204 research outputs found

    Theorems on Efficient Argument Reductions

    Get PDF
    International audienceA commonly used argument reduction technique in elementary function computations begins with two positive floating point numbers α and γ that approximate (usually irrational but not necessarily) numbers 1/C and C, e.g., C = 2π for trigonometric functions and ln 2 for ex. Given an argument to the function of interest it extracts z as defined by xα = z + ς with z = k2−N and |ς| ≤ 2−N−1, where k,N are integers and N ≥ 0 is preselected, and then computes u = x − zγ. Usually zγ takes more bits than the working precision provides for storing its significand, and thus exact x−zγ may not be represented exactly by a floating point number of the same precision. This will cause performance penalty when the working precision is the highest available on the underlying hardware and thus considerable extra work is needed to get all the bits of x − zγ right. This paper presents theorems that show under mild conditions that can be easily met on today's computer hardware and still allow α ≈ 1/C and γ ≈ C to almost the full working precision, x−zγ is a floating point number of the same precision. An algorithmic procedure based on the theorems is obtained. The results will enhance performance, in particular on machines that has hardware support for fused multiply-add (fma) instruction(s)

    Properties of two's complement floating point notations

    Get PDF
    International audienceFew designs, mostly those of Texas Instruments, continue to use tworsquos complement floating point units. Such units are simpler to build and to validate, but they do not comply to the dominant IEEE standard for floating point arithmetic. We compare some properties of the two systems in this text. Some features are lost, but others remain unchanged. One strong example is the case of Sterbenzrsquos theorem and our recent extension. We show in the paper that the theorem and its extension hold for the tworsquos complement architecture. Still, users should ensure that results are large enough on circuits that do not implement gradual underflow. Theorems have been proven and validated using the Coq automatic proof checker

    Performance analysis of massively parallel embedded hardware architectures for retinal image processing

    Get PDF
    This paper examines the implementation of a retinal vessel tree extraction technique on different hardware platforms and architectures. Retinal vessel tree extraction is a representative application of those found in the domain of medical image processing. The low signal-to-noise ratio of the images leads to a large amount of low-level tasks in order to meet the accuracy requirements. In some applications, this might compromise computing speed. This paper is focused on the assessment of the performance of a retinal vessel tree extraction method on different hardware platforms. In particular, the retinal vessel tree extraction method is mapped onto a massively parallel SIMD (MP-SIMD) chip, a massively parallel processor array (MPPA) and onto an field-programmable gate arrays (FPGA)This work is funded by Xunta de Galicia under the projects 10PXIB206168PR and 10PXIB206037PR and the program Maria BarbeitoS

    A New Family of High.Performance Parallel Decimal Multipliers

    Full text link

    CIMAR, NIMAR, and LMMA: novel algorithms for thread and memory migrations in user space on NUMA systems using hardware counters

    Get PDF
    This paper introduces two novel algorithms for thread migrations, named CIMAR (Core-aware Interchange and Migration Algorithm with performance Record –IMAR–) and NIMAR (Node-aware IMAR), and a new algorithm for the migration of memory pages, LMMA (Latency-based Memory pages Migration Algorithm), in the context of Non-Uniform Memory Access (NUMA) systems. This kind of system has complex memory hierarchies that present a challenging problem in extracting the best possible performance, where thread and memory mapping play a critical role. The presented algorithms gather and process the information provided by hardware counters to make decisions about the migrations to be performed, trying to find the optimal mapping. They have been implemented as a user space tool that looks for improving the system performance, particularly in, but not restricted to, scenarios where multiple programs with different characteristics are running. This approach has the advantage of not requiring any modification on the target programs or the Linux kernel while keeping a low overhead. Two different benchmark suites have been used to validate our algorithms: The NAS parallel benchmark, mainly devoted to computational routines, and the LevelDB database benchmark focused on read–write operations. These benchmarks allow us to illustrate the influence of our proposal in these two important types of codes. Note that those codes are state-of-the-art implementations of the routines, so few improvements could be initially expected. Experiments have been designed and conducted to emulate three different scenarios: a single program running in the system with full resources, an interactive server where multiple programs run concurrently varying the availability of resources, and a queue of tasks where granted resources are limited. The proposed algorithms have been able to produce significant benefits, especially in systems with higher latency penalties for remote accesses. When more than one benchmark is executed simultaneously, performance improvements have been obtained, reducing execution times up to 60%. In this kind of situation, the behaviour of the system is more critical, and the NUMA topology plays a more relevant role. Even in the worst case, when isolated benchmarks are executed using the whole system, that is, just one task at a time, the performance is not degradedThis research work has received financial support from the Ministerio de Ciencia e Innovación, Spain within the project PID2019-104834GB-I00. It was also funded by the Consellería de Cultura, Educación e Ordenación Universitaria of Xunta de Galicia (accr. 2019–2022, ED431G 2019/04 and reference competitive group 2019–2021, ED431C 2018/19)S

    Stochastic Formal Correctness of Numerical Algorithms

    Get PDF
    We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems

    Split and Shift Methodology: Overcoming Hardware Limitations on Cellular Processor Arrays for Image Processing

    Get PDF
    Na era multimedia, o procesado de imaxe converteuse nun elemento de singular importancia nos dispositivos electrónicos. Dende as comunicacións (p.e. telemedicina), a seguranza (p.e. recoñecemento retiniano) ou control de calidade e de procesos industriais (p.e. orientación de brazos articulados, detección de defectos do produto), pasando pola investigación (p.e. seguimento de partículas elementais) e diagnose médica (p.e. detección de células estrañas, identificaciónn de veas retinianas), hai un sinfín de aplicacións onde o tratamento e interpretación automáticas de imaxe e fundamental. O obxectivo último será o deseño de sistemas de visión con capacidade de decisión. As tendencias actuais requiren, ademais, a combinación destas capacidades en dispositivos pequenos e portátiles con resposta en tempo real. Isto propón novos desafíos tanto no deseño hardware como software para o procesado de imaxe, buscando novas estruturas ou arquitecturas coa menor area e consumo de enerxía posibles sen comprometer a funcionalidade e o rendemento

    Hardware Design of a Binary Integer Decimal-based

    Get PDF
    Abstract Because of the growing importance of decimal floating-point (DFP
    corecore