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Abstract—Air pollution is a main challenge in societies with
particulate matter PM2.5 as the major air pollutant causing
serious health implications. Due to health and economic impacts
of air pollution, low-cost and portable air quality sensors can be
vastly deployed to gain personal air pollutant exposure. In this
paper, we present an air quality sensing process needed for low-
cost sensors which are planned for long-term use. The steps of
this process include design and production, laboratory tests, field
tests, deployment, and maintenance. As a case study we focus on
the field test, where we use two generations of a portable air
quality sensor (capable of measuring meteorological variables
and PM2.5) to perform an indoor-outdoor measurement. The
study found that all of the measurements shown to be consistent
through validation among themselves. The sensors accuracy
also demonstrate to be adequate by showing similar readings
compared to the nearest air quality reference station.

Index Terms—Air Quality, Indoor Air Quality, Outdoor Air
Quality, Low-cost Sensors, Sensor Validation.

I. INTRODUCTION AND BACKGROUND

According to the World Health Organization (WHO), air
pollution causes 4.2 million deaths every year as a result of
exposure to ambient (outdoor) air pollution and 3.8 million
deaths every year as a result of household exposure to smoke
from dirty cookstoves and fuels [1]. The polluted air consists
of various types of pollutants such as particulate matter (PM10

and PM2.5), Ozone (O3), Nitrogen dioxide (NO2), Carbon
monoxide (CO) and Sulphur dioxide (SO2) [2]. Among these
air pollutants, PM2.5 is known to be one of the main com-
ponents of current air quality indexes [3]. PM2.5 has direct
link with human activities [4] and is linked to respiratory
problems [5].

The conventional way to measure the air quality including
PM2.5 is using city monitoring stations [6]. Thanks to ad-
vances on air quality sensing methodologies, there are a large
number with variety of portable and low-cost sensors, capable
of measuring PM2.5 concentration [7]. The feasibility of large
scale deployment and suitability for air pollution sensing using
low-cost air quality sensors are investigated in [8].

Due to the increased importance of health and economic
impact of air pollution, start-up companies rush to produce
affordable air quality sensors known as low-cost sensors.
Generally, these sensors are lightweight and portable which

Fig. 1. Portable low-cost sensor unit.

cost few hundreds of dollars rather than tens of thousands
of dollars, e.g. air quality monitoring stations [8]. Air quality
monitoring stations which are situated at fixed locations pro-
vide air quality status at a large scale. In contrast, low-cost
and portable sensors are utilized by individuals to track their
personal exposure [9]. The application of low-cost sensors for
measuring air pollution has increased for air pollution map-
ping, infrastructure control, and personal exposure monitoring.
However, regardless of their application purpose it is essential
to validate the sensors performance, because they are known
to be less accurate [10].

In literature, some sensor validations are performed after
field calibration, whereas in our study the validation is carried
out after laboratory calibration. In practice, it is not feasible
to test all low-cost sensors next to reference stations for field
calibration [11]. Therefore, it is necessary to perform reliable
laboratory calibration testings [12]. For example, portable low-
cost PM sensors were tested under the condition of steady-state
particle mass-concentration [13] or the use of air chamber for
validation and calibration PM2.5 [14]. In our paper, we define
the Calibration and Validation separately, and we present these
two terms within the chain of air quality sensing process. We
also introduce a simple approach for validating low-cost air
quality sensors through an indoor vs outdoor measurement.



Fig. 2. The requirement and process of air quality sensing using low-cost sensors.

To demonstrate low-cost sensor validation, in this paper
we present portable low-cost sensors designed to monitor
PM2.5, suitable for indoors and outdoor. Figure 1 displays
the sensor device. To prove the suitability of the sensor for
air quality measurement, we validate the sensors through an
indoor-outdoor experiment. To this end, (1) we present the
low-cost sensor devices, designed to measure pressure (P),
temperature (T), relative humidity (RH), and PM2.5. (2) We
demonstrate that the sensors are consistent and accurate.
Whereas, accuracy refers to how well are the measurement
of sensor units in agreement with the measurement of a
reference station, and consistency indicates how similar are
the performance of the two sensors. An experiment was also
carried out to compare the sensors measurements against
each other and against the air quality monitoring station. The
experiment aimed to validate the low-cost sensors by illus-
trating the accuracy and consistency of their measurements.
(3) We show that variation of PM2.5 is linked to human
activities indoors and meteorological variables (such as T and
RH), outdoors. (4) We also highlight the link between indoor
and outdoor pollution concentration using these sensors. (5)
Eventually, we conclude the appropriateness of using these low
cost sensors for indoor and outdoor air quality measurements,
mainly for P, T, RH, and PM2.5.

II. AIR QUALITY SENSING PROCESS

In principle, the process of air quality measurements using
low-cost sensors can be divided into five steps. As shown in
Figure 2, these steps include: (1) design and production, (2)
laboratory test, (3) field test, (4) sensors deployment, and (5)
sensors maintenance. In this section, we explain all of these
steps. As a case study our paper demonstrates the field tests
step with air quality measurements of five days inside and
outside an apartment (hereafter indoor and outdoor).

(1) Design & Production of air quality sensors are chal-
lenging tasks. The design of sensors varies based on their
application purposes, sensings, communications and monitor-
ing capabilities. In designing and manufacturing air quality
sensors the Electronics and Sensor utilities are the important
components for sensing. Sensor board Electronics can be
in different sizes depending on the planned sensing, com-
munications, and monitoring capabilities. The Electronics of
a sensor can be designed to allow establishing connections
through cable and multiple communication technologies such
as Bluetooth, Wi-Fi, Zigbee and cellular systems [7], [15]. In
addition, the Electronics of a sensor device can be designed

to allow equipping various Sensor utilities, and at the same
time, resulting in increasing the size of the sensor device as
well as the sensor price.

(2) Laboratory Test of a low-cost sensor is performed
to assess the reliability and accuracy of the measurements
under controlled environment. This step is composed of sensor
Validation and Calibration. Sensor Validation confirms the
sensor reliability through examining the optimal operational
modes of the sensor by evaluating the sensor responses, heat-
ing time, temperature and heating pulse mode operation [16].
The Calibration investigates sensor sensitivity, zero condition,
responses, and measurement ranges. Sensor sensitivity refers
to sensor response per unit, e.g. one ppm of target variable in
nominal conditions. Zero condition implies to sensor reading
in lab environment with pure air. Sensor response needs to be
ideal when the reading of sensor is equal to the target vari-
able in the laboratory. Sensor measurement range pertains to
minimum and maximum readings of a sensor. For calibrating
a sensor, applying these metrics in the laboratory environment
is necessary [12].

(3) Field Test is a crucial step to understand the low-cost
sensors performance before deploying them for long-term use.
Field test is required to ensure sensor Operation and Field
Recalibration. The sensor Operation ensures that at least i) the
sensor generates a signal, ii) the sensor is not “flat lining”, iii)
the sensor emits an expected form of data, and iv) the sensor
readings are within a proper range according to the physics of
the sensing variables. Field Recalibration ensures that the low-
cost sensors provide accurate measurements that is typically
known from reference sensing stations [17]. For example, if
the sensors start to drift or provide irrational measurements,
the comparison between the low-cost sensors and reference
sensors will notify the problems. In this case recalibrations or
repairs need to be taken into action.

(4) Sensor Deployment attempts to optimize sensor Uti-
lization and Users benefit. The Utilization can be optimized
by finding hotspots that are easy to connect to power sources
and preserving from environmental impacts such as rain, wind
and direct sunlight as well as the safety of sensors in terms of
being broken and stolen by people and attacked by animals or
birds [17]. The Users benefits can be improved by the impact
of air quality information on public lives quality as well as its
impact on authorities for making better decisions for example
for future city planning.

(5) Sensors Maintenance is needed for the air quality
sensors which are deployed for long-term use, for example



by covering and preserving them from the effect of rain and
direct sunlight as well as cleaning their sensing utility from
any dust and water vapor. There are two forms which air
quality sensor are deployed: Fixed sensors and Mobile sensors.
The Fixed sensors are mainly located in fixed and specific
locations such as roadsides, bus stops and metro platforms
to provide air quality information about the pollution level
sourced from vehicles (i.e. traffic); or on buildings in street
canyons and different city places with crowd of people. Since,
these types of sensors are used to provide information for
public, authorities and different organizations could perform
the maintenance of these assets. The Mobile sensors comprise
portable sensors carried by individuals and are used to monitor
personal air pollution exposure in different places. Thus, the
maintenance of these low-cost and portable sensors are under
the responsibility of individuals and private users.

III. SENSING METHODOLOGY

A. Sensor Device

To measure PM2.5, we used sensors of Panasonic model
GA1 with a thermal resistor to induce an internal upward
air flow to facilitate continuous sampling. This sensor unit
has an accuracy of ± 10% from low to high concentrations
(∼ 1, 000µg/m3). It has a life-time over 5 years on continuous
measurement, equipped with an auto calibration function [18].
The low-cost sensor units which we used in our experiment
are shown in Figure 1, referred to as Sensor Generation
I (G1) and Sensor Generation II (G2). These devices are
portable sensor units designed to measure PM2.5, RH, T and P.
PM2.5 measures the mass concentration of particulate matter
of diameter smaller than 2.5µm. These sensors are shown in
Figure 3(a).

The thermal resistor in the sensor stimulates flow in-
duced by temperature gradient. These sensor devices utilise
light-scattering particle (LSP) sensing utilities for monitoring
PM2.5. LSP sensors are well-known low-cost solutions for
particle concentrations measurements and monitoring. One
of the main features of LSP relates to their low power
consumption [14], [19]. The sensor devices are also equipped
with a WiFi module and mobile phone connectivity for data
logging and visualization. The mobile phone provides GPS
logging. These types of portable sensor devices are utilised
to perform real-time and spatial PM2.5 measurements and
monitoring [20]. The sensor G2 has the same hardware as
sensor G1. In addition to the capabilities of sensor G1,
sensor G2 is equipped with a case to reduce the effect of
air turbulence in the inlet. Sensor G2 is also equipped with
meteorological sensor utilities including P, T, and RH. In
addition, an algorithm is embedded in sensor G2 to filter the
raw measured data such that it removes the spikes before data
recording and monitoring.

B. Sensor unit validation

Generation 1 (G1): In our previous experiment performed
in Helsinki [8], we operated the low-cost sensor (G1) next

(a) The three low-cost sensor used in our experiment.

(b) City air quality stations (circles) and low-cost sensors (triangle).

Fig. 3. The measurement sites and experimental setup.

to the SMEAR III 1 (Station for Measuring Ecosystem-
Atmosphere Relations) which is an accurate reference air qual-
ity monitoring station [21], designed for research and scientific
exploration. As described in [8], we performed measurements
during 8th May - 19th July 2018 (excluding weekends and
holidays). There was a total of 44 times of measurements,
each time about 2 hours of data recording. The measurements
were performed at 1 meter above ground and with a distance
of two meters from the SMEAR III station. Sensors were also
protected from direct influence of sunlight and wind. We also
downloaded the measurements of the SMEAR III for the same
period from the open-access data portal AVAA2. Considering
the time granularity of SMEAR III data, we aggregated the
stored data from the two sensors to one-minute averages.
Then, we compared the measurement results of the sensors
and SMEAR III and validated the sensors.

Generation 2 (G2): In our current study to validate this
sensor generation, we tested the consistency of meteorological
variables by comparing the G2 sensors among themselves.
The consistency of PM2.5 measurements was compared using
two of these sensors, which were placed side by side with
sensor G1. The PM2.5 accuracy of the G2 sensors indoor
were evaluated using the sensor G1 which was tested in
our previous study [8]. For outdoor measurement, PM2.5

concentration in G2 sensors was compared with the nearest
Helsinki Region Environmental Services (HSY)3 in Vartiokylä
and other meteorological data with Pasila HSY station. The

1https://www.atm.helsinki.fi/SMEAR/index.php/smear-iii
2https://avaa.tdata.fi
3https://www.hsy.fi/en/residents/pages/default.aspx



Fig. 4. Time series plots for pressure, temperature, and humidity measurements by sensors.

measurement locations are depicted in Figure 3(b). These
stations are described further in IV-A. HSY is a municipal
body which produces environmental services and information
for Helsinki metropolitan area. HSY owns 11 fixed air quality
monitoring sites which carries out air quality measurements. In
the following section IV, we explain our experiment in detail.

IV. EXPERIMENTATION RESULTS

In this section, we describe the validation of low-cost
sensors. We explain the environment where the experiment
was carried out as well as the experiment results of low-cost
sensors through an indoor-outdoor measurement. Then, we
compare the performance of the sensors on meteorological
and aerosol measurement variables and we investigate the
accuracy and consistency of G2 sensors.

A. Environment

The measurements for this experiment were held in Viikki
district in the north-east of city of Helsinki, Finland. The
district is 7 to 10 km from the city centre and hosts more
than 10000 inhabitants. Viikki is known to have natural envi-
ronment where large fields and farmlands are cultivated. Since
the year 2000 the population of the district has been increasing
steadily which has resulted constructing new apartments, and
this serves as a main reason for generating construction dust
and PM2.5. Our measurements were carried out continuously
in fourth floor of an apartment from 16th to 21st November
2019. During these days, in the district the P, T, and RH were
varying between 1007 mbar to 1025 mbar, −2◦C to 7◦C ,
and 80% - 100% respectively. In our experiment, we used
one G1 sensor and two G2 sensors (hereafter G2-1 and G2-
2, respectively). We used sensors G1 and G2-1 continuously
indoor, while sensor G2-2 was alternating indoor and outdoor.
As illustrated in sub-figures of Figure 4, these environment
alternations are identifiable.

B. Meteorological sensing

This sub-section discusses the consistency performance by
meteorological variables using G2 sensors. These variables

include P, T, and RH. Figure 4 shows the meteorological
measurements of sensors G2-1 and G2-2, where G2-1 was
located indoor and G2-2 was alternating indoor and outdoor.

1) Pressure (P): measurements for both sensors demon-
strate similar reading which is approximately 1020 mbar
equal to one atmosphere (atm) (Figure 4). Therefore, this
indicates the consistency in reading of both sensors. This
also demonstrates that both sensors function well because the
pressure in Helsinki should be approximately 1 atm since the
city average elevation is around 26 meter above sea level [22].

2) Temperature (T): measurements for the sensors show
almost identical temperature (28◦C) when they were placed
inside (Figure 4). This means that temperature of both G2
sensors are consistent. When the sensor G2-2 was taken out-
door, the reading became different than indoor environment.

3) Relative Humidity (RH): measurements of the sensors
illustrate (Figure 4), when both of G2 sensors were indoor,
they provide approximately the same reading for RH. The
average reading for both sensors are equal to 25% RH. This
result demonstrates that both sensors are consistent when they
were located side by side.

C. Aerosol sensing

This sub-section explains the PM2.5 measurements using all
of the three sensors indoor and outdoor (as shown in Figure 5).
While, Sensors G1 and G2-1 were always located indoor, sen-
sor G2-2 was alternating indoor and outdoor. Figure 5 shows
the results of sensors G1 and G2-1 under indoor condition.
It can be seen that the G1 sensor contains many spikes in
the measurement data, while the readings by G2-1 have been
filtered already internally. Nevertheless, the measurements of
both sensors follow similar patterns if the G1 data spikes
are filtered. Therefore, the readings of both sensors can be
considered to be reliable because the sensor G1 was validated
previously in [8].

Figure 5 also shows the comparison between sensor G2-1
that was always located indoor and G2-2 which was alternating
indoor and outdoor. There is no difference in readings between
the two sensors while both located indoor. This indicates that



Fig. 5. PM2.5 measurements using portable low-cost sensors indoor and outdoor.

both G2 sensors are consistent for PM2.5 measurements. In ad-
dition, the sensor reading can also be validated through human
activities. This was recorded during the measurement period.
For example, in the afternoon on 17th, the cooking actively
has increased the PM2.5 near G2-2 sensor which resulted in an
elevated reading. This is shown in Figure 5, when alternating
the G2-2 sensor indoor and outdoor. The pollution rise is also
slightly illustrated on the same day late at night when warming
the food by the experimenter. Figure 5 displays the scatter
plot of PM2.5 measurements of the HSY Vartiokylä reference
station and the G2-2 sensors. The relationship can be seen
to be linear with Pearson correlation coefficient (R) which is
equal to 0.5. In this case, PM2.5 concentration is impacted
highly by the long distance between the reference station and
the experiment location which is around 7 km.

D. Summary

Table I summarizes the daily statistical properties of the
experiments from 16th to 20th November 2019. The last
column shows the aggregation of all days of the experimental
results. The table emphasizes that all indoor measurements are
consistent at median of 2.0 µg/m3 and mean with approxi-
mately to 2.5 µg/m3. The standard deviation do not differ a
lot, indicating little variations in PM2.5 concentration during
the experimental period indoors. The mean of outdoor PM2.5

concentration taken by G2-2 ranged between 10.03 and 14.21
µg/m3 . The mean of outdoor PM2.5 concentration taken
from the nearest reference station ranged between 6.0 and 9.38
µg/m3. The differences are due to the long distance between
the locations of reference station and the low-cost sensors.
Indeed, aerosol concentrations vary due to environment, traffic,
residential areas and other anthropogenic factors.

V. DISCUSSION

Air pollution measurements outdoors using low-cost sensors
are typically more challenging than indoors. Indoor pollution
level is usually affected by human indoor activities [4], while
outdoor measurements are affected by antropogenic outdoor
sources (e.g. traffic and industries) and environments (e.g.
meteorological parameters and radiation). The best sensor

locations known as hotspots are important to be investi-
gated [23]. The meteorological factors such as temperature,
pressure, wind and relative humidity are also known to affect
low-cost sensors performance [23]. Therefore, it is important
to consider these factors before deploying the sensors for long-
term use.

Another important challenge in using low-cost sensors
relates to measurement accuracy. A general solution is to
calibrate low-cost sensors against reference stations [24]. How-
ever, the calibration factors may drift over time due to sensor
physical wear-out and the changes of environmental condi-
tions. Hence, air pollutant proxies which enable measuring
variables to be estimated virtually have become an alternative
solution. Then, the proxies can be embedded into low-cost
sensors [25]–[28].

To contribute to air pollution databases which typically
obtained through remote sensing and model simulation, the de-
ployment of accurate low-cost sensors can also complement air
pollution spatiotemporal databases. This opens new challenges
and opportunities for scientific investigations in atmosphere,
climate research [29], [30] and health related studies, for
example, personal exposure estimation.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents air quality sensing process needed for
low-cost and portable sensors for long-term use. The presented
process includes five steps each having related challenges and
considerations. These steps include design and production,
laboratory tests, field tests, deployment, and sensors and main-
tenance. As a case study we focus on field test step, where,
we use two generations of portable air quality sensors and we
perform an indoor-outdoor measurement. The sensors have the
capability of measuring P, T, RH and PM2.5. It is found that
meteorological variables are consistent and relatively accurate
both for indoor and outdoor for the second generation of sen-
sors. The PM2.5 measurements are also shown to be consistent
for both sensor generations. Nevertheless, it is difficult to
validate the PM2.5 accuracy because the measurements were at
distant locations from the reference station. One approach for



TABLE I
STATISTICAL DESCRIPTION OF PM2.5 [µg/m3 ] MEASUREMENTS BETWEEN 16th- 20th NOVEMBER 2019.

16th 17th 18th 19th 20th All days

Sensing System mean median stdv mean median stdv mean median stdv mean median stdv mean median stdv mean median stdv
Sensor (G1) 1.38 1.00 0.93 2.76 2.00 2.32 3.03 2.00 3.10 4.10 4.00 3.13 2.81 2.0 2.06 2.96 2.00 2.67

Sensor (G2-1) 0.87 1.00 0.54 2.19 2.00 1.68 2.14 1.00 2.05 3.37 4.00 1.99 2.31 2.00 1.02 2.27 2.00 1.80
Sensor (G2-2): Indoor 1.08 1.00 0.61 2.42 2.00 1.86 N/A N/A N/A 3.40 2.00 3.23 5.41 4.00 4.96 2.36 2.00 2.51

Sensor (G2-2): Outdoor N/A N/A N/A 10.94 9.00 5.60 10.03 9.00 2.98 14.21 13.00 4.30 10.41 9.00 4.09 11.28 11.00 4.17
Vartiökylä Ref. Station 6.00 5.30 1.93 7.78 6.90 2.87 9.13 9.00 2.15 9.38 9.30 6.24 7.00 6.10 2.42 7.86 7.50 3.72

validating the second sensor generation is through comparing
them against the first generation which was validated formerly
against a highly accurate reference sensing station.

Our future works include developing calibration models and
proxies for low-cost sensors and deploying in the field to
address aforementioned challenges. We also plan to conduct
an extensive study on the chain and steps of sensing process
by low-cost air quality sensors.
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