99 research outputs found

    Low-cost Air Quality Sensing Process: Validation by Indoor-Outdoor Measurements

    Get PDF
    Air pollution is a main challenge in societies with particulate matter PM2.5 as the major air pollutant causing serious health implications. Due to health and economic impacts of air pollution, low-cost and portable air quality sensors can be vastly deployed to gain personal air pollutant exposure. In this paper, we present an air quality sensing process needed for low-cost sensors which are planned for long-term use. The steps of this process include design and production, laboratory tests, field tests, deployment, and maintenance. As a case study we focus on the field test, where we use two generations of a portable air quality sensor (capable of measuring meteorological variables and PM2.5 to perform an indoor-outdoor measurement. The study found that all of the measurements shown to be consistent through validation among themselves. The sensors accuracy also demonstrate to be adequate by showing similar readings compared to the nearest air quality reference station.Peer reviewe

    MegaSense: Cyber-Physical System for Real-time Urban Air Quality Monitoring

    Get PDF
    Air pollution is a contributor to approximately one in every nine deaths annually. To counteract health issues resulting from air pollution, air quality monitoring is being carried out extensively in urban environments. Currently, however, city air quality monitoring stations are expensive to maintain, resulting in sparse coverage. In this paper, we introduce the design and development of the MegaSense Cyber-Physical System (CPS) for spatially distributed IoT-based monitoring of urban air quality. MegaSense is able to produce aggregated, privacy-aware maps and history graphs of collected pollution data. It provides a feedback loop in the form of personal outdoor and indoor air pollution exposure information, allowing citizens to take measures to avoid future exposure. We present a battery-powered, portable low-cost air quality sensor design for sampling PM2.5 and air pollutant gases in different micro-environments. We validate the approach with a use case in Helsinki, deploying MegaSense with citizens carrying low-maintenance portable sensors, and using smart phone exposure apps. We demonstrate daily air pollution exposure profiles and the air pollution hot-spot profile of a district. Our contributions have applications in policy intervention management mechanisms and design of clean air routing and healthier navigation applications to reduce pollution exposure.Peer reviewe

    Priority-Based Bandwidth Management in Virtualized Software-Defined Networks

    Get PDF
    In Industrial Internet of Things (IoT) applications, when the network size increases and different types of flows share the bandwidth, the demand for flexible and efficient management of the communication network is compelling. In these scenarios, under varying workload and flow priorities, the combined use of Software-Defined Networking (SDN) and Network Virtualization (NV) is a promising solution, as such techniques allow to reduce the network management complexity. This work presents the PrioSDN Resource Manager (PrioSDN_RM), a resource management mechanism based on admission control for virtualized SDN-based networks. The proposed combination imposes bounds on the resource utilization for the virtual slices, which therefore share the network links, while maintaining isolation from each other. The presented approach exploits a priority-based runtime bandwidth distribution mechanism to dynamically react to load changes (e.g., due to alarms). The paper describes the design of the approach and provides experimental results obtained on a real testbed

    Building Heat Demand Forecasting by Training a Common Machine Learning Model with Physics-Based Simulator

    Get PDF
    Accurate short-term forecasts of building energy consumption are necessary for profitable demand response. Short-term forecasting methods can be roughly classified into physics-based modelling and data-based modelling. Both of these approaches have their advantages and disadvantages and it would be therefore ideal to combine them. This paper proposes a novel approach that allows us to combine the best parts of physics-based modelling and machine learning while avoiding many of their drawbacks. A key idea in the approach is to provide a variety of building parameters as input for an Artificial Neural Network (ANN) and train the model with data from a large group of simulated buildings. The hypothesis is that this forces the ANN model to learn the underlying simulation model-based physics, and thus enables the ANN model to be used in place of the simulator. The advantages of this type of model is the combination of robustness and accuracy from a high-detail physics-based model with the inference speed, ease of deployment, and support for gradient based optimization provided by the ANN model. To evaluate the approach, an ANN model was developed and trained with simulated data from 900–11,700 buildings, including equal distribution of office buildings, apartment buildings, and detached houses. The performance of the ANN model was evaluated with a test set consisting of 60 buildings (20 buildings for each category). The normalized root mean square errors (NRMSE) were on average 0.050, 0.026, 0.052 for apartment buildings, office buildings, and detached houses, respectively. The results show that the model was able to approximate the simulator with good accuracy also outside of the training data distribution and generalize to new buildings in new geographical locations without any building specific heat demand data

    System of Systems Lifecycle Management: A New Concept Based on Process Engineering Methodologies

    Get PDF
    In order to tackle interoperability issues of large-scale automation systems, SOA (Service-Oriented Architecture) principles, where information exchange is manifested by systems providing and consuming services, have already been introduced. However, the deployment, operation, and maintenance of an extensive SoS (System of Systems) mean enormous challenges for system integrators as well as network and service operators. The existing lifecycle management approaches do not cover all aspects of SoS management; therefore, an integrated solution is required. The purpose of this paper is to introduce a new lifecycle approach, namely the SoSLM (System of Systems Lifecycle Management). This paper first provides an in-depth description and comparison of the most relevant process engineering methodologies and ITSM (Information Technology Service Management) frameworks, and how they affect various lifecycle management strategies. The paper’s novelty strives to introduce an Industry 4.0-compatible PLM (Product Lifecycle Management) model and to extend it to cover SoS management-related issues on well-known process engineering methodologies. The presented methodologies are adapted to the PLM model, thus creating the recommended SoSLM model. This is supported by demonstrations of how the IIoT (Industrial Internet of Things) applications and services can be developed and handled. Accordingly, complete implementation and integration are presented based on the proposed SoSLM model, using the Arrowhead framework that is available for IIoT SoS. View Full-Tex

    Machine Learning Modeling for Energy Consumption of Residential and Commercial Sectors

    Get PDF
    Energy has a strategic role in the economic and social development of countries. In the last few decades, energy demand has been increasing exponentially across the world, and predicting energy demand has become one of the main concerns in many countries. The residential and commercial sectors constitute about 34.7% of global energy consumption. Anticipating energy demand in these sectors will help governments to supply energy sources and to develop their sustainable energy plans such as using renewable and non-renewable energy potentials for the development of a secure and environmentally friendly energy system. Modeling energy consumption in the residential and commercial sectors enables identification of the influential economic, social, and technological factors, resulting in a secure level of energy supply. In this paper, we forecast residential and commercial energy demands in Iran using three different machine learning methods, including multiple linear regression, logarithmic multiple linear regression methods, and nonlinear autoregressive with exogenous input artificial neural networks. These models are developed based on several factors, including the share of renewable energy sources in final energy consumption, gross domestic production, population, natural gas price, and the electricity price. According to the results of the three machine learning methods applied in our study, by 2040, Iranian residential and commercial energy consumption will be 76.97, 96.42 and 128.09 Mtoe, respectively. Results show that Iran must develop and implement new policies to increase the share of renewable energy supply in final energy consumption.Peer reviewe

    Toward Sustainable Energy-Independent Buildings Using Internet of Things

    Get PDF
    Buildings are one of the primary consumers of energy. In addition to the electricity grids, renewable energies can be used to supply the energy demand of buildings. Intelligent systems such as the Internet of Things (IoT) and wireless sensor technologies can also be applied to manage the energy consumption in buildings. Fortunately, integrating renewable energies with these intelligent systems enables creating nearly zero-energy buildings. In this paper, we present the results of our experimentation to demonstrate forming such a building and showing the benefits for building users and the society. We create a system by integrating photovoltaic (PV) technology with an IoT-based control mechanism to supply and consume energy. We further illustrate “how the integration of IoT and PV technology can bring added value to the users?”. To this end, we evaluate the performance of our system against conventional ways of energy supply and consumption for a lighting use case in a dairy store. We also investigate the environmental and economic impacts of our system. In our implementation, for the IoT-based control system, we have used a set of sensors, a server, and a wireless network to control the energy consumption. We developed a web application for user interaction and software-based settings. To control the lighting system, we developed an algorithm that utilizes the ambient light, users’ movements inside the store and a historical dataset. The historical dataset was collected from the users’ behaviour as a training set for the algorithm for turning on and off the lights. We also designed an electricity management system that computes the energy generation by the PV panels, controls the energy supply, and imports and exports electricity to the grid. The results show that our system is an efficient approach for creating energy-independent buildings by integrating renewable energies with IoT-based control systems. The results also show that our system not only responds to the internal demand by using domestic supply, but it also (i) offers economic benefit by exporting extra renewable electricity to the grid, and (ii) prevents producing huge amounts of CO2. Our system is one of the first works to achieve a nearly zero-energy building in the developing countries with low electricity accessibility

    Toward Sustainable Energy-Independent Buildings Using Internet of Things

    Get PDF
    Buildings are one of the primary consumers of energy. In addition to the electricity grids, renewable energies can be used to supply the energy demand of buildings. Intelligent systems such as the Internet of Things (IoT) and wireless sensor technologies can also be applied to manage the energy consumption in buildings. Fortunately, integrating renewable energies with these intelligent systems enables creating nearly zero-energy buildings. In this paper, we present the results of our experimentation to demonstrate forming such a building and showing the benefits for building users and the society. We create a system by integrating photovoltaic (PV) technology with an IoT-based control mechanism to supply and consume energy. We further illustrate “how the integration of IoT and PV technology can bring added value to the users?”. To this end, we evaluate the performance of our system against conventional ways of energy supply and consumption for a lighting use case in a dairy store. We also investigate the environmental and economic impacts of our system. In our implementation, for the IoT-based control system, we have used a set of sensors, a server, and a wireless network to control the energy consumption. We developed a web application for user interaction and software-based settings. To control the lighting system, we developed an algorithm that utilizes the ambient light, users’ movements inside the store and a historical dataset. The historical dataset was collected from the users’ behaviour as a training set for the algorithm for turning on and off the lights. We also designed an electricity management system that computes the energy generation by the PV panels, controls the energy supply, and imports and exports electricity to the grid. The results show that our system is an efficient approach for creating energy-independent buildings by integrating renewable energies with IoT-based control systems. The results also show that our system not only responds to the internal demand by using domestic supply, but it also (i) offers economic benefit by exporting extra renewable electricity to the grid, and (ii) prevents producing huge amounts of CO2. Our system is one of the first works to achieve a nearly zero-energy building in the developing countries with low electricity accessibility

    Transit Pollution Exposure Monitoring using Low-Cost Wearable Sensors

    Get PDF
    Transit activities are a significant contributor to a person's daily exposure to pollutants. Currently obtaining accurate information about the personal exposure of a commuter is challenging as existing solutions either have a coarse monitoring resolution that omits subtle variations in pollutant concentrations or are laborious and costly to use. We contribute by systematically analysing the feasibility of using wearable low-cost pollution sensors for capturing the total exposure of commuters. Through extensive experiments carried out in the Helsinki metropolitan region, we demonstrate that low-cost sensors can capture the overall exposure with sufficient accuracy, while at the same time providing insights into variations within transport modalities. We also demonstrate that wearable sensors can capture subtle variations caused by differing routes, passenger density, location within a carriage, and other factors. For example, we demonstrate that location within the vehicle carriage can result in up to 25% increase in daily pollution exposure -- a significant difference that existing solutions are unable to capture. Finally, we highlight the practical benefits of low-cost sensors as a pollution monitoring solution by introducing applications that are enabled by low-cost wearable sensors.Peer reviewe
    • …
    corecore