canonical forms. The coercion composition is achieved as a simple recursive function thanks
to the canonical forms. We show evaluation of odd 4 according to the λS semantics in the
left of Figure 1.2 Here, s # t is a meta-level operation that composes two coercions s, t (in
canonical forms) and yields another canonical coercion that semantically corresponds to their
sequential composition. This composition function enables us to prevent the size of a term
from growing.

However, in order to ensure that nested coercion applications are always merged, the
operational semantics of λS relies on a nonstandard reduction rule and nonstandard evaluation
contexts. Although it does not cause any theoretical problems, it does not seem easy to
implement – in particular, its compilation method seems nontrivial. In fact, none of the
existing compiler implementations that address the space-efficiency problem [24, 12] solves
the problem of growing coercions at tail positions (an exception is recent work by Castagna
et al. [5] – See Section 6 for more comparison).

2 Strictly speaking, bool! and bool?p are abbreviations of idbool; bool! and bool?p; idbool, respectively, in
λS.

ECOOP 2020
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1.3 Our Work: Coercion-Passing Style

In this paper, we study coercion-passing style for space-efficient gradual typing. Just as
continuation-passing style, in which “the rest of the computation” is passed around as
first-class functions and every function call is at a tail position, a program in coercion-passing
style passes “the rest of the run-time checks” around. Actually, the idea of coercion-passing
style has already been listed as one of the possible implementation techniques by Herman et
al. [19, 20] but it has been neither well studied nor formalized.

We use the even/odd example above to describe our approach to the problem. Here are
the even/odd functions in coercion-passing style. (We omit type declarations for simplicity.)

let rec evenk (x, κ) =
if x = 0 then true〈bool! ;; κ〉 else oddk (x - 1, bool! ;; κ)

and oddk (x, κ) =
if x = 0 then false〈κ〉 else evenk (x - 1, bool?p ;; κ)

Additional parameters named κ are for first-class coercions, which are supposed to be applied
– as in false〈κ〉 – to values that are returned in the original function definition. We often
call these coercions continuation coercions. Coercion applications such as true〈bool!〉 and
(oddk (x - 1))〈bool!〉 at tail positions in the original program are translated to coercion
compositions such as true〈bool! ;; κ〉 and oddk (x - 1, bool! ;; κ), respectively. When κ
is bound to a concrete coercion, it will be composed with bool! before it is applied. Similarly
to programs in CPS, function calls pass (composed) coercions.

With these functions in coercion-passing style, the evaluation of oddk (4, idbool) (where
idbool is an identity coercion, which does nothing) proceeds as in the right of Figure 1. Since
tagging followed by untagging (with the same tag) actually does nothing, bool! ;; bool?p

composes to idbool by the (meta-level) coercion composition bool! # bool?p.
Similarly to the λS semantics described above, coercion composition in the argument

takes place before a recursive call, thus the size of coercions stays bounded by the constant
order, overcoming the space efficiency problem. A nice property of our solution is that the
evaluation is standard call-by-value.

One can view the extra parameter κ as an accumulating parameter and continuation
coercions as (delimited) continuations in defunctionalized forms [30]. Unlike simple defunc-
tionalization, however, special composition of two defunctionalized coercions is provided,
preventing the sizes of composed coercions from growing.

Contributions

Since the operational semantics of λS seems nontrivial to implement due to a nonstandard
reduction rule, we investigate implementation of the space-efficient semantics via a translation
into coercion-passing style. Our contributions in this paper are summarized as follows:

In the context of the space-efficiency problem of gradual typing, we develop a new calculus
λS1 of space-efficient first-class coercions.
We formalize a coercion-passing style translation from (a slight variant of) space-efficient
coercion calculus λS [37] to the new calculus λS1.
We prove correctness of the coercion-passing style translation via a simulation property.
We implement the coercion-passing style translation on top of the Grift compiler [24],
and conduct some experiments to show that stack overflow is indeed avoided.
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Outline

The rest of this paper is organized as follows. We review the space-efficient coercion calculus
λS [37] in Section 2. We introduce a new space-efficient coercion calculus with first-class
coercions λS1 in Section 3, formalize a translation into coercion-passing style as a translation
from λS to λS1, and prove correctness of the translation in Section 4. We discuss our
implementation of coercion-passing translation on top of the Grift compiler [24] and show an
experimental result in Section 5. Finally, we discuss related work in Section 6 and conclude
in Section 7. Proofs of the stated properties can be found in the full version.

2 Space-Efficient Coercion Calculus

In this section, we review the space-efficient coercion calculus λS [37], which is the source
calculus of our translation. Our definition differs from the original in a few respects, as
we will explain later. For simplicity, we do not include (mutually) recursive functions and
conditional expressions in the formalization but it is straightforward to add them; in fact,
our implementation includes them.

Main novelties of λS over the original coercion calculus λC [18] are (1) space-efficient
coercions, which are canonical forms of coercions, whose composition can be defined by a
straightforward recursive function, and (2) operational semantics in which a sequence of
coercion applications is collapsed eagerly – even before they are applied to a value [19, 20, 35].

Basic forms of coercions are inherited from λC [18], which provides (1) identity coercions
idA (where A is a type), which do nothing; (2) injections G!, which add a type tag G to
a value to make a value of the dynamic type; (3) projections G?p, which test whether a
value of the dynamic type is tagged with G, remove the tag if the test succeeds, or raise
blame labeled p if it fails; (4) function coercions c1 → c2, which, when they are applied to a
function, coerce an argument to the function by c1 and a value returned from the function by
c2; and (5) sequential compositions c1; c2, which apply c1 and c2 in this order. Space-efficient
coercions restrict the way basic coercions are combined by sequential composition; they can
be roughly expressed by the following regular expression:

(G?p; )?(idι + (s1 → s2))(; G′!)?

(where ι is a base type, s1 and s2 stand for space efficient coercions, (· · · )? stands for
an optional element, and + for alternatives). As already mentioned, an advantage of
this form is that (meta-level) sequential composition (denoted by s1 # s2) of two space-
efficient coercions results in another space-efficient coercion (if the composition is well
typed), in other words, space-efficient coercions are closed under s1 # s2. For example, the
composition ((G1?p; )?(idι + (s1 → s2)); G2!) # (G3?p′ ; (idι + (s3 → s4))(; G4!)?) will be
((G1?p; )?(idι + ((s3 # s1) → (s2 # s4)))(; G4!)?) if G2 = G3 – that is, tagging with G2 is
immediately followed by inspection whether G2 is present.3 Notice that the resulting coercion
conforms to the regular expression again. (The other case where G2 6= G3 means that the
projection G3?p′ will fail; we will explain such failures later.)

The operational semantics includes the reduction rule F [M 〈s〉〈t〉] −→ F [M 〈s # t〉] where
F is an evaluation context that does not include nested coercion applications and whose
innermost frame is not a coercion application. This rule intuitively means that two consecutive
coercions at the outermost position will be composed even before M is evaluated to a value.
This eager composition avoids a long chain of coercion applications in an evaluation context.

3 Here, we exclude ill-typed coercion compositions such as (s1 → s2) # idι.
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8:6 Space-Efficient Gradual Typing in Coercion-Passing Style

Variables x, y Constants a, b Operators op Blame labels p
Base types ι ::= int | bool | . . .

Types A,B,C ::= ? | ι | A→ B
Ground types G,H ::= ι | ?→ ?

Space-efficient coercions s, t ::= id? | G?p; i | i

Intermediate coercions i ::= g; G! | g | ⊥GpH

Ground coercions g, h ::= idA (if A 6= ?) | s → t (if s 6= id or t 6= id)
Delayed coercions d ::= g; G! | s → t (if s 6= id or t 6= id)

Terms L,M ,N ::= V | op(M ,N ) | M N | M 〈s〉 | blame p
Values V ,W ::= x | U | U 〈〈d〉〉

Uncoerced values U ::= a | λx.M
Type environments Γ ::= ∅ | Γ, x : A

Figure 2 Syntax of λS.

2.1 Syntax
We show the syntax of λS in Figure 2. The syntax of λS extends that of the simply typed
lambda calculus (written in gray) with the dynamic type and (space-efficient) coercions.

Types, ranged over by A,B,C , include the dynamic type ?, base types ι, and function
types A → B. Base types ι include int (integer type) and bool (Boolean type) and so on.
Ground types, ranged over by G,H , include base types ι and the function type ?→ ?. They
are used for type tags put on values of the dynamic type [43]. Here, the ground type for
functions is always ?→ ?, reflecting the fact that many dynamically typed languages do not
include information on the argument and return types of the function in its type tag.

As we have already discussed, λS restricts coercions to only canonical ones, namely
space-efficient coercions s, whose grammar is defined via ground coercions g and intermediate
coercions i. Ground coercions correspond to the middle part of space-efficient coercions;
unlike the original λS, ground coercions include identity coercions for any function types –
such as idι→ι – and exclude “virtually identity” coercions such as idι → idι. Although these
two coercions are extensionally the same, they reduce in slightly different ways: applying
idι→ι to a function immediately returns the function, whereas applying idι → idι results in
a wrapped function whose argument and return values are monitored by idι, which does
nothing. Adopting idA for any A simplifies our proof that the coercion-passing translation
preserves the semantics. An intermediate coercion adds an optional injection to a ground
coercion. Coercions of the form ⊥GpH trigger blame (labeled p) if applied to a value. They
emerge from coercion composition

((G1?p; )?(idA + (s1 → s2)); G2!) # (G3?p′
; (idA + (s3 → s4))(; G4!)?)

where A 6= ? and G2 6= G3, which means that the projection G3?p′ is bound to fail. The
composition results in (G1?p; )?⊥G1p′G3 , which means that, unless the optional projection
fails – blaming p – it fails with p′. Finally, space-efficient coercions are obtained by adding
optional projection to intermediate coercions. id? is a special coercion that does not conform
to the regular expression above. Strictly speaking, an injection, say int!, has to be written
idint; int! and a projection, say int?p, has to be written int?p; idint. We often omit these
identity coercions in examples.
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Terms, ranged over by L,M ,N , include values V , primitive binary operations op(M ,N ),
function applications M N , coercion applications M 〈s〉, and coercion failure blame p. The
term M 〈s〉 coerces the value of M with coercion s at run time. The term blame p denotes a
run-time type error caused by the failure of a coercion (projection) with blame label p.

Values, ranged over by V ,W , include variables x , uncoerced values U , and coerced values
U 〈〈d〉〉. Uncoerced values, ranged over by U , include constants a of base types and lambda
abstractions λx.M . Unlike λC, where values can involve nested coercion applications, there
is at most one coercion in a value – nested coercions will be composed. Coerced values U 〈〈d〉〉
have two forms: injected values U 〈〈g; G!〉〉 and wrapped functions U 〈〈s → t〉〉. The check of
function coercion is delayed until wrapped functions are applied to a value [18, 13, 36]. We
include variables as values for technical convenience in defining translations; for operational
semantics, though, it is not necessary to do so because we consider evaluation of closed terms.

Unlike many other studies on coercion and blame calculi, we syntactically distinguish
coerced values U 〈〈d〉〉 from U 〈d〉 (similarly to Wadler and Findler [43]). This distinction
plays an important role in our correctness proof; roughly speaking, without the distinction,
U 〈d〉〈t〉 would allow two different interpretations: an application of t to a value U 〈d〉 or two
applications of d and t to a value U , which would result in different translation results. We
also note that variables x are considered values, rather than uncoerced values, since they
can be bound to coerced values at function calls. In other words, we ensure that values are
closed under value substitution.

As usual, applications are left-associative and λ extends as far to the right as possible.
We do not commit to a particular choice of precedence between function applications and
coercion applications; we will always use parentheses to disambiguate terms like M N 〈t〉.
The term λx.M binds x in M as usual. The definitions of free variables and α-equivalence of
terms are standard, and thus we omit them. We identify α-equivalent terms.

The metavariable Γ ranges over type environments. A type environment is a sequence of
pairs of a variable and its type.

2.2 Type System
We give the type system of λS, which consists of three judgments for type consistency A ∼ B,
well-formed coercions c : A  B, and typing Γ `S M : A. We use c to denote any kind of
coercions. The inference rules (except for A ∼ B) are shown in Figure 3. (We omit the
subscript S on ` in rules, as some of them are reused for λS1.)

The type consistency relation A ∼ B is the least reflexive and symmetric and compatible
relation that contains A ∼ ?. As this is standard [36], we omit inference rules here. (We
have them in the full version.)

The relation c : A B means that coercion c, which ranges over all kinds of coercions,
converts a value from type A to type B. We often call A and B the source and target types
of c, respectively. The rule (CT-Id) is for identity coercion idA. The rule (CT-Inj) is for
injection G!, which converts type G to type ?. The rule (CT-Proj) is for projection G?p,
which converts type ? to type G. The rule (CT-Fun) is for function coercion c1 → c2. If its
argument coercion c1 converts type A′ to type A and its return-value coercion c2 converts
type B to type B′, then function coercion c1 → c2 converts type A→ B to type A′ → B′. In
other words, function coercions are contravariant in their argument coercions and covariant
in return-value coercions. The rule (CT-Fail) is for failure coercion ⊥GpH . Here, the source

ECOOP 2020
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Well-formed coercions c : A B

G! : G  ?
CT-Inj

G?p : ? G
CT-Proj

c1 : A′  A c2 : B  B′

c1 → c2 : A→ B  A′ → B′ CT-Fun

idA : A A
CT-Id

c1 : A B c2 : B  C
(c1; c2) : A C

CT-Seq
A 6= ? A ∼ G G 6= H

⊥GpH : A B
CT-Fail

Term typing Γ `S M : A

Γ ` a : ty(a)
T-Const

ty(op) = ι1 → ι2 → ι Γ ` M : ι1 Γ ` N : ι2
Γ ` op(M ,N ) : ι

T-Op

(x : A) ∈ Γ
Γ ` x : A

T-Var
Γ, x : A ` M : B

Γ ` λx.M : A→ B
T-Abs

Γ ` M : A→ B Γ ` N : A
Γ ` M N : B

T-App

Γ ` M : A s : A B
Γ ` M 〈s〉 : B

T-Crc
∅ ` U : A d : A B

∅ ` U 〈〈d〉〉 : B
T-CrcV

∅ ` blame p : A
T-Blame

Figure 3 Typing rules of λS.

type is not necessarily G but can be any nondynamic type A consistent with G because the
source type of a failure coercion may change during coercion composition. For example, the
following judgments are derivable:

(idint; int!)→ (int?p; idint) : ?→ ?  int→ int
⊥?→?pint : int→ bool  int

Proposition 1 below, which is about the source and target types of intermediate coercions
and ground coercions, is useful to understand the syntactic structure of space-efficient
coercions. In particular, it states that neither the source nor target type of ground coercions
g is the type ?.

I Proposition 1 (Source and Target Types).
1. If i : A B then A 6= ?.
2. If g : A B, then A 6= ? and B 6= ? and A ∼ G and G ∼ B for some unique G.

The judgment Γ `S M : A means that the λS-term M is given type A under type
environment Γ. When clear from the context, we sometimes write ` for `S with the subscript
S omitted. We adopt similar conventions for other relations (such as 7−→S) introduced later.

The rules (T-Const), (T-Op), (T-Var), (T-Abs), and (T-App) are standard. Here, ty(a)
maps constant a to a base type ι, and ty(op) maps binary operator op to a (first-order)
function type ι1 → ι2 → ι. The rule (T-Crc) states that if M is given type A and space-
efficient coercion s converts type A to B, then coercion application M 〈s〉 is given type B.
The rule (T-CrcV) is similar to (T-Crc), but for coerced values U 〈〈d〉〉. The rule (T-Blame)
allows blame p to have an arbitrary type A. Here, type environments are always empty ∅
in (T-CrcV) and (T-Blame). It is valid because the terms U 〈〈d〉〉 and blame p arise only
during evaluation, which runs a closed term. In other words, these terms are not written by
programmers in the surface language, and also they do not appear as the result of coercion
insertion.
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Coercion composition s # t = s′

id? # t = t CC-IdDynL (G?p; i) # t = G?p; (i # t) CC-ProjL

(g; G!) # id? = g; G! CC-InjId (g; G!) # (G?p; i) = g # i CC-Collapse

⊥GpH # s = ⊥GpH CC-FailL (g; G!) # (H?p; i) = ⊥GpH CC-Conflict
(if G 6= H )

g #⊥GpH = ⊥GpH CC-FailR g # (h; H!) = (g # h); H! CC-InjR

idA # g = g (if A 6= ?) CC-IdL g # idA = g (if A 6= ?, g 6= idA) CC-IdR

(s → t) # (s′ → t′)=

{
idA→B if s′ # s = idA and t # t′ = idB

(s′ # s)→ (t # t′) otherwise
CC-Fun

Figure 4 Coercion composition rules of λS.

Evaluation contexts

E ::= F | F [� 〈s〉] F ::= � | E [op(�,M )] | E [op(V , � )] | E [�M ] | E [V �]

Reduction M e−→S N M c−→S N

op(a, b) e−→ δ (op, a, b) R-Op U 〈idA〉 c−→U R-Id

(λx.M ) V e−→M [x := V ] R-Beta U 〈⊥GpH 〉 c−→ blame p R-Fail
(U 〈〈s → t〉〉) V e−→ (U (V 〈s〉))〈t〉 R-Wrap U 〈d〉 c−→U 〈〈d〉〉 R-Crc

M 〈s〉〈t〉 c−→M 〈s # t〉 R-MergeC
U 〈〈d〉〉〈t〉 c−→U 〈d # t〉 R-MergeV

Evaluation M e7−→S1 N M c7−→S1 N

M e−→N
E [M ] e7−→ E [N ]

E-CtxE
M c−→N

F [M ] c7−→ F [N ]
E-CtxC

E 6= �
E [blame p] e7−→ blame p

E-Abort

Figure 5 Reduction/evaluation rules of λS.

2.3 Operational Semantics

2.3.1 Coercion Composition
The coercion composition s # t is a recursive function that takes two space-efficient coercions
and computes another space-efficient coercion corresponding to their sequential composition.
We show the coercion composition rules in Figure 4. The function is defined in such a way
that the form of the first coercion determines which rule to apply.

The rules (CC-IdDynL) and (CC-ProjL) are applied if the first coercion is not an inter-
mediate coercion. The rules (CC-InjId), (CC-Collapse), (CC-Conflict), and (CC-FailL)
are applied if the first one is a (nonground) intermediate coercion, in which case another
intermediate coercion is yielded. The rules (CC-Collapse) and (CC-Conflict) deal with
cases where an injection and a projection meet and perform tag checks. If type tags do not
match, a failure coercion arises.

Failure coercions are necessary for eager coercion composition to preserve the behavior of
λC. The term M 〈G!〉〈H?p〉 (if G 6= H ) in λC evaluates to blame p – only after M evaluates
to a value. By contrast, the two coercions G! and H?p in the term M 〈idG; G!〉〈H?p; idH 〉
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are eagerly composed in λS. Raising blame p immediately would not match the semantics of
λC because M may evaluate to another blame or even diverge, in which case p is not blamed.
Thus, ⊥GpH must raise blame p only after M evaluates to a value.

The rules (CC-FailR) and (CC-InjR) are applied if a ground coercion and an interme-
diate coercion are composed to another intermediate coercion. The rules (CC-FailL) and
(CC-FailR) represent the propagation of a failure to the context, somewhat similarly to
exceptions. The rule (CC-InjR) represents associativity of sequential compositions but # is
propagated to the inside.

The rules (CC-IdL), (CC-IdR), and (CC-Fun) are applied if two ground coercions are
composed to another ground coercion. They are straightforward except that idA → idB has
to be normalized to idA→B (CC-Fun).

We present a few examples of coercion composition below:

(idbool; bool!) # (bool?p; idbool) = idbool # idbool = idbool

(id?→?; (?→ ?)!) # (int?p; idint) = ⊥?→?pint

((ι?p; idι)→ (idι′ ; ι′!)) # ((idι; ι!)→ id?) = ((idι; ι!) # (ι?p; idι))→ ((idι′ ; ι′!) # id?)
= idι → (idι′ ; ι′!)

These examples involve situations where an injection meets a projection by (CC-Collapse)
or (CC-Conflict). The third example is by (CC-Fun).

(ι?p; idι) # (idι; ι!) = ι?p; (idι # (idι; ι!)) = ι?p; ((idι # idι); ι!) = ι?p; (idι; ι!)
(idι; ι!) # (ι?p; (idι; ι!)) = idι # (idι; ι!) = (idι # idι); ι! = idι; ι!

As the fourth example shows, a projection followed by an injection does not collapse since the
projection might fail. Such a coercion is simplified when it is preceded by another injection
(the fifth example).

The following lemma states that composition is defined for two well-formed coercions
with matching target and source types.

I Lemma 2. If s : A B and t : B  C , then (s # t) : A C .

2.3.2 Evaluation
We give a small-step operational semantics to λS consisting of two relations on closed terms:
the reduction relation M −→S N for basic computation, and the evaluation relation M 7−→S N
for computing subterms and raising errors.

We show the reduction rules and the evaluation rules of λS in Figure 5. The reduction/e-
valuation rules are labeled either e or c. The label e is for essential computation, and the
label c is for coercion applications. As we see later, this distinction is important in our
correctness proof. We write −→S for e−→S ∪ c−→S, and 7−→S for e7−→S ∪ c7−→S. We sometimes
call e7−→S and c7−→S e-evaluation and c-evaluation, respectively.

The rule (R-Op) applies to primitive operations. Here, δ is a (partial) function that takes
an operator op and two constants a1, a2, and returns the resulting constant of the primitive
operation. We assume that if ty(op) = ι1 → ι2 → ι and ty(a1) = ι1 and ty(a2) = ι2, then
δ (op, a1, a2) = a and ty(a) = ι for some constant a.

The rule (R-Beta) performs the standard call-by-value β-reduction. We write M [x := V ]
for capture-avoiding substitution of V for free occurrences of x in M . The definition of
substitution is standard and thus omitted.
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The rule (R-Wrap) applies to applications of wrapped function U 〈〈s → t〉〉 to value V .
In this case, we first apply coercion s on the argument to V , and get V 〈s〉. We next apply
function U to V 〈s〉, and get U (V 〈s〉). We then apply coercion t on the returned value,
hence (U (V 〈s〉))〈t〉.

The rule (R-Id) represents that identity coercion idA returns the input value U as it is.
The rule (R-Fail) applies to applications of failure coercion ⊥GpH to uncoerced value U ,
which reduces to blame p. The rule (R-Crc) applies to applications U 〈d〉 of delayed coercion
d to uncoerced value U , which reduces to a coerced value U 〈〈d〉〉.

The rules (R-MergeC) and (R-MergeV) apply to two consecutive coercion applications,
and the two coercions are merged by the composition operation. These rules are key to
space efficiency. Thanks to (R-MergeV), we can assume that there is at most one coercion
in a value. Since d # t may or may not be a delayed coercion, the right-hand side has to be
U 〈d # t〉, rather than U 〈〈d # t〉〉. The outermost nested coercion applications are merged by
(R-MergeC).

Now, we explain evaluation contexts, ranged over by E , shown in the top of Figure 5.
Following Siek et al. [37], we define them in the so-called “inside-out” style [11, 9]. Evaluation
contexts represent that function calls in λS are call-by-value and that primitive operations
and function applications are evaluated from left to right. The grammar is mutually recursive
with F , which stands for evaluation contexts whose innermost frames are not a coercion
application, whereas E may contain a coercion application as the innermost frame.4 Careful
inspection will reveal that both E and F contain no consecutive coercion applications. As
usual, we write E [M ] for the term obtained by replacing the hole in E with M , similarly for
F [M ]. (We omit their definitions.)

We present a few examples of evaluation contexts below:

F1 = � E1 = F1[� 〈s〉] = � 〈s〉
F2 = E1[V �] = (V � )〈s〉 E2 = F2[� 〈t〉] = (V (� 〈t〉))〈s〉
F3 = E2[�M ] = (V ((�M )〈t〉))〈s〉

We then come back to evaluation rules: The rules (E-CtxE) and (E-CtxC) enable us to
evaluate the subterm in an evaluation context. Here, (E-CtxC) requires that computation
of coercion applications is only performed under contexts F – otherwise, the innermost
frame may be a coercion application, in which case (R-MergeC) has to be applied first. For
example, U 〈d〉〈t〉 reduces to U 〈d # t〉 rather than U 〈〈d〉〉〈t〉. The rule (E-Abort) halts the
evaluation of a program if it raises blame.

I Example 3. Let U be λx. (x〈int?p〉+ 2)〈int!〉. Term ((U 〈int!→ int?p〉) 3)〈int!〉 evaluates
to 5〈〈int!〉〉 as follows:

((U 〈int!→ int?p〉) 3)〈int!〉
7−→∗ (U (3〈int!〉))〈int?p〉〈int!〉 by (R-Crc), (R-Wrap)

7−→ (U (3〈int!〉))〈int?p; id; int!〉 by (R-MergeC)

7−→∗ (3〈〈int!〉〉〈int?p〉+ 2)〈int!〉〈int?p; id; int!〉 by (R-Crc), (R-Beta)

7−→∗ (3〈id〉+ 2)〈int!〉 by (R-MergeC), (R-MergeV)

7−→∗ 5〈〈int!〉〉 by (R-Id), (R-Op), (R-Crc).

4 F [� 〈s〉] (instead of F [� 〈f 〉]) in the definition of E fixes a problem in Siek et al. [37] that an identity
coercion applied to a nonvalue gets stuck (personal communication).
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2.4 Properties
We state a few important properties of λS, including determinacy of the evaluation relation
and type safety via progress and preservation [46]. We write 7−→∗S for the reflexive and
transitive closure of 7−→S, and 7−→+

S for the transitive closure of 7−→S. We say that λS-term
M diverges, denoted by M ⇑S, if there exists an infinite evaluation sequence from M .

Proofs of the stated properties are in the full version.

I Lemma 4 (Determinacy). If M 7−→S N and M 7−→S N ′, then N = N ′.

I Theorem 5 (Progress). If ∅ `S M : A, then one of the following holds: (1) M 7−→S M ′ for
some M ′; (2) M = V for some V ; or (3) M = blame p for some p.

I Theorem 6 (Preservation). If ∅ `S M : A and M 7−→S N , then ∅ `S N : A.

I Corollary 7 (Type Safety). If ∅ `S M : A, then one of the following holds: (1) M 7−→∗S V
and ∅ `S V : A for some V ; (2) M 7−→∗S blame p for some p; or (3) M ⇑S.

3 Space-Efficient First-Class Coercion Calculus

In this section, we introduce λS1, a new space-efficient coercion calculus with first-class
coercions; λS1 serves as the target calculus of the translation into coercion-passing style. The
design of λS1 is tailored to coercion-passing style and, as a result, first-class coercions are
not as general as one might expect: for example, coercions for coercions are restricted to
identity coercions (e.g., idι ι).

Since coercions are first-class in λS1, the use of (space-efficient) coercions s is not limited
to coercion applications M 〈s〉; they can be passed to a function as an argument, for example.
We equip λS with the infix (object-level) operator M ;; N to compute the composition of
two coercions: if M and N evaluate to coercions s and t, respectively, then M ;; N reduces
to their composition s # t, which is another space-efficient coercion. The type of (first-class)
coercions from A to B is written A B.5

In λS1, every function abstraction takes two arguments, one of which is a parameter
for a continuation coercion to be applied to the value returned from this abstraction. For
example, λx. 1 in λS corresponds to λ(x, κ). 1〈κ〉 in λS1– here, κ is a coercion parameter.
Correspondingly, a function application takes the form M (N ,L), which calls function M with
an argument pair (N ,L), in which L is a coercion argument, which is applied to the value
returned from M . For example, (f 3)〈s〉 in λS corresponds to f (3, s) in λS1; (f 3) (without a
coercion application) corresponds to f (3, id).

The type of a function abstraction in λS1 is written A⇒ B, which means that the type
of the first argument is the type A and the source type of the second coercion argument is B.
An abstraction is polymorphic over the target type of the coercion argument; so, if a function
of type A⇒ B is applied to a pair of A and B  C , then the type of the application will be
C . Polymorphism is useful – and in fact required – for coercion-passing translation to work
because coercions with different target types may be passed to calls to the same function
in λS. Intuitively, A⇒ B means ∀X .(A× (B  X))→ X but we do not introduce ∀-types
explicitly because our use of ∀ is limited to the target-type polymorphism. However, we do
have to introduce type variables for typing function abstractions.

5 In λS,  is the symbol used in the three-place judgment form c : A  B, whereas  is also a type
constructor in λS1.
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Variables x, y, κ Type variables X ,Y
Types A,B,C ::= ? | ι | A B | A⇒ B | X

Ground types G,H ::= ι | ?⇒ ?

Space-efficient coercions s, t ::= id? | G?p; i | i

Intermediate coercions i ::= g; G! | g | ⊥GpH

Ground coercions g, h ::= idA (if A 6= ?) | s ⇒ t (if s 6= id or t 6= id)
Delayed coercions d ::= g; G! | s ⇒ t (if s 6= id or t 6= id)

Terms L,M ,N ::= V | op(M ,N ) | L (M ,N ) | let x = M in N
| M ;; N | M 〈N 〉 | blame p

Values V ,W ,K ::= x | U | U 〈〈d〉〉
Uncoerced values U ::= a | λ(x, κ).M | s

Type environments Γ ::= ∅ | Γ, x : A

Figure 6 Syntax of λS1.

Following the change to function types, function coercions in λS1 take the form s ⇒ t.
Roughly speaking, its meaning is the same: it coerces an input to a function by s and coerces
an output by t. However, due to the coercion passing semantics, there is slight change in how
t is used at a function call. Consider f 〈〈s ⇒ t〉〉, i.e., coercion-passing function f wrapped
by coercion s ⇒ t. If the wrapped function is applied to (V , t′), V is coerced by s before
passing to f as in λS; instead of coercing the return value by t, however, t is prepended to t′
and passed to f (together with the coerced V ) so that the return value is coerced by t and
then t′. In the reduction rule, prepending t to t′ is represented by composition t ;; t′.

3.1 Syntax
We show the syntax of λS1 in Figure 6. We reuse the same metavariables from λS. We also
use κ for variables, and K for values.

We replace A→ B with A⇒ B and add A B and type variables to types. The syntax
for ground types and space-efficient, intermediate, ground, and delayed coercions is the same
except that → is replaced with ⇒, similarly to types. As we have mentioned, we replace
abstractions and applications with two-argument versions. We also add let-expressions
(although they could be introduced as derived forms) and coercion composition M ;; N . The
syntax for coercion applications is now M 〈N 〉, where N is a general term (of type A B).
Uncoerced values now include space-efficient coercions.

The term λ(x, κ).M binds x and κ in M , and the term let x = M in N binds x in N . The
definitions of free variables and α-equivalence of terms are standard, and thus we omit them.
We identify α-equivalent terms.

The definition of type environments, ranged over by Γ, is the same as λS.

3.2 Type System
Figure 7 shows the main typing rules of λS1, which are a straightforward adaption from λS.

The relation c : A B is mostly the same as that of λS. We replace the rule (CT-Fun)
as shown. As in λS, function coercions are contravariant in their argument coercions and
covariant in their return-value coercions.
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Well-formed coercions (replacement) c : A B

c1 : A′  A c2 : B  B′

c1 ⇒ c2 : A⇒ B  A′ ⇒ B′ CT-Fun

Term typing (excerpt) Γ `S1 M : A

s : A B
Γ ` s : A B

T-Crcn
Γ ` M : A B Γ ` N : B  C

Γ ` M ;; N : A C
T-Cmp

Γ ` M : A Γ ` N : A B
Γ ` M 〈N 〉 : B

T-Crc
∅ ` U : A ∅ ` d : A B

∅ ` U 〈〈d〉〉 : B
T-CrcV

Γ, x : A, κ : B  X ` M : X (X does not appear in Γ,A,B)
Γ ` λ(x, κ).M : A⇒ B

T-Abs

Γ ` M : A Γ, x : A ` N : B
Γ ` let x = M in N : B

T-Let
Γ ` L : A⇒ B Γ ` M : A Γ ` N : B  C

Γ ` L (M ,N ) : C
T-App

Figure 7 Typing rules of λS1.

The judgment Γ `S1 M : A means that term M of λS1 has type A under type environment
Γ. The rules (T-Const), (T-Op), (T-Var), and (T-Blame) are the same as λS, and so we
omit them. The rule (T-Let) is standard.

The rules (T-Abs) and (T-App) look involved but the intuition that A⇒ B corresponds
to ∀X . (A× (B  X))→ X should help to understand them. The rule (T-Abs) assigns type
A ⇒ B to an abstraction λ(x, κ).M if the body is well typed under the assumption that
x is of type A and κ is of type B  X for fresh X . The type variable X must not appear
in Γ,A,B so that the target type can be polymorphic at call sites. The rule (T-App) for
applications is already explained.

The rule (T-Crcn) assigns type A B to space-efficient coercion s if it converts a value
from type A to type B. The rules (T-Crc) and (T-CrcV) are similar to the corresponding
rules of λS, but adjusted to first-class coercions.

3.3 Operational Semantics
The composition function s # t is mostly the same as that of λS. We only replace (CC-Fun)
as shown in Figure 8.

Similarly to λS, we give a small-step operational semantics to λS1 consisting of two
relations on closed terms: the reduction relation M −→S1 N and the evaluation relation
M 7−→S1 N . We show the reduction/evaluation rules of λS1 in Figure 8. As in λS, they are
labeled either e or c. We write −→S1 for e−→S1 ∪

c−→S1 , and 7−→S1 for e7−→S1 ∪
c7−→S1 .

The rules (R-Op) and (R-Beta) are standard. Note that (R-Beta) is adjusted for pair
arguments. We write M [x := V , κ := K ] for capture-avoiding simultaneous substitution of
V and K for x and κ, respectively, in M .

The rule (R-Wrap) applies to applications of wrapped function U 〈〈s ⇒ t〉〉 to value V .
Since coercion s is for function arguments, it is applied to V , as in λS. Additionally, we
compose coercion t on the return value with continuation coercion W . Thus, V 〈s〉 and t ;; W
are passed to function U . Note that we use a let expression to evaluate the second argument
t ;; W before V 〈s〉. It is a necessary adjustment for the semantics of λS and λS1 to match.
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Coercion composition (replacement) s # t = s′

(s ⇒ t) # (s′ ⇒ t′) =

{
idA⇒B if s′ # s = idA and t # t′ = idB

(s′ # s)⇒ (t # t′) otherwise
CC-Fun

Evaluation contexts

E ::= � | E [� (M ,N )] | E [V (�,N )] | E [V (W ,�)] | E [op(�,M )] | E [op(V , � )]
| E [let x = � in M ] | E [� ;; M ] | E [V ;;�] | E [� 〈M 〉] | E [V 〈� 〉]

Reduction M e−→S1 N M c−→S1 N

op(a, b) e−→ δ (op, a, b) R-Op
(λ(x, κ).M ) (V ,W ) e−→M [x := V , κ := W ] R-Beta
(U 〈〈s ⇒ t〉〉) (V ,W ) e−→ letκ = t ;; W in U (V 〈s〉, κ) R-Wrap

let x = V in M c−→M [x := V ] R-Let s ;; t c−→ s # t R-Cmp

U 〈idA〉 c−→U R-Id U 〈⊥GpH 〉 c−→ blame p R-Fail
U 〈d〉 c−→U 〈〈d〉〉 R-Crc U 〈〈d〉〉〈t〉 c−→U 〈d ;; t〉 R-MergeV

Evaluation M e7−→S1 N M c7−→S1 N

M X−→N X ∈ {e, c}
E [M ] X7−→ E [N ]

E-Ctx
E 6= �

E [blame p] e7−→ blame p
E-Abort

Figure 8 Reduction/evaluation rules of λS1.

The rule (R-Let) is standard; it is labeled as c because we use let-expressions only for
coercion compositions. The rule (R-Cmp) applies to coercion compositions s ;; t, which is
evaluated by meta-level coercion composition function s # t. The rules (R-Id), (R-Fail),
(R-Crc), and (R-MergeV) are the same as λS.

Evaluation contexts, ranged over by E , are defined also in Figure 8. In contrast to λS,
evaluation contexts are standard in λS1. The definition represents that function calls in λS1
are call-by-value, and primitive operations, function applications, coercion compositions, and
coercion applications are all evaluated from left to right.

We then come back to evaluation rules: The evaluation rules (E-Ctx) and (E-Abort) are
the same as λS. (However, evaluation contexts in (E-Ctx) are more straightforward in λS1.)

Finally, we should emphasize that we no longer need (R-MergeC) in λS1. So, λS1 is an
ordinary call-by-value language and its semantics should be easy to implement.

I Example 8. Let U be λ(x, κ). letκ′ = int! ;;κ in (x〈int?p〉+2)〈κ′〉, which corresponds to the
λS-term λx. (x〈int?p〉+2)〈int!〉 in Example 3. In fact, we will obtain this term as a result of our
coercion-passing translation defined in the next section. The term (U 〈int!⇒ int?p〉) (3, int!)
evaluates to 5〈〈int!〉〉 as follows:
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(U 〈int!⇒ int?p〉) (3, int!)
7−→∗ letκ′′ = int?p ;; int! in U (3〈int!〉, κ′′) by (R-Crc), (R-Wrap)

7−→ letκ′′ = int?p; id; int! in U (3〈int!〉, κ′′) by (R-Cmp)

7−→∗ U (3〈〈int!〉〉, (int?p; id; int!)) by (R-Let), (R-Crc)

7−→ letκ′ = int! ;; (int?p; id; int!) in (3〈〈int!〉〉〈int?p〉+ 2)〈κ′〉 by (R-Beta)

7−→∗ (3〈〈int!〉〉〈int?p〉+ 2)〈int!〉 by (R-Cmp), (R-Let)

7−→∗ 5〈〈int!〉〉 by (R-MergeV), (R-ID), (R-Op), (R-Crc)

It is easy to see that the steps by (R-MergeC) in Example 3 are simulated by (R-Cmp)
followed by (R-Let).

3.4 Properties
We state a few properties of λS1 below. Their proofs are in the full version.

I Lemma 9 (Determinacy). If M 7−→S1 N and M 7−→S1 N ′, then N = N ′.

I Theorem 10 (Progress). If ∅ `S1 M : A, then one of the following holds: (1) M 7−→S1 M ′
for some M ′; (2) M = V for some V ; or (3) M = blame p for some p.

I Theorem 11 (Preservation). If ∅ `S1 M : A and M 7−→S1 N , then ∅ `S1 N : A.

I Corollary 12 (Type Safety). If ∅ `S1 M : A, then one of the following holds: (1) M 7−→∗S1
V

and ∅ `S1 V : A for some V ; (2) M 7−→∗S1
blame p for some p; or (3) M ⇑S1 .

4 Translation into Coercion-Passing Style

In this section, we formalize a translation into coercion-passing style as a translation from
λS to λS1 and state its correctness. As its name suggests, this translation is similar to
transformations into continuation-passing style (CPS transformations) for the call-by-value
λ-calculus [28].

4.1 Definition of Translation
We give the translation into coercion-passing style by the translation rules presented in
Figure 9. In order to distinguish metavariables of λS and λS1, we often use blue for the
source calculus λS. When we need static type information in translation rules, we write M A

to indicate that term M has type A. Thus, strictly speaking, the translation is defined for
type derivations in λS.

Translations for types Ψ(A) and coercions Ψ(s) are very straightforward, thanks to the
special type/coercion constructor ⇒: they just recursively replace → with ⇒.

Value translation Ψ(V ) and term translation K JM KK are defined in a mutually recursive
manner. In K JM KK , M is a λS-term whereas K is a λS1-term, which is either a variable or
a λS1-coercion. K JM KK returns a λS1-term – in coercion-passing style – that applies K to
the value of M .

Value translation Ψ(V ) is straightforward: every function λx.M is translated to a λS1-
abstraction that takes as the second argument κ a coercion which is to be applied to the
return value. So, the body is translated by term translation K JM Kκ.
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Type translation Ψ(A) = A′

Ψ(?) = ? Ψ(ι) = ι Ψ(A→ B) = Ψ(A)⇒ Ψ(B)

Coercion translation Ψ(s) = s′

Ψ(idA) = idΨ(A)

Ψ(g; G!) = Ψ(g); Ψ(G)!
Ψ(G?p; i) = Ψ(G)?p; Ψ(i)
Ψ(s → t) = Ψ(s)⇒ Ψ(t)

Ψ(⊥GpH ) = ⊥GpH

Value translation Ψ(V ) = V ′

Ψ(x) = x
Ψ(a) = a

Ψ(λx.M ) = λ(x, κ). (K JM Kκ)
Ψ(U 〈〈d〉〉) = Ψ(U )〈〈Ψ(d)〉〉

Term translation C JM K = M ′ K JM KK = M ′

C JV K = Ψ(V ) TrC-Val
C JM 〈s〉K = K JM KΨ(s) TrC-Crc

C JM AK = K JM KidΨ(A) otherwise TrC-Else

K JV KK = Ψ(V )〈K〉 Tr-Val
K Jop(M ,N )KK = op(C JM K,C JN K)〈K〉 Tr-Op

K JM N KK = (C JM K) (C JN K,K) Tr-App
K JM 〈s〉KK = letκ = Ψ(s) ;; K in (K JM Kκ) Tr-Crc

K Jblame pKK = blame p Tr-Blame

Figure 9 Translation into coercion-passing style (from λS to λS1).

We now describe the translation for terms. We write K JM KK for the translation of
λS-term M with continuation coercion K . We first explain the basic transformation scheme
given by the recursive function K ′ defined by the following simpler rules:

K ′JV KK = Ψ(V )〈K 〉 Tr′-Val
K ′Jop(M ι1 ,N ι2)KK = op(K ′JM Kidι1 ,K ′JN Kidι2)〈K 〉 Tr′-Op

K ′JM A→B N AKK = (K ′JM KidΨ(A→B)) (K ′JN KidΨ(A),K ) Tr′-App
K ′JM 〈s〉KK = letκ = Ψ(s) ;; K in (K ′JM Kκ) Tr′-Crc

K ′Jblame pKK = blame p Tr′-Blame

(We put a prime on K to distinguish with the final version.)
The rule (Tr′-Val) applies to values V , where we apply coercion K to the result of value

translation Ψ(V ).
The rule (Tr′-Op) applies to primitive operations op(M ,N ). We translate the arguments

M and N with identity continuation coercions by K ′JM Kid and K ′JN Kid and pass them
to the primitive operation. The given continuation coercion K is applied to the result.
Translating subexpressions with id is one of the main differences from CPS transformation.
While continuations in continuation-passing style capture the whole rest of computation,
continuation coercions in coercion-passing style capture only the coercion applied right after
the current computation. Since neither M nor N is surrounded by a coercion, they are
translated with identity coercions of appropriate types. (Cases where a subexpression itself
is a coercion application will be discussed shortly.) Careful readers may notice at this point
that left-to-right evaluation of arguments is enforced by the semantics (or the definition of
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evaluation contexts) of λS, not by the translation. In other words, the correctness of the
translation relies on the fact that λS evaluation is left-to-right and call-by-value. This is
another point that is different from CPS transformation, which dismisses the distinction of
call-by-name and call-by-value.

The rule (Tr′-App) applies to function applications M N . We translate function M and
argument N with identity continuation coercions just like the case for primitive operations.
We then pass the continuation coercion K as the second argument to function K ′JM Kid.

The rule (Tr′-Crc) applies to coercion applications M 〈s〉. We can think of the sequential
composition of Ψ(s) and K as the continuation coercion for M . Thus, we first compute
the composition Ψ(s) ;; K , bind its result to κ, and translate M with continuation κ. The
let-expression is necessary to compose Ψ(s) and K before evaluating K ′JM Kκ. In general,
it is not necessarily the case that K ′JM KK evaluates K first, so if we set K ′JM 〈s〉KK =
(K ′JM K(Ψ(s) ;; K)), then the order of computation would change by the translation and
correctness of translation would be harder to show.

Lastly, the rule (Tr′-Blame) means that continuation K is discarded for blame p.
The translation K ′ seems acceptable but, just as naïve CPS transformation leaves

administrative redexes, it leaves many applications of id, which we call administrative
coercions. We expect M and K ′JM KK to “behave similarly” but administrative redexes
make it hard to show such semantic correspondence. Therefore, we will optimize the
translation so that administrative coercions are eliminated, similarly to CPS transformations
that eliminate administrative redexes [28, 3, 45, 32, 10, 8, 33].

The bottom of Figure 9 shows the optimized translation rules. The idea to eliminate
administrative coercions is close to the colon translation by Plotkin [28]: we avoid translating
values with administrative coercions. So, we introduce an auxiliary translation function
C JM K, which, if M is a value V , returns Ψ(V ) – without a coercion application – and, if M
is a coercion application N 〈s〉, returns K JN KΨ(s) – with the trivial composition Ψ(s) # id
optimized away – and returns K JM Kid otherwise. Translation rules for primitive operations
and function applications are adapted so that they use C JM K to translate subexpressions.

In other words, C JM K helps us precisely distinguish between id introduced by the
translation and id that was present in the original term. Whenever we introduce id as an
initial coercion for the translation, we first apply C JM K and then apply K JM Kid only if
necessary. We note that K JM Kid 7−→S1 C JM K holds. We present a few examples of the
translation below:

Ψ(λx. x + 1) = λ(x, κ). (x + 1)〈κ〉
K J(λx. x) 5Kint! = (λ(x, κ). x〈κ〉) (5, int!)

K J((λx. x) 5)〈int!〉Kint?p = letκ = int! ;; int?p in (λ(x, κ). x〈κ〉) (5, κ)

The following example shows the translation of the λS-term in Example 3 will be the
λS1-term in Example 8.

I Example 13. Let U be a λS-term λx. (x〈int?p〉+ 2)〈int!〉.

Ψ(U ) = λ(x, κ). (K J(x〈int?p〉+ 2)〈int!〉Kκ)
= λ(x, κ). letκ′ = int! ;; κ in (K J(x〈int?p〉+ 2)Kκ′)
= λ(x, κ). letκ′ = int! ;; κ in (x〈int?p〉+ 2)〈κ′〉

K J((U 〈int!→ int?p〉) 3)Kid = (K J(U 〈int!→ int?p〉)Kid) (K J3Kid, id)
= (K JU K(int!→ int?p)) (3, id)
= (Ψ(U )〈int!⇒ int?p〉) (3, id)
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4.2 Correctness of Translation
Having defined the translation, we now state its correctness properties with auxiliary lemmas.
(Their proofs are in the full version.)

To begin with, the translation preserves typing. Here, we write Ψ(Γ) for the type
environment satisfying: (x : A) ∈ Γ if and only if (x : Ψ(A)) ∈ Ψ(Γ).

I Theorem 14 (Translation Preserves Typing).
1. If Γ `S M : A and s : A B , then Ψ(Γ) `S1 (K JM KΨ(s)) : Ψ(B).
2. If Γ `S V : A, then Ψ(Γ) `S1 Ψ(V ) : Ψ(A).

As for the preservation of semantics, we will prove the following theorem that states the
semantics is preserved by the translation:

I Theorem 15 (Translation Preserves Semantics). If ∅ `S M : ι, then (1) M 7−→∗S a iff
C JM K 7−→∗S1

a; (2) M 7−→∗S blame p iff C JM K 7−→∗S1
blame p; and (3) M ⇑S iff C JM K⇑S1 .

To prove this theorem, it suffices to show the left-to-right direction (Theorem 16 below) for
each item because the other direction follows from Theorem 16 together with other properties:
for example, if ∅ `S M : ι and C JM K⇑S1 , then M can neither get stuck (by type soundness
of λS) nor terminate (as it contradicts the left-to-right direction and the fact that 7−→S1 is
deterministic).

I Theorem 16 (Translation Soundness). Suppose Γ `S M : A. (1) If M 7−→∗S V , then
C JM K 7−→∗S1

Ψ(V ); (2) if M 7−→∗S blame p, then C JM K 7−→∗S1
blame p; and (3) if M ⇑S, then

C JM K⇑S1 .

A standard proof strategy would be to show that single-step evaluation in the source language
is simulated by multi-step evaluation in the target language. In fact, we prove the following
lemma:

I Lemma 17 (Simulation).
1. If M e7−→S N , then C JM K e7−→S1

c7−→∗S1
C JN K.

2. If M c7−→S N , then C JM K c7−→+
S1

C JN K.
M � e

S
//

C J_K

��

N

C J_K

��
C JM K � e

S1

// � c ∗
S1

// C JN K

M � c
S
//

C J_K

��

N

C J_K

��
C JM K � c +

S1

// C JN K

The straightforward simulation property below follows from Lemma 17.

I Lemma 18. If M 7−→S N , then C JM K 7−→+
S1

C JN K.

As is the case for simulation proofs for CPS translation [28, 3, 45, 32, 10, 8, 33], the
simulation property6 is quite subtle. We discuss this subtlety below.

First, it is important that the translation removes administrative identity coercions by
distinguishing values and nonvalues in C JM K. For example, (λx. x) 5 e7−→ 5 holds in λS,
but the translation K ′J(λx. x) 5KK without removing administrative redexes would yield

6 If we had been interested only in the property that translation preserves term equivalence, we could
have simplified the technical development by, say, removing the distinction between U 〈s〉 and U 〈〈s〉〉.
However, simulation is crucial for showing that divergence is preserved by the translation.
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((λ(x, κ). x〈κ〉)〈id〉) (5〈id〉,K), which performs c-evaluation before calling the function. We
avoid such a situation. More formally, we prove the following lemma, which means the redex
in the source is also the redex in the target.

I Lemma 19.
1. For any F , there exists E ′ such that for any M , C JF [M ]K = E ′[C JM K].
2. For any F and s, there exists E ′ such that for any M , C JF [M 〈s〉]K = E ′[K JM KΨ(s)].

To prove this lemma, the rule (TrC-Crc) also plays an important role: for example, if
we removed (TrC-Crc), K J(1 + 1)〈int!〉Kid would translate to letκ = int! ;; id in (1 + 1)〈κ〉,
which performs c-evaluation before adding 1 and 1, which is the first thing the original term
(1 + 1)〈int!〉 will do.

Second, optimizing too many (identity) coercions can break simulation. We should
only remove administrative identity coercions, and keep identity coercions that were
present in the original term. Consider M def= (((λx.M1)〈〈idι → ι!〉〉) a)〈ι?p〉 and N def=
((λx.M1) (a〈idι〉))〈ι!〉〈ι?p〉, for which M 7−→S N holds by (R-Wrap). Then,

C JM K = K JM Kid = ((K Jλ(x, κ).M1Kκ)〈〈idι ⇒ ι!〉〉) (a, ι?p)
7−→S1 letκ′ = ι! ;; ι?p in (K Jλ(x, κ).M1Kκ) (a〈idι〉, κ′) = C JN K.

At one point, we defined the translation (let’s call it K ′′) so that applications of identity
coercions would be removed as much as possible, namely,

K ′′JN Kid = letκ′ = ι! ;; ι?p in (K ′′Jλ(x, κ).M1Kκ) (a, κ′)

(notice that 〈idι〉 on a is removed). Although K ′′JM Kid and K ′′JN Kid reduced to the same
term, we did not quite have K ′′JM Kid 7−→+ K ′′JN Kid as we had desired.

Third, the distinction between U 〈s〉 and U 〈〈s〉〉 is crucial for ensuring that substitution
commutes with the translation:

I Lemma 20 (Substitution). If κ /∈ FV (M )∪FV (V ), then (K JM Kκ)[x := Ψ(V ), κ := K ] =
K JM [x := V ]KK .

Roughly speaking, if we identified a value U 〈〈s〉〉 and an application U 〈s〉 of s to an uncoerced
value U , then the term U 〈s〉〈t〉 would allow two interpretations: an application of t to a
value U 〈s〉 and applications of s and t to U and committing to either interpretation would
break Lemma 20.

5 Implementation and Evaluation

5.1 Implementation
We have implemented the coercion-passing translation described in Section 4 and the semantics
of λS1 for Grift [24]7, an experimental compiler for gradually typed languages. GTLC+,
the language that the Grift compiler implements, supports integers, floating-point numbers,
Booleans, higher-order functions, local binding by let, (mutually) recursive definitions by
letrec, conditional expressions, iterations, sequencing, mutable references, and vectors
(mutable arrays).

7 The semantics of coercions in Grift is so-called D [35], which is slightly different from that of λS1, which
is UD. Since the main difference is in the coercion composition, our technique can be applied to Grift.
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The Grift compiler compiles a GTLC+ program into the C language where coercions
are represented as values of a struct type, and operations such as coercion application
and coercion composition are C functions. The compiler supports different run-time check
schemes, those based on type-based casts [36] and space-efficient coercions [37]. Note that,
although meta-level composition s1 # s2 is implemented, only nested coercions on values
are composed; in other words, (R-MergeC) was not implemented. Thus, implicit run-time
checks may break tail calls and seemingly tail-recursive functions may cause stack overflow.

We modify the compiler phases for run-time checking based on the space-efficient coercions.
After typechecking a user program, the compiler inserts type-based casts to the program
and converts type-based casts to space-efficient coercions, following the translation from
blame calculus λB to λS [37]. Our implementation performs the coercion-passing translation
after the translation into λS. It is straightforward to extend the translation scheme to
language features that are not present in λS. For example, here is translation for conditional
expressions:

K Jif M then N1 else N2KK = if C JM K then (K JN1KK ) else (K JN2KK ).

Since coercions are represented as structs, we did not have to do anything special to
make coercions first-class. We modify another compiler phase that generates operations on
coercions such as M ;; N and (R-Wrap). The current implementation, which generates C
code and uses clang8 for compilation to machine code, relies on the C compiler to perform
tail-call optimizations. We have found the original compiler’s handling of recursive types
hampers tail-call optimizations,9 so our implementation does not deal with recursive types.
We leave their implementation for future work.

5.2 Even and Odd Functions
We first inspected the tail-recursive even–odd functions in GTLC+:

(letrec ([even (lambda ([n : A1]) : A3
(if (= 0 n) #t (odd (- n 1))))]

[odd (lambda ([n : A2]) : A4
(if (= 0 n) #f (even (- n 1))))])

(odd n))

where A1 and A2 are either Int or Dyn, and A3 and A4 are either Bool or Dyn. We run this
program with the original and modified compilers for all combinations of A1,A2,A3, and A4.
We call the program compiled by the original compiler Base, the program compiled by the
modified compiler CrcPS.

We have confirmed that, as n increases, 12 of 16 configurations of Base cause stack
overflow.10 In the four configurations that survived, both A3 and A4 are set to Bool. CrcPS
never causes stack overflow for any configuration.

Although we expected that Base would crash if A3 and A4 are different, it is our surprise
that Base causes stack overflow even when A3 = A4 = Dyn. We have found that it is due to
the typing rule of Grift for conditional expressions. In Grift, if one of the branches is given a

8 https://clang.llvm.org/
9 The C function to compose coercions takes a pointer to a stack-allocated object as an argument and
writes into the object when recursive coercions are composed. Although those stack-allocated objects
never escape and tail-call optimization is safe, the C compiler is not powerful enough to see it.

10The size of the run-time stack is 8 MB.
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static type, say Bool, and the other is Dyn, the whole if-expression is given the static type
and the compiler put a cast from Dyn on the branch of type Dyn. If both A3 and A4 are
Dyn, the recursive calls in the two else-branches will involve casts bool?p from Dyn to Bool
because the two then-branches are Boolean constants and the if-expressions are given type
Bool. However, since the return types are declared to be Dyn, the whole if-expressions are
cast back to Dyn, inserting injections bool!. Thus, every recursive call involves a projection
immediately followed by an injection, as shown below, eventually causing stack overflow.

(letrec ([even (lambda ([n : Dyn]) : Dyn
(if (= 0 n〈int?p1〉) #t

(odd (- n〈int?p2〉 1))〈bool?p3〉)〈bool!〉)]
[odd (lambda ([n : Dyn) : Dyn
(if (= 0 n〈int?p4〉) #f

(even (- n〈int?p5〉 1))〈bool?p6〉)〈bool!〉))])
(odd n))

5.3 Evaluation
We have conducted some experiments to measure the overhead of the coercion-passing
style translation. The benchmark programs we have used are taken from Kuhlenschmidt
et al. [24]11; we excluded the sieve program because of the use of recursive types. We also
include the even/odd program only for reference, which is relatively small compared to other
programs.

We compare the running time of a benchmark program between Base and CrcPS. To take
many partially typed configurations for each benchmark program into account, we focus on
the so-called fine-grained approach, where everywhere a type is required is given either the
dynamic type Dyn or an appropriate static type.12 In the fine-grained approach, the number
of configurations is 2n where n is the number of type annotations. When this number is
very large, we consider uniformly sampled configurations. We use the sampling algorithm13

from [24].
We describe the (sampled) number of partially typed configurations and main language

features used for each benchmark program below. (Each benchmark program has one
additional type annotation for the return type of the 0-ary main function.) For more detailed
description of benchmark programs, we refer readers to Kuhlenschmidt et al. [24].

name # of configurations description
even–odd all 32 = 25 mutually tail-recursive functions
n-body 300 out of 2136 vectors
tak all 256 = 28 recursive function
ray 300 out of 2280 tuples and iterations
blackscholes 300 out of 2128 vectors and iterations
matmult 300 out of 233 vectors and iterations
quicksort 300 out of 244 vectors
fft 300 out of 267 vectors

11 https://github.com/Gradual-Typing/benchmarks
12The other approach is called coarse-grained, where functions in each module are all statically or all

dynamically typed.
13 https://github.com/Gradual-Typing/Dynamizer

https://github.com/Gradual-Typing/benchmarks
https://github.com/Gradual-Typing/Dynamizer
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Figure 10 A box plot for the running time ratios of CrcPS to Base across (sampled) partially
typed configurations of the benchmark programs. (As is standard, the lower/upper end of a box
indicates the first/third quartile, respectively, and the middle line in a box indicates the median. The
length of each whisker is below 1.5 times of interquartile range, and outliers are plotted individually.)

Our benchmark method is as follows: For each partially typed configuration of a benchmark
program, we measure its running time by taking the average of 5 runs for Base and CrcPS,
and compute the ratio of CrcPS to Base. We use a machine with a 8-core 3.6 GHz Intel Core
i7-7700 and 16 GB memory, and run the benchmark programs within a Docker container
(Docker version 19.03.5) which runs Arch Linux. The generated C code is compiled by clang
version 9.0.0 with -O3 so that tail-call optimization is applied. The size of the run-time stack
is set as unlimited.

Figure 10 shows the result in box plots. (Detailed plots for each benchmark are shown
in the full version.) It shows that, except for tak (and even–odd), practical programs in
CrcPS run up to three times as slow as Base, for most configurations. It is natural because
coercion-passing style translation adds an extra coercion argument to each function. In
fact, tak and even–odd, which have a lot of function calls, have large overhead compared
with other programs. In even–odd, CrcPS performs many coercion composition operations
(and one coercion application) while Base performs many coercion applications (without
any coercion composition).14 Thus, the difference between Base and CrcPS for even–odd is
partially due to the difference of the cost of coercion application and coercion composition.

14An application of a projection coercion to an injected value is always computed by coercion composition
in CrcPS, while the implementation of Base is slightly optimized for first-order types.
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The benchmark programs other than tak and even–odd mainly concern vectors and
iterations over them. Vector operations are treated in the translation as primitive operations,
which we consider do not have much overhead by the translation. In fact, our translation
implementation optimizes the rule (Tr-Op) when its continuation is id: K Jop(M ,N )Kid =
op(C JM K,C JN K) without an application of an identity coercion.

There are several configurations in which CrcPS is faster than Base but we have not
figured out why this is the case.

6 Related Work

6.1 Space-Efficient Coercion/Cast Calculi
As we have already mentioned, it is fairly well known that coercions [18] and casts [43]
hamper tail-call optimization and make the space complexity of the execution of a program
worse than the execution under an unchecked semantics. We discuss below a few pieces of
work [19, 20, 35, 38, 14, 37] addressing the problem.

To the best of our knowledge, Herman et al. [19, 20] were the first to observe the space-
efficiency problem of inserted dynamic checks. They developed a variant of Henglein’s
coercion calculus with semantics such that a sequence of coercion applications is eagerly
composed to reduce the size of coercions. However, they identified two coercions (c1; c2); c3
and c1; (c2; c3) (note that c1; c2 is not a meta-level operator but only a formal composition
constructor); thus, an algorithm for computing coercion composition was not very clear.
They did not take blame tracking [13] into account, either.

Later, Siek et al. [35] extended Herman et al. [19, 20] with a few different blame tracking
strategies. The issue of identifying (c1; c2); c3 and c1; (c2; c3) remained. According to their
terminology, our work, which follows previous work [37], adopts the UD semantics, which
allows only ?→ ? as a tag to functional values, as opposed to the D semantics, which allows
any function types to be used as a tag.

Siek and Wadler [38] introduced threesomes to a blame calculus as another solution to
the space-efficiency problem. Threesome casts have a third type (called a mediating type) in
addition to the source and target types; a threesome cast is considered a downcast from the
source type to the mediating, followed by an upcast from the mediating type to the target.
Threesome casts allow a simple recursive algorithm to compose two threesome casts but
blame tracking is rather complicated.

Garcia [14] gave a translation from coercion calculi to threesome calculi and show that
the two solutions to the space-efficiency problem are equivalent in some sense. He introduced
supercoercions and a recursive algorithm to compute composition of supercoercions but they
were complex, too.

Siek et al. [37] proposed yet another space-efficient coercion calculus λS, in which they
succeeded in developing a simple recursive algorithm for coercion composition by restricting
coercions to be in certain canonical forms – what they call space-efficient coercions. They
also gave a translation from blame calculus λB to λS (via Henglein’s coercion calculus λC)
and showed that the translation is fully abstract. As we have discussed already, our λS has
introduced syntax that distinguishes an application U 〈s〉 of a coercion to (uncoerced) values
from U 〈〈d〉〉 for a value wrapped by a delayed coercion. Such distinction, which can be seen
in some blame calculi [43], is not just an aesthetic choice but crucial for proving correctness
of the translation.

All the above-mentioned calculi adopt a nonstandard reduction rule to compose coercions
or casts even before the subject evaluates to a value, together with a nonstandard form
of evaluation contexts, and as a result it has not been clear how to implement them
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efficiently. Herman et al. [19, 20] sketched a few possible implementation strategies, including
coercion passing, but details were not discussed. Siek and Garcia [34] showed an interpreter
which performs coercion composition at tail calls. Although not showing correctness of
the interpreter, their interpreter would give a hint to direct low-level implementation of
space-efficient coercions. Our work addresses the problem of the nonstandard semantics in a
different way – by translating a program into coercion-passing style. The difference, however,
may not be so large as it may appear at first: in Siek and Garcia [34], a state of the abstract
machine includes an evaluation context, which contains the information on a coercion to
be applied to a return value and such a coercion roughly corresponds to our continuation
coercions. More detailed analysis of the relationship between the two implementation schemes
is left for future work.

Kuhlenschmidt et al. [24] built an experimental compiler Grift for gradual typing with
structural types. It supports run-time checking with the space-efficient coercions of λS
but does not support composition of coercions at tail positions. We have implemented our
coercion-passing translation for the Grift compiler.

Greenberg [15] has studied the same space-efficiency problem in the context of manifest
contract calculi [23, 16, 17] and proposed a few semantics for composing casts that involve
contract checking. Feltey et al. [12] recently implemented Greenberg’s eidetic contracts on
top of Typed Racket [41] but, similarly to Kuhlenschmidt et al. [24], composition is limited
to a sequence of contracts applied to values.

There is other recent work for making gradual typing efficient [4, 27, 31, 29] but as far as
we know, none of them addresses the problem caused by run-time checking applied to tail
positions. Additionally, Castagna et al. [5] implemented a virtual machine for space-efficient
gradual typing in presence of set-theoretic types, but without blame tracking. They address
the problem caused by casts applied to tail positions by an approach similar to the one in the
interpreter by Siek and Garcia [34]. They implemented their virtual machine and evaluated
their implementation by benchmarks such as the even–odd functions.

6.2 Continuation-Passing Style
Our coercion-passing style translation is inspired by continuation-passing style translation,
first formalized by Plotkin [28]. However, coercions represent only a part of the rest
of computation and are, in this sense, closer to delimited continuations [7]. Roughly
speaking, translating a subexpression with id corresponds to the reset operation [7] to delimit
continuations. Unlike (delimited) continuations, which are usually expressed by first-class
functions, coercions have compact representations and compactness can be preserved by
composition.

Wallach and Felten [44] proposed security-passing style to implement Java stack inspec-
tion [25]. The idea is indeed similar to ours: each function is augmented by an additional
argument to pass information on run-time security checking.

In CPS, it is crucial to eliminate administrative redexes to achieve a simulation prop-
erty [28, 3, 45, 32, 10, 8, 33], which says that a reduction in the source is simulated by a
sequence of (one-directional) reductions in the translation. Simulation is usually achieved
by applying different translations to an application M N , depending on whether M and N
are values or not. In addition to such value/nonvalue distinction, our coercion-passing style
translation also relies on whether subterms are coercion applications or not.

Continuation-passing style eliminates the difference between call-by-name and call-by-
value but our coercion-passing style translation works only under the call-by-value semantics
of the target language because coercions have to be eagerly composed. It would be interesting
to investigate call-by-name for either the source or the target language, or both.
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6.3 First-Class Coercions
The idea of first-class coercions is also found in Cretin and Rémy [6]. Their language Fι
is equipped with abstraction over coercions. However, their coercions are not for gradual
typing but for parametric polymorphism and subtyping polymorphism.

7 Conclusion

We have developed a new coercion calculus λS1 with first-class coercions as a target language
of coercion-passing style translation from λS, an existing space-efficient coercion calculus.
We have proved the translation preserves both typing and semantics. To achieve a simulation
property, it is important to reduce administrative coercions, just as in CPS transformations.
Our coercion-passing style translation solves the difficulty in implementing the semantics
of λS in a faithful manner and, with the help of first-class coercions, makes it possible to
implement in a compiler for a call-by-value language. We have modified an existing compiler
for a gradually typed language and conducted some experiments. We have confirmed that our
implementation successfully overcomes stack overflow caused by coercions at tail positions,
which Kuhlenschmidt at al. [24] did not support. Our experiment has shown that for practical
programs (without heavy use of function calls), the coercion-passing style translation causes
slowdown up to 3 times for most partially typed configurations.

Aside from completing the implementation by adding recursive types, which the original
Grift compiler supports, more efficient implementation is an obvious direction of future work.
Our coercion-passing style translation introduces several identity coercions and optimizing
operations on coercions will be necessary.

From a theoretical point of view, it would be interesting to extend the technique to
gradual typing in the presence of parametric polymorphism [1, 2, 21, 47, 42], for which a
polymorphic coercion calculus has to be studied first – Luo [26] and Kießling and Luo [22],
who study coercive subtyping in polymorphic settings, may be relevant. The present design
of λS1 is geared towards coercion-passing style. For example, in λS1, trivial (namely identity)
coercions for coercion types A B are allowed; passing coercions to dynamically typed code
is prohibited; variables cannot appear as an argument to coercion constructors, like x ⇒ s.
It may be interesting to study more general first-class coercions without such restrictions.
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