
Future Generation Computer Systems 129 (2022) 18–32

J
a

b

c

a
f
b
d
c

h
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

CIMAR, NIMAR, and LMMA: Novel algorithms for thread andmemory
migrations in user space on NUMA systems using hardware counters
Ruben Laso a,∗, Oscar G. Lorenzo a, José C. Cabaleiro a,b, Tomás F. Pena a,b,
uan Ángel Lorenzo c, Francisco F. Rivera a,b

CiTIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
ETIS, UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, France

a r t i c l e i n f o

Article history:
Received 18 June 2021
Received in revised form24 September 2021
Accepted 11 November 2021
Available online 25 November 2021

Keywords:
NUMA
Scheduling
Thread migration
Memory migration
Hardware counters

a b s t r a c t

This paper introduces two novel algorithms for thread migrations, named CIMAR (Core-aware Inter-
change and Migration Algorithm with performance Record –IMAR–) and NIMAR (Node-aware IMAR),
and a new algorithm for the migration of memory pages, LMMA (Latency-based Memory pages
Migration Algorithm), in the context of Non-Uniform Memory Access (NUMA) systems. This kind
of system has complex memory hierarchies that present a challenging problem in extracting the
best possible performance, where thread and memory mapping play a critical role. The presented
algorithms gather and process the information provided by hardware counters to make decisions about
the migrations to be performed, trying to find the optimal mapping. They have been implemented as a
user space tool that looks for improving the system performance, particularly in, but not restricted to,
scenarios where multiple programs with different characteristics are running. This approach has the
advantage of not requiring any modification on the target programs or the Linux kernel while keeping
a low overhead.

Two different benchmark suites have been used to validate our algorithms: The NAS parallel
benchmark, mainly devoted to computational routines, and the LevelDB database benchmark focused
on read–write operations. These benchmarks allow us to illustrate the influence of our proposal in
these two important types of codes. Note that those codes are state-of-the-art implementations of
the routines, so few improvements could be initially expected. Experiments have been designed and
conducted to emulate three different scenarios: a single program running in the system with full
resources, an interactive server where multiple programs run concurrently varying the availability of
resources, and a queue of tasks where granted resources are limited. The proposed algorithms have
been able to produce significant benefits, especially in systems with higher latency penalties for remote
accesses. When more than one benchmark is executed simultaneously, performance improvements
have been obtained, reducing execution times up to 60%. In this kind of situation, the behaviour of the
system is more critical, and the NUMA topology plays a more relevant role. Even in the worst case,
when isolated benchmarks are executed using the whole system, that is, just one task at a time, the
performance is not degraded.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Current computer architectures feature complex computing
nd memory hierarchy structures. Extracting the maximum per-
ormance from these increasingly complex machines requires a
ig investment in time for programmers, who have to take care of
ifferent details. In particular, memory operations require special
are due to their expensiveness, for which closing the distance, in

∗ Corresponding author.
E-mail address: r.laso@usc.es (R. Laso).
ttps://doi.org/10.1016/j.future.2021.11.008
167-739X/© 2021 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
terms of latency and bandwidth, between threads and data is crit-
ical. In this context, optimal mapping of the processes and their
data plays a key role in performance [1,2]. This is a traditional
challenge in High-Performance Computing and a continuously
ongoing research work.

The main complexity resides in the fact that the behaviour
can dynamically change when multiple processes from different
tasks are in execution, each with a different number of threads
and different resource requirements that may vary with time.
Additionally, the number of possible combinations for mapping

and scheduling increases with the number of cores and threads

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.future.2021.11.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.11.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:r.laso@usc.es
https://doi.org/10.1016/j.future.2021.11.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

p
p
b
p
e
l
s
o
t
t
a
v
t
t

d
c
a
t
a
t
c
p
c

t
m
a
(
r
a
P
s
(
O
t
f
i
t
t

3
t
U
m
l
b
s
c
t
t
i
i

c
f
f
a
t
e
r
F

resent in the system. Therefore, decisions in runtime are im-
ortant to improve performance by adapting to the changing
ehaviour. This problem is already challenging when a single
arallel task is executed, but it is even more in multitasking
nvironments where more benefits could be obtained. The prob-
em can be formulated as an optimisation problem, being the
ystem performance the target function to be optimised. Unlike
ther optimisation problems, there is no room for testing solu-
ions while searching for optimal placement. Each wrong solution
ested causes an overhead that cannot be recovered later, so
lgorithms have to find a complex balance between being conser-
ative, to make sure that things do not get worse, and performing
hread and memory migrations to improve the performance of
he system.

In NUMA systems, this challenge is particularly critical. The
istance between threads and memory, in terms of NUMA nodes,
an change substantially the latency of the memory operations,
ffecting the performance as a consequence. The latency of a
hread accessing data residing in the same NUMA node (local
ccess) is lower than when accessing remote nodes. So, closing
he distance between threads and data is preferable in most
ases, even though the reality is much more complex and other
henomena might take place, like memory contention and inter-
onnect congestion [3].
To implement a thread or memory migration algorithm, cer-

ain criteria based on performance must be followed. Several
odels have been proposed to understand the performance of
code running on a given system [4–7]. The Roofline Model

RM) [8] is the most popular performance model among HPC
esearchers, since it offers a good balance between simplicity
nd descriptiveness. It uses just the number of FLOPS (Floating
oint Operations per Second) and the OI (Operational Inten-
ity), defined as the number of FLOPS per byte of DRAM traffic
FLOPS/B). The quantities can be extended to the more general
PS (Operations per Second) and OI defined as OPS/B. However,
he traditional Roofline Model cannot draw the whole picture
or NUMA servers, since it misses the memory latency, which
s included in the 3DyRM [9]. These quantities can be measured
hrough hardware counters since it is well known that reading
heir information implies very low overheads.

In this article, we propose a user space tool that, based on the
DyRM performance model, implements several algorithms for
he migration of threads and memory pages in NUMA systems.
sing simple heuristics for keeping overhead low, the different
igrations are considered and a score is given according to its

ikelihood to improve performance. Also, our tool is especially,
ut not exclusively, focused on multitasking environments, where
everal tasks are in execution concurrently and there are more
hances to improve the performance and throughput of the sys-
em. Finally, it is important to note that the proposed migration
ool does not require modifying the program or programs under
nspection nor the Linux kernel, so any application might take
mmediate profit from it.

The rest of the paper is structured as follows: Section 2 in-
ludes a brief discussion on related work and other proposals
ound in the literature. Section 3 describes which performance in-
ormation is acquired and how. The proposed migration strategies
re introduced in Section 4. Section 5 contains the description of
he experimental environment. Section 6 describes the different
xperiments performed and their motivation. Section 7 shows the
esults of the aforementioned experiments and their discussion.

inally, Section 8 presents the final conclusions and future work.

19
2. Related work

Tasks scheduling and memory mapping are extensive topics
in computer science research work. Default policies are mainly
focused on load-balancing, placing locality and affinity aside,
which are of paramount importance in NUMA architectures. Dif-
ferent proposals can be found in the literature, each one with
advantages and disadvantages.

A considerable amount of proposals aim for Linux kernel mod-
ifications or modules to improve memory or thread placement.
Carrefour, introduced by Dashti et al. [10], proposes a modifica-
tion of the kernel to prevent and alleviate memory congestion
for NUMA systems, achieving improvements up to 3.6× com-
pared to the original kernel and other popular modifications like
AutoNUMA [11]. Carrefour uses hardware counters to measure
performance, and, according to the authors, it takes global de-
cisions to migrate memory pages, while letting the Operating
System deal with the thread placement. In the work by Diener
et al. [12] it is introduced kMAF (kernel Memory Affinity Frame-
work), a kernel modification to improve thread and data affinity
through an analysis in runtime of the shared and exclusive mem-
ory regions reducing runtime by 13% on average and up to 36%.
MVAS (Multi-View Address Space) [13], by Di Gennaro et al. is a
kernel module that changes the page-fault handler to improve the
accuracy of per-thread memory working-set and migrate memory
pages, hence improving system performance up to 40%. Works by
Chiang et al. [14–16] use several modifications to the kernel to
improve thread mapping, locality, and deal with memory conges-
tion, obtaining important performance boosts in PARSEC 3.0 [17]
benchmarks. Also, Gureya et al. [3] propose BWAP, an algorithm
for memory pages placement based on asymmetric weighted
page interleaving, combining an analytical performance model of
the target system and online tuning. Again, thread mapping is
entrusted to the OS. With this approach, BWAP improves up to
66% the performance of the system.

User space tools for thread and memory mapping is the least
explored approach, but there are interesting works, like Asym-
Sched, by Lepers et al. [18]. This tool implements a dynamic
thread and memory placement algorithm in Linux to improve
performance in non-symmetric NUMA systems. Using hardware
counters information during runtime, AsymSched computes the
best thread and memory location every second, just focusing
on maximising the bandwidth for communicating threads. This
approach obtains important performance improvements in single
and multiple application workloads. The experiments are done
in AMD processors, that lack some features present in Intel ar-
chitectures, like the measurement of memory accesses latency,
which should help in improving memory transactions. DeLoc [19]
is a tool that computes the optimal mapping after an initial
profile phase where the communication and memory data are
gathered and recorded. The computed mapping tries to improve
the locality and reduce memory congestion. With this approach,
the authors claim that performance can be improved by 61%
compared to the AutoNUMA Linux policy.

Finally, it should be mentioned that thread mapping is not
limited to NUMA systems, since multi-core systems can ben-
efit from this kind of strategies too. In [20], an affinity and
architecture-aware thread mapping technique is proposed to op-
timise data reuse, remote communications, and cache coherency
costs of multi-threaded applications. Application-specific data
dependency signatures are created, collecting data from previ-
ous executions, and they are used to determine the appropriate
thread mapping of application for a given architecture. The pro-
posed framework is evaluated using the Phoenix benchmark
suite on two different multicore architectures, achieving a 25%
improvement in performance compared to the default Linux



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

T
S

t
o
r
p
i
a
p
e
p
t
w
i
a
p
c

i

2

m
h

m
l
t
t
m
p
r
a
i
s
A
t
r
m

a
/

able 1
tate of the art comparison. Acronyms HIB and LIB stand for ‘‘higher is better’’ and ‘‘lower is better’’, respectively.

Carrefour kMAF MVAS Chiang et al. BWAP AsymSched DeLoc Ours

Does not require kernel changes ✘ ✘ ✓ ✘ ✓ ✓ ✓ ✓

Does not require loading kernel modules ✓ ✓ ✘ ✓ ✘ ✓ ✓ ✓

Runs in user/kernel space Kernel Kernel Kernel Kernel Kernel User User User
Uses Hardware Counters ✓ ✘ ✘ ✘ ✓ ✓ ✓ ✓

Does not require previous profiling ✓ ✓ ✓ ✓ ✘ ✓ ✘ ✓

Handles threads ✘ ✓ ✘ ✓ ✘ ✓ ✓ ✓

Handles memory pages ✓ ✓ ✓ ✘ ✓ ✓ ✓ ✓

Max. speedup (HIB) 3.60× 1.56× 1.66× 1.51× 1.66× 2.90× 1.61× 2.50×
Runtime overhead (LIB) <5% <4% ? <2% <4% ? ? <8%
Tested scenarios (HIB) 2 1 1 3 1 1 1 3
scheduler. Reinforcement learning [21] has been also proposed to
improve hardware-level thread migration. By utilising the recent
history of memory access locations as input, each thread learns
to recognise the relationship between prior access patterns and
future memory access locations. Results using the Snipersim mul-
ticore simulator [22] on a set of SPLASH-2 [23] and PARSEC [17]
benchmarks show a reduction of on-chip data movement and
energy consumption by 41% while reducing execution time by
43% when compared to no thread migration.

In this work, we present new algorithms that aim to improve
he performance of NUMA systems through user space migration
f both threads and memory pages. These algorithms decide in
untime the best migrations to be performed by gathering and
rocessing the information of relevant hardware counters. A score
s assigned to each candidate migration involving threads in such
way that a higher score means a more likely improvement in
erformance. For memory pages, an analysis of the latency of
very memory page and the average latency of the system is
erformed with a double purpose: first, look for NUMA nodes
hat present high latencies (considering them too busy) to balance
orkload, and to determine if a memory page can be placed

n another node that lowers the latency of its accesses. This
pproach introduces low overhead and does not need previous
rofiling phases, nor modification of the Linux kernel or the target
ode.
A comparison of the most relevant proposals with ours is

ncluded in Table 1 showing the most important features.

.1. Kernel and user space migrations

There are two ways of implementing thread and memory
igration strategies, by either using kernel or user space. Both
ave advantages and disadvantages that are worth discussing.
Algorithms in kernel space benefit from having all the infor-

ation of the system available, like used CPU-time, the current
ocation of memory pages, number of page faults, etc. Also, all
he processes of the system are in disposition to have their
hreads or memory pages migrated, with no restriction on per-
issions. This gives full control over the system, and with great
ower comes great responsibility. Nevertheless, those algorithms
equire modifications of the Linux kernel, implying some dis-
dvantages. Modifying the kernel might be an expensive task
n terms of programming time to make the algorithms work,
olving bugs and so on, thus slowing down the research work.
lso, for final users, those patches might not be available due
o compatibility issues (like different kernel versions) or, mainly,
estrictions in permissions to install and use those patches or
odules.
User space tools, on the other hand, work with a limited

mount of information, mostly restricted to what is available in
proc directory and the information available through perfor-

mance profiling. They are also limited to migrating user-level
threads and their memory pages due to how Linux permissions
20
work. Note that this should not be a big issue since kernel threads
are light processes in terms of computational demands. Also,
user space tools are a step behind the operating system since
the migration tool can reallocate resources only after the initial
allocation is decided by the OS. This causes two problems: initial
resources allocation might be important for certain applications,
like those running in real-time or with restricted response time,
and user space migrations cause more overhead due to the re-
quired reallocation. Development time is a great advantage of
user space migration tools, so researchers can expend more time
on improving the algorithms rather than debugging. Finally, the
biggest advantage of user space tools is that they do not need
any special permissions to be executed, so any user can easily
download the software, compile it and make it run.

3. Performance measurement

Several metrics or combinations of metrics can be used for
characterising the performance of a process or thread. The most
popular performance model in the HPC field is the Roofline
Model [8], which utilises FLOPS and OI. FLOPS gives the amount
of floating-point operations per second. OI (Operational Intensity)
measures the number of operations performed per byte of data,
indirectly, measuring the efficiency of use of the cache memory.
Although FLOPS and OI are often enough in conventional systems,
NUMA servers require extra metrics since thread and memory
placement play a key role in memory access latency. To improve
the accuracy of the Roofline Model, the average latency of mem-
ory operations should be included. Thus, as mentioned before, we
consider that the 3DyRM [9] model is more appropriate for this
kind of systems. Furthermore, we have used the more generic OPS
(Operation Per Second) instead of FLOPS, since not all applications
make computations with floating-point arithmetic.

For measuring 3DyRM metrics, we have used Intel PEBS [24]
(Intel Processor Based Samples) and Perfmon [25]. PEBS is a
feature available in the Intel processor that allows the direct
recording of samples from specific hardware counters into a des-
ignated memory region. Perfmon provides an interface to simplify
the retrieval of information from these hardware counters. Some
other APIs like PAPI [26] have been considered, but they do not
provide the low-level information required by the algorithms
introduced in this work.

In particular, these are the performance counters that have
been used:

• MEM_TRANS_RETIRED:LATENCY_ABOVE_THRESHOLD:
memory operations for which latency is above a given
threshold. Threshold value is given as an option to the
migration tool, by default is 1, so every transaction can be
sampled.

• OFFCORE_REQUESTS:ALL_DATA_RD: number of read re-
quests off-core, that is, to data allocated in DRAM memory.
• INST_RETIRED: total number of instructions retired.



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

m

t
t

t

• FP_ARITH:SCALAR_DOUBLE:SCALAR_SINGLE: scalar sin-
gle and double precision floating point operations executed.

• FP_ARITH:128B_PACKED_DOUBLE: 128-bit vector double
precision floating point operations executed.

• FP_ARITH:128B_PACKED_SINGLE: 128-bit vector single
precision floating point operations executed.

• FP_ARITH:256B_PACKED_DOUBLE: 256-bit vector double
precision floating point operations executed.

• FP_ARITH:256B_PACKED_SINGLE: 256–bit vector single
precision floating points operations executed.

4. Migration algorithms

In this work, we introduce several algorithms for thread and
memory migrations. These algorithms have been implemented
in a migration tool that runs in user space named Thanos.1 This
approach has two main advantages: no instrumentation of the
target application is required and no Linux kernel modifications
have to be done. This tool is launched by just executing the
command without being a privileged user in the system:

$ thanos [options] <target>

where target is the program whose threads and memory pages
will be controlled by the migration tool. If you want to include
more than one program, they must be included in a shell script
that will serve as target. Note that the tool will only migrate
the threads and memory pages of the target program or script.
The rest of the threads and memory pages in the system are not
affected nor taken into account by this tool.

The only requirement for this tool to work resides in the
content of the file perf_event_paranoid, which must be set
to a negative integer value or zero to allow the collection of the
hardware counters samples.

4.1. Problem formulation

To explain the migration algorithms, some notation and formal
concepts should be introduced. A NUMA server is composed by
Nnodes nodes. The kth node, νk with 1 ≤ k ≤ Nnodes, has Ck
cores named ζkl, 1 ≤ l ≤ Ck. At any given time, there is a set
of p processes running, which we define as Π =

{
π1, . . . , πp

}
.

Each process πi consists of a set of hi threads named θij, 1 ≤

j ≤ hi. These processes and threads use data distributed across
m memory pages, which we will denote as Ψ = {ψ1, . . . , ψm}.

Every T seconds, the migration algorithm is executed, allowing
us to define the sequence of time intervals τ1, τ2 . . .

In the decision-making process, in each time interval τt , sev-
eral metrics are considered, which are represented by the follow-
ing functions:

• A
(
θij, νn, τt

)
gives the number of memory accesses per-

formed by the thread θij to data in the node νn.
• Â (ψi, νn, τt) is the number of accesses performed by all

threads running in the node νn to data located in the mem-
ory page ψi.

• L
(
θij, νn, τt

)
is the average latency of the memory operations

performed by thread θij while running in the node νn.
• L̂ (ψi, νn, τt) is the average latency of the accesses performed

by all threads running in the node νn to data located in the
memory page ψi.

• L̂ (νn, τt) is the average latency of the accesses performed
by all threads running in the node νn to data located in any
memory page.

1 Software available at https://gitlab.citius.usc.es/ruben.laso/migration.
21
• L̂ (ψi, τt) is the average latency of the accesses performed
by all threads running in the system to data in the memory
page ψi.

• L̂ (τt) is the average latency of the accesses performed by all
threads in the system to all memory pages.

• O
(
θij, νn, τt

)
is the number of operations performed by

thread θij while running in the node νn.
• I

(
θij, νn, τt

)
is the operational intensity for thread θij while

running in the node νn. This operational intensity is com-
puted as

I
(
θij, νn, τt

)
=

O
(
θij, νn, τt

)
A

(
θij, νn, τt

)
· Scache

, (1)

where Scache is the number of bytes of a cache line.

Using these functions, we can introduce the concept of the
preferred node for threads and memory pages. The preferred
node, νpref, for a thread θij is the node in which has performed
most of its memory operations. Formally, it is the NUMA node νr
which produces the higher value for A

(
θij, νr , τt

)
, that is,

νpref = max
νr

A
(
θij, νr , τt

)
. (2)

Similarly, the preferred node for a memory page ψi is the NUMA
node that hosts the threads that produce the most memory
operations. That is,

νpref = max
νr

Â (ψi, νr , τt) . (3)

Using these metrics, a score (Q ) is given to each considered
migration according to the likelihood of improving the system
performance. Details on how this Q is computed are given in
Sections 4.2 and 4.3.

Therefore, the set of possible thread migrations in each time
interval is defined as M = {M1,M2, . . . }. Each possible thread
migration is denoted by the tuple Mi =

[
Θ⃗, C⃗,Q

]
, where Θ⃗ is

the list of threads to be migrated, C⃗ their destination cores, and
Q is the summation of their scores. In the algorithms presented in
this work, the number of threads to be moved in each migration
Mi are one or two, corresponding to a single migration or an
interchange, respectively. For a single migration, Θ⃗ =

[
θij

]
and

C⃗ = [ζkl], so thread θij would be migrated to core ζkl. For an
interchange, Θ⃗ =

[
θij, θi′j′

]
and C⃗ = [ζkl, ζk′ l′ ], so θij would be

igrated to ζkl and θi′j′ to ζk′ l′ .
Alternatively, threads can be moved to nodes, leaving it up to

he OS to choose the specific core within the node on which the
hread will run. In this scenario, Mi =

[
Θ⃗, N⃗,Q

]
, where N⃗ are

the destination nodes for threads in Θ⃗ , in the same way as we
defined C⃗ for cores.

Migrations are considered for memory pages too. In that case,
we would have Mi =

[
Ψ⃗ , νn

]
, where all the pages in the subset

Ψ⃗ would be migrated to the NUMA node νn if Mi is performed.

4.2. CIMAR

In this work, we propose CIMAR (Core-aware Interchange and
Migration Algorithm with performance Record –IMAR–), a thread
migration algorithm built upon IMAR2 (Interchange and Migra-
tion Algorithm with performance Record and Rollback) [27], with
the objective of improving its stability and consistency. There
are three main differences between both algorithms: the scoring
system of the candidate migrations, the selection of migrations to
be performed, and the removal of the rollback.

CIMAR algorithm is executed every TCIMAR seconds and it uses
he 3DyRM information to guide the decision process. A function,

https://gitlab.citius.usc.es/ruben.laso/migration


R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

d
w
t
f

P

k
t

efined as P
(
θij, νn, τt

)
, gives the performance of the thread θij,

hile running in a core of the NUMA node νn during the time in-
erval τt . According to [27], a good definition for the performance
unction is(
θij, νn, τt

)
:=

O
(
θij, νn, τt

)
· I

(
θij, νn, τt

)
L
(
θij, νn, τt

) . (4)

A set of candidate threads for migration, Θ̂ , is selected using
per-process relative performance,

P̂
(
θij, νn, τt

)
=

P
(
θij, νn, τt

)
P̄ (πi, τt)

, (5)

where P̄ (πi, τt) is the function returning the average perfor-
mance of the threads of process πi.

Let Θ̂ be the set of m threads with the lowest value of P̂ ,
verifying that P̂

(
θij, νn, τt

)
≤ δperf,∀θij ∈ Θ̂ , where δperf serves

as a threshold to avoid migrations in scenarios where all threads
have similar performance and their mapping is, probably, optimal
or near to optimal. By default, we set δperf = 0.8.

For each thread θij ∈ Θ̂ , running in the core ζkl of the node νk,
all the cores but those in νk are considered as destination. Cores
in node νk are discarded since it is assumed that every core in
a node will have similar behaviour and the same latency for the
same memory accesses.

For every combination of threads, θij ∈ Θ̂ , and destination
cores, ζk′ l′ , a score is assigned. Also, if ζk′ l′ currently hosts other
threads, an interchange is considered instead of a single migration
and the score of those threads to be migrated to ζkl is computed.
Points are given according to the following criteria:

• q1 points are granted if destination core ζk′ l′ was not hosting
threads during τt . By default, q1 is set to 2.

• q2 points are assigned to the cores according to the NUMA
distance to the preferred node of θij. For the destination core
ζk′ l′ , and the preferred node νpref,

q2 =
q̂2 · d (νk′ , νk′)
d
(
νk′ , νpref

) , (6)

where d
(
νi, νj

)
corresponds to the distance between nodes

as returned by the system call numa_distance(i, j), and
we set q̂2 = 4 by default.

• q3 points are given according to the previous performance
of θij in the considered destination core ζk′ l′ . Performance
during τt is compared with the last performance measure
obtained by θij when running in a core in node νk′ . If the
previous performance was better, q3 is set to 4, if it was
worse, q3 = 1, and if there is no information or it has not
changed, q3 = 2.

• q4 points are given if a swap is considered between θij and
a thread θi′j′ currently running in core ζk′ l′ , and it holds that
P̂

(
θi′j′ , νk′ , τt

)
< δperf. By default, we set q4 = 3.

Additionally, the score of keeping the thread in its current
location is computed. If it is higher than any possible migration
of that thread, it is kept in its current core. This is done to
prevent migrations to destinations that are unlikely to improve
performance.

Once that the score of candidate migrations have been com-
puted, the m migrations with the highest score are selected to be
performed.

Finally, rollback has been removed from this algorithm. Roll-
back was introduced in IMAR2 to fix migrations to bad locations,
which are very costly. With the additional condition in CIMAR
that a migration can only take place if its score is higher than
keeping threads still, bad migrations are highly prevented. This
22
also results in a more conservative algorithm, reducing the ex-
ploration of new placements. For example, a migration with a
low score might be beneficial. With the IMAR2 algorithm it could
be explored, but not with CIMAR. This is a matter of a trade-off
between exploring new migrations and avoiding the bad ones.

Algorithm 1 shows the pseudocode of the migration selection
process of CIMAR.

4.3. NIMAR

NIMAR (Node-aware IMAR) algorithm is a variation of CIMAR,
introduced to improve a particular flaw of the latter. CIMAR
shows some problems regarding work balance, where two com-
putationally intensive threads can share and stress a CPU even
if there are other CPUs less loaded. To solve this, NIMAR does
migrations to NUMA nodes instead of cores, yielding the work
balance within nodes to the OS. Therefore, it is the Operating
System that decides the particular core in which a thread will
run. Work balance in OS is a well-studied field, so its reliability
for this task is high since it has better information to do it cor-
rectly by working on kernel space. Thus, this algorithm presents
a hybrid approach between user-space and kernel-space thread
scheduling.

NIMAR is executed every TNIMAR seconds and selects the set of
threads to be migrated, Θ̂ , in the same way as CIMAR. For each
thread θij ∈ Θ̂ , running in node νn, the rest of the nodes are
considered for the destination, and a score is given to that mi-
gration. If the destination node νn′ is hosting Cn or more threads,
an interchange is considered, and for every thread θi′j′ running in
νn′ , the score of the migration of θi′j′ to νn is computed. Points are
given in a similar way to CIMAR:

• q1 points are granted if destination node νn was hosting less
than Cn threads during τt , it has free cores. By default, we set
q1 = 2.

• q2 points are assigned according to the NUMA distance of
the destination node νn′ to the preferred node of θij in the
same way as shown in Eq. (6).

• q3 points are given according to the previous performance
of θij in the considered destination node νn′ . Performance
during τt is compared with the last performance measure
obtained by θij when running in a core in node vn′ . If the
previous performance was better, q3 is set to 4, whereas if
it was worse, q3 = 1. Otherwise, q3 = 2.

• q4 points are given if a swap is considered between θij
and a thread θi′j′ currently running in the node νn′ , and
P̂

(
θi′j′ , νn′ , τt

)
< δperf. By default, we set q4 = 3.

Also, migrations with a lower score than the one obtained
eeping the thread in their current location are discarded. Finally,
he m migrations with the best score are performed.

Algorithm 2 shows the pseudocode of NIMAR.

4.4. LMMA

LMMA (Latency-based Memory pages Migration Algorithm) is
a migration algorithm whose target is to move memory pages
across the nodes to improve the performance of the system. This
algorithm is executed periodically every TLMMA seconds. Between
executions, in the period τt , memory samples are processed. Each
sample contains information about, among others, the address
of the memory region accessed to, the node from which it was
accessed, a timestamp, the number of memory operations, and
the average latency of those operations.

An ageing factor is applied to every received sample according
to

f
(
tmig

)
=

1
, (7)
1 + tmig



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

1

1

1
1

1

1

1

1
1

1

1

1
1

1

1

1

1
1

o
o

Algorithm 1 CIMAR migration strategy.

Input: Processes Π =
{
π1, π2, . . . , πp

}
.

Threads Θ =
{
Θij, i = 1, . . . , p, j = 1, . . . , hi

}
.

Cores Z = {ζkl, k = 1, . . . ,Nnodes, l = 1, . . . , Ck}.
Relative performance threshold δperf.
Maximum number of migrations m.

Output: Migrations to perform M = {M1,M2, . . . }.

1: procedure CIMAR(Π,Θ, Z, δperf,m)
2: Θ̂ =

{
θij ∈ Θ | P

(
θij, νn, τt

)
/P̄ (πi, τt) < δperf

}
▷ Select m threads with worst rel. performance and such that P̂ < δperf.

3: M̂ = ∅ ▷ Candidate migrations is an empty set at the beginning.
4: for each θij ∈ Θ̂ do ▷ Compute candidate migrations.
5: ζkl := core hosting θij
6: Qref = Score

(
θij, ζkl

)
7: for each ζk′ l′ ∈ Z | k′

̸= k do ▷ For each core in a different node, search for candidate migrations.
8: if ζk′ l′ is free then
9: Q = Score

(
θij, ζk′ l′

)
▷ Compute score for migration of θij to ζk′ l′ .

0: if Q > Qref then ▷ If it is better to migrate than keeping θij still. . .
1: M̂ = M̂ ∪

{[
θij

]
, [ζk′ l′ ] ,Q

}
▷ Add a single migration of θij to ζk′ l′ to the set of candidates.

2: else
3: for each θi′j′ running in ζk′ l′ do
4: Q = Score

(
θij, ζk′ l′

)
+ Score

(
θi′j′ , ζkl

)
▷ Compute score for migrations of θij and θi′j′ .

5: if Q > Qref + Score
(
θi′j′ , ζk′ l′

)
then ▷ If it is better to migrate than keeping θij and θi′j′ still. . .

6: M̂ = M̂ ∪
{[
θij, θi′j′

]
, [ζk′ l′ , ζkl] ,Q

}
▷ Swap, θij would be moved to ζk′ l′ , and θi′j′ to ζkl.

7: M := m migrations in M̂ with highest Q
8: return M
Algorithm 2 NIMAR migration strategy.

Input: Processes Π =
{
π1, π2, . . . , πp

}
.

Threads Θ =
{
Θij, i = 1, . . . , p, j = 1, . . . , hi

}
.

Nodes N = {νn, n = 1, . . . ,Nnodes}.
Relative performance threshold δperf.
Number of threads to be migrated m.

Output: Migrations to perform M = {M1,M2, . . . }.

1: procedure NIMAR(Π,Θ,N, δ,m)
2: Θ̂ =

{
θij ∈ Θ | P

(
θij, νn, τt

)
/P̄ (πi, τt) < δperf

}
▷ Select m threads with worst relative performance and such that P̂ < δperf.

3: M̂ = ∅ ▷ Candidate migrations is an empty set at the beginning.
4: for each θij ∈ Θ̂ do ▷ Compute candidate migrations.
5: νn′ := node hosting θij
6: Qref = Score

(
θij, νn

)
7: for each νn′ ∈ N | n′

̸= n do ▷ For each different node, search for candidate migrations.
8: if νn′ has free cores then
9: Q = Score

(
θij, νn′

)
▷ Compute score for migration of θij to νn′ .

0: if Q > Qref then ▷ If it is better to migrate than keeping θij still. . .
1: M̂ = M̂ ∪

{[
θij

]
, [νn′ ] ,Q

}
▷ Add a single migration of θij to νn′ to the set of candidates.

2: else
3: for each θi′j′ running in νn′ do
4: Q = Score

(
θij, νn′

)
+ Score

(
θi′j′ , νn

)
▷ Compute score for migrations of θij and θi′j′ .

5: if Q > Qref + Score
(
θi′j′ , νn′

)
then ▷ If it is better to migrate than keeping θij and θi′j′ still. . .

6: M̂ = M̂ ∪
{[
θij, θi′j′

]
, [νn′ , νn] ,Q

}
▷ Swap, θij would be moved to νn′ , and θi′j′ to νn.

7: M := m migrations in M̂ with highest Q
8: return M
where tmig is the number of seconds until the next execution
f the migration algorithm. In that way, more recent memory
perations have more influence in the decision-making process
23
considering that, according to locality principle, more recent ac-
cessed data is more likely to be accessed again. For example,
when processing a sample corresponding to the page ψ with
n



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

t

t
c
1
ψ
n
T
p

t
m
n
i
S

mig = 0.25, its contribution to the different functions Â and L̂
would be weighted by 0.8.

Once the period τt is over and all memory samples are pro-
cessed, several operations are performed to decide which pages
will be migrated and their destinations. First, every node is eval-
uated deciding if it is busy or not. We say that the node νn is busy
when

L̂ (νn, τt)

L̂ (τt)
> δbusy. (8)

By default, δbusy = 1.3. Also, we calculate the least busy node,
νalt:

νalt = min
νn

L̂ (νn, τt)

L̂ (τt)
. (9)

Memory pages are migrated according to the following criteria.
For each page ψi ∈ Ψ , we compare its average latency to the
global average latency. If

L̂ (ψi, τt)

L̂ (τt)
> δlat, (10)

he page will be considered for migration, since its latency is
onsiderably higher than the average. By default, we choose δlat =

.3. Given the case, two possible destinations are considered for
i, its preferred node or the least saturated node. If the preferred
ode, νpref, is not busy, then νdest = νpref, else, νdest = νalt.
he least saturated node will only be its destination when the
referred node is noted as busy.
Similarly to a cache prefetcher, LMMA tries to move consecu-

ive memory pages to anticipate future memory operations. The
ain target of this part of the algorithm is to choose a desti-
ation for those memory pages for which there is no sampling
nformation. Once LMMA has a destination node for ψi, up to
preload next consecutive pages might be migrated to νdest. By
default, Spreload = 8. Until LMMA finds a page ψi+j with a different
preferred node, or j reaches Spreload, pages ψi, . . . , ψi+j−1 will be
migrated to the node νdest including those pages for which no
information is available. For example, if the page ψi+3 has another
preferred node, only pages ψi, ψi+1 and ψi+2 will be migrated to
νdest.

Finally, it should be noted that the Linux procedure for mem-
ory pages migrations is known to be inefficient [18,28]. Given
that, this algorithm is not expected to produce a big impact
on raw performance, but it should improve the stability of the
system by reducing memory congestion.

Algorithm 3 shows the pseudocode of LMMA.

5. Experimental environment

The experiments described in this section have been carried
out using two NUMA servers with different topologies and differ-
ent values for memory access latencies and memory bandwidth.
Latency and bandwidth matrices shown in Tables 2 and 3 were
obtained with Intel Memory Latency Checker [29]:

• Server HPL (High Penalty on Latency): A Debian GNU/Linux
9, kernel version 5.1.15 composed of four nodes with Intel
Xeon E5-4620 v4 processors with 10 cores each (40 in
total), Broadwell-EP architecture, 25 MB L3 cache, 2.1 GHz–
2.6 GHz, and 256 GB of RAM. Server topology is shown in
Fig. 1a, and all available memory channels are used for each
node. In this server, remote accesses have a latency more
than 3× higher than local accesses (see Table 2a), while
its bandwidth is reduced by 79% (see Table 2b). Note that
memory operations requiring 2-hop communications (for
example, between nodes 0 and 2) have a slightly higher
latency than the other remote accesses.
24
• Server LPL (Low Penalty on Latency): A Debian GNU/Linux
9, kernel version 4.18.0 composed of four nodes with Intel
Xeon Gold 6248 with 20 cores each (80 in total), Cascade
Lake architecture, 27.5 MB L3 cache, 2.50 GHz-3.9 GHz, and
1 TB of RAM. Server topology is shown in Fig. 1b. All memory
channels are in use and all memories are interconnected
with each other, so all remote accesses have similar la-
tencies. As reported by Table 3a and b, remote accesses
have about 1.7× higher latency, while the bandwidth is
decreased by 78% approximately.

Given the characteristics of both servers, we can state that data
and thread placement is more critical in Server HPL than LPL, and
therefore more susceptible to improving its performance using
our algorithms.

6. Experiments description

For the experimental validation of our proposal, we have de-
signed three experiments with the NAS parallel benchmarks [30]
version 3.4.1 and the LevelDB benchmark [31] version 1.0.2 in-
cluded in the Phoronix Test Suite [32]. With these benchmarks,
we measured performance improvements in two extremely im-
portant areas, namely HPC and databases. This is the list of used
benchmarks:

• BT: Block Tri-diagonal solver based on a CFD
pseudo-application.

• CG: Conjugate Gradient solver based on a CFD pseudo-
application.

• DC: Arithmetic Data Cube computations focused on data
movement across cores.

• EP: Embarrassingly Parallel. Kernel designed to provide an
estimate of the upper achievable limits of floating-point
performance.

• FT: 3-D Fast Fourier Transform computations with all-to-all
communication.

• IS: Integer Sort algorithm with random memory accesses.
• LU: Lower-Upper Gauss–Seidel solver factorisation.
• MG: Multi-Grid on a sequence of meshes, long- and short-

distance communication. Memory intensive benchmark.
• SP: Scalar Penta-diagonal solver based on a CFD pseudo-

application.
• UA: Unstructured Adaptive mesh with dynamic and irregu-

lar memory accesses.
• LevelDB: database application developed by Google. This

benchmark includes several read and write operations,
namely: Rand Delete, Fill Rand, Fill Seq, Fill Sync, Overwrite,
Hot Read, Read Rand, and Seek Rand.

Fig. 2 shows the roofline information obtained with Intel Advi-
sor [33] for all the benchmarks used in the experiments with
their proportion of last level cache (LLC) misses obtained with
perf [34]. With this information, we can classify the benchmarks
according to their rate of LLC misses:

• Low (0%–20%): BT, EP, CG, and IS.
• Medium (20%–40%): FT, MG, UA, and LevelDB Rand Delete,

Fill Rand, Fill Seq, Fill Sync, and Overwrite.
• High (40% or more): DC, LU, SP, and LevelDB Hot Read, Read

Rand, and Seek Rand.

Three different scenarios have been considered for the exper-
iments and validation tests:

• Experiment A: Servers are used with one application at a
time, which can use all available resources, all cores and
all available memory. This experiment is the most compli-

cated in terms of improving performance. Since the selected



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

1

1

1

T
L

Algorithm 3 LMMA migration strategy.

Input: Memory pages Ψ = {ψ1, ψ2, . . . }.
Nodes N = {νn, n = 1, . . . ,Nnodes}.
Thresholds δbusy, δlat.

Output: Migrations to perform M = {M1,M2, . . . }.

1: procedure LMMA(Ψ ,N, δbusy, δlat)

2: Nbusy :=

{
νn ∈ N | L̂ (νn, τt) /L̂ (τt) > δbusy

}
▷ Evaluate busy nodes.

3: νalt = minνr L̂ (νr , τt) /L̂ (τt) ▷ Pick the least busy node.
4: M = ∅ ▷ Migrations to perform is an empty set at the beginning.
5: for each ψi ∈ Ψ | ψi /∈ M do ▷ Compute migrations.
6: if L̂ (ψi, τt) /L̂ (τt) > δlat then ▷ If the latency of ψi is high, search for a migration.
7: νpref = maxνr Â (ψi, νr , τt)
8: if νpref ∈ Nbusy then ▷ Check if the preferred node is busy.
9: νdest = νalt

10: else
11: νdest = νpref

12: Ψ⃗ := [ψi]
3: for j = 1, . . . , Spreload do ▷ Compute preload.
4: ν ′

pref = maxνr Â
(
ψi+j, νr , τt

)
15: if ν ′

pref = νdest or ν ′

pref = ∅ then ▷ If preload conditions are matched. . .
16: Ψ⃗ := Ψ⃗ + ψi+j ▷ Add ψj to the set of pages to migrate.
17: else ▷ Else, no more pages available for preload.
8: M = M ∪

[
Ψ⃗ , νdest

]
▷ Pages already in Ψ⃗ will be migrated to νdest.

19: End preload and continue on line 5. ▷ Repeat process with the next memory page.
20: return M
Fig. 1. Network topologies of Server HPL and Server LPL.
able 2
atency and bandwidth matrices for server HPL.
(a) Latency matrix (in ns) for server HPL. (b) Bandwidth matrix (in MB/s) for server HPL.

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

Node 0 85.8 254.7 271.4 256.2 Node 0 59,497 12,709 12,002 12,368
Node 1 254.9 86.0 253.2 271.5 Node 1 12,153 59,528 12,210 12,007
Node 2 271.4 252.7 86.0 254.7 Node 2 12,028 12,395 59,506 12,689
Node 3 255.1 271.9 254.3 85.7 Node 3 12,371 11,992 12,704 59,487
Table 3
Latency and bandwidth matrices for Server LPL.
(a) Latency matrix (in ns) for server LPL. (b) Bandwidth matrix (in MB/s) for server LPL.

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

Node 0 88.3 145.1 141.3 144.4 Node 0 76,251 17,148 17,141 17,127
Node 1 143.3 82.9 142.1 140.4 Node 1 17,141 76,286 17,141 17,100
Node 2 139.0 141.2 83.1 144.8 Node 2 17,153 17,157 76,306 17,152
Node 3 144.8 138.4 143.3 83.4 Node 3 17,141 17,146 17,140 76,210
25



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32
Fig. 2. Roofline model of the used benchmarks obtained with Intel Advisor in Server HPL with colour gradient of the rate of LLC misses obtained with perf. Red
means more misses.
L
i

Table 4
Start times in seconds for each task and server in Experiment B.

Server HPL Server LPL

lu.C.x-1 0 0
bt.C.x-1 18 9
cg.C.x-1 137 68.5
sp.C.x-1 190 95
lu.C.x-2 224 112
bt.C.x-2 244 122
cg.C.x-2 269 134.5
sp.C.x-2 316 168

benchmarks are well-known among HPC researchers, and
well-programmed according to locality principles, little im-
provement, if any, is expected. However, this experiment
is interesting to give an idea of the potential overhead of
our migration tool in general and the different algorithms
in particular.

• Experiment B: Servers are used interactively, that is, users
can send little tasks at any time. This experiment is a sim-
ulation of an interactive system based on anonymous data
of the use of computing nodes in CESGA (Centro de Super-
computación de Galicia, https://www.cesga.es). The time at
which each task starts to execute is fixed, so the objective is
to reduce the execution time of each task. This experiment
draws a scenario where the number of concurrent tasks
changes with time, giving more chances for improving the
performance with migrations than in Experiment A. The
start time of each task is shown in Table 4. Note that start
times are scaled-down (×0.5) in Server LPL to achieve a
similar number of concurrent tasks to HPL.
Each task consists of 8 and 16 threads for Servers HPL and
LPL, respectively. At peak, it is possible to have more threads
in execution than cores. An example of an execution of this
experiment is shown in Fig. 3.

• Experiment C: Servers are used with a queue of tasks, like
Slurm [35], where users send tasks and only a fraction of
the resources are available. We simulate four users that have
sent tasks based on NAS benchmarks [30]. The objective is
to reduce the time to complete all tasks. There are granted
only 10 and 20 threads per user for Server HPL and LPL,
respectively. At peak, there are as many threads as cores.
An example of an execution of this experiment is shown
in Fig. 4. This is the experiment where the potential im-
provement due to thread and memory migrations is higher.
Reducing the execution time of a task implies launching the
following tasks earlier. Also, the chances of improving per-
formance are greater due to the high number of processes
in the system.
 a

26
Different conditions and configurations have been considered
in the execution of the benchmarks. The first three configurations
in the following list are commonly used in the literature as a
reference for validation purposes. The others correspond to the
proposed algorithms, used individually or combining thread and
page migration.

• Baseline: Thread and memory mapping are under the con-
trol of the operating system. Linux default policies are used
with AutoNUMA enabled, so the Linux option
numa_balancing is set to 1.

• Direct: Each task is granted a memory node, so its threads
are directly mapped using the numactl command [36]. This
way, each benchmark will allocate its running threads in
the same node as its data, as long as the memory cell is
large enough. This is a common option used by experienced
users who know the limits and behaviour of their parallel
applications [37,38].

• Interleave: Memory pages are distributed evenly across
NUMA nodes using the numactl utility. Thread migration
is under the responsibility of the OS. Like direct mapping,
this is another popular option when executing programs in
NUMA servers.

• CIMAR: Thread mapping is controlled by the algorithm
shown in Section 4.2, with up to m = 5 migrations per
iteration and TCIMAR = 1 second, so up to 5 migrations
are performed every second. The rest of the parameters
are set to their default value. The initial thread mapping
is determined by the OS, which also controls all memory
mappings.

• NIMAR: Thread mapping is controlled by the algorithm de-
scribed in Section 4.3, with m = 5 and TNIMAR = 1 second.
The rest of the parameters are set to their default value. As
in the previous case, the OS sets the initial thread mapping
and controls all memory mappings.

• LMMA: Memory mapping is controlled by the algorithm
described in Section 4.4, with TLMMA = 1 second. The rest
of the parameters are set to their default value. Now, the
OS establishes the initial memory mapping and controls all
thread mappings.

• CIMAR + LMMA: both algorithms are enabled with the
aforementioned parameters.

• NIMAR + LMMA: both algorithms are enabled with the
aforementioned parameters.

The values of the parameters used by CIMAR, NIMAR and
MMA have been selected after several experiments, not included
n this paper, for finding those which fit well in different servers

nd scenarios. The most critical parameters are the number of

https://www.cesga.es


R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

b
h
d
h
m

7

e
t
m

7

8

t
i
l
o
m
b
C
s
m

Fig. 3. Example of a time trace for the Experiment B.
Fig. 4. Example of a time trace for the Experiment C.
threads to be migrated and the time between migrations. Regard-
ing the number of threads to be migrated, it is possible to state
that the larger value ofm, the more aggressive the algorithms will
be. This might help find an optimal mapping sooner but might
also incur non-optimal placements with a high overhead due to
the high number of migrations. About TCIMAR, TNIMAR and TLMMA, a
alance should be found with the information available. On one
and, it is needed to wait some time to gather enough samples so
ecisions are based on solid measurements. On the other hand, a
igher frequency in migrations might address performance issues
ore quickly.

. Experimental results

The results shown in this section correspond to the normalised
xecution time against the OS baseline, shown in parentheses in
he figures. For the LevelDB benchmarks, the normalised perfor-
ance in µs/Op or MB/s is shown.

.1. Experiment A

Figs. 5 and 6 show results for the Server HPL, while Figs. 7 and
show the results for Server LPL.
As mentioned before, little improvement can be expected in

his experiment, since the benchmarks used are state-of-the-art
mplementations of their respective routines. In general terms,
ittle overhead is introduced with the migration tool, about 8%
f the total execution time. This overhead is compensated in
ost cases, even for LMMA which was expected to be ballasted
y the inefficient Linux memory migration mechanism. Only the
IMAR algorithm produces significant performance losses in this
cenario. Together with the NAS benchmarks, other Linux com-
ands like time and scripts for automating the tests are running.
27
Although these scripts imply negligible computation time, it is
enough to trigger the flaws of the CIMAR regarding work-balance,
and so increasing the execution time of the target code. With the
NIMAR algorithm, those problems are alleviated, and results are
generally better and more stable. Though, CIMAR makes impor-
tant improvements in those tests with LevelDB databases with
more LLC cache misses, that also rely massively on L1 cache hits,
more than 90% of L1 cache accesses are valid. Since CIMAR pins
the threads to the individual CPUs, the cache memory is kept
in a ‘‘hot’’ state, producing a massive improvement when the L1
cache is used in such an intensive way. In NIMAR, the OS is free
to move threads within a node, so whenever a thread is moved,
the content of the L1 is no longer valid and some time is wasted
retrieving back this information. In addition, read operations are
further benefited because the hardware counters available on
Intel platforms focus on data read transactions. LMMA does not
improve execution times for NAS benchmarks, though it reduces
the standard deviation of the results frequently, so execution
times are more consistent across different runs. This is achieved
by closing the distance between pages and threads, but also
by balancing the memory workload when nodes are considered
busy.

Note that NIMAR and LMMA algorithms are the more balanced
options, producing little overhead while working, and even im-
proving performance for some benchmarks like the BT, MG and
SP, which can be considered memory-intensive codes.

7.2. Experiment B

We can see two differentiated behaviours in this experiment.
Attending to the results of Server HPL in Fig. 9, migration algo-
rithms increase the system performance. Those tasks that coin-
cide with others, like the sp.C.x-1, lu.C.x-2, are the most benefited.



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32
Fig. 5. Normalised execution time for NAS tests in Experiment A in Server HPL. Lower is better. Baseline in parentheses.
Fig. 6. Normalised performance for LevelDB tests in Experiment A in Server HPL. Higher is better. Baseline in parentheses.
Fig. 7. Normalised execution time for NAS tests in Experiment A in Server LPL. Lower is better. Baseline in parentheses.
Note that the Direct mapping does not perform well in this
scenario, increasing execution times for most tasks. Interleaving
improves for some tasks, but it is still outperformed by CIMAR,
NIMAR and LMMA. Comparing the migration algorithms, CIMAR
and NIMAR achieve similar results for most tasks, being NIMAR
more stable. This stability is further improved, the deviation is
reduced, when the memory pages migrations are enabled with
LMMA, resulting in more consistent execution times.

For Server LPL (see Fig. 10), results are different. For most
tasks, there are little differences between the baseline policies
and the best result among alternatives. Note that the CG tasks
are the only ones that improve substantially their execution time,
28
and only while using Direct mapping. For the rest of the tasks,
migration algorithms results are comparable to those obtained
with the best particular policy.

7.3. Experiment C

Figs. 11 and 12 show the results for the Servers HPL and LPL,
respectively.

The impact of migrations is higher in the Server HPL since the
differences in memory latency are also higher for this server. The
Direct and Interleave mapping options do not improve overall
performance, obtaining similar results to those obtained with the



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

O
m
s
i
w
e
b
a
w

p
N
o
p
c

Fig. 8. Normalised performance for LevelDB tests in Experiment A in Server LPL. Higher is better. Baseline in parentheses.
Fig. 9. Normalised execution times for each task and total test time for Experiment B in Server HPL. Lower is better. Baseline in parentheses.
Fig. 10. Normalised execution times for each task and total test time for Experiment B in Server LPL. Lower is better. Baseline in parentheses.
S default policies. However, our thread migration algorithms
anage to improve up to 29% the test wall-time. Furthermore,
ome benchmarks like LU, MG and SP are significantly boosted,
mproving their execution time up to 49%. The UA benchmark,
hich is memory-intensive with irregular patterns, lowers its
xecution times significantly too. Generally, we can state that the
enchmarks with more LLC misses and irregular memory patterns
re the most benefited by our migration tool. In contrast, those
hich are intensive in cache use see little to no improvement.
It may seem that LMMA is not enough to improve system

erformance, with the exceptions of BT and LU benchmarks.
ote that the standard deviation is reduced with the presence
f this algorithm, making the system more stable in terms of
erformance and memory latency, so execution times are more
onsistent through different runs.
29
For the Server LPL, Direct mapping seems the best option
attending to the individual tasks, especially for CG, IS, and DC,
although it does not improve the total time compared to default
OS policies. Interleaving is not an option, since it causes severe
detriments for some tasks. Migration algorithms are near the
baseline in terms of execution times, with slight improvements
in the stability and performance for those programs with more
LLC cache misses.

8. Conclusions

In this article, we presented three novel migration algorithms
in the context of NUMA systems: CIMAR and NIMAR for threads,
and LMMA for memory pages. These algorithms have been imple-
mented in a user space tool that gathers the information from the

hardware counters available in current processors. For the thread



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

s
b
c

Fig. 11. Normalised execution times for each task and total test time for Experiment C in Server HPL. Lower is better. Baseline in parentheses.
Fig. 12. Normalised execution times for each task and total test time for Experiment C in Server LPL. Lower is better. Baseline in parentheses.
i

migration algorithms, every possible migration is given a score
according to the 3DyRM metrics and simple heuristics, and those
with the highest score are performed. CIMAR pins the threads
to individual cores, while NIMAR does the migration to a NUMA
node, trusting the OS to decide the particular core. This way, the
responsibility of keeping a proper work balance within a node
resides on the OS, which is better fitted for the task because it can
operate in kernel space. In the LMMA algorithm, memory pages
are migrated according to the latency of the transactions in which
they are involved. The objective of LMMA is to improve latency
of memory accesses of the particular pages, and the system in
general, by migrating them to the preferred or least busy nodes,
according to the possible congestion.

Several experiments have been performed, to study different
cenarios in terms of their different characteristics and the num-
er of processes running in the system. The following lessons
ould be extracted from the results:

• Operating System with AutoNUMA patch performs well in
most scenarios, being the fastest or being near the fastest
alternative in most cases and has been proven a good com-
promise for general use.

• Interleave mapping is often slower than default OS policies,
and might even cause significant slow-downs in systems
with high local node bandwidths.

• Direct mapping is the theoretical best alternative and proved
to be the best option in servers like LPL, where local node
bandwidth is high. Otherwise, communication channels
might get saturated, increasing the latency of memory op-
erations and affecting the performance.

• Aggressive CPU pinning, like that performed by the CIMAR
algorithm, is a good alternative, especially in multitasking
environments and for applications that use L1 cache inten-
sively. Unfortunately, it shows some flaws regarding work

balance that might cause significant performance losses.

30
• NIMAR solves the problem with work balance by adopting
pinning threads to NUMA nodes instead of particular cores.
That way, it is the OS that decides which thread executes
in which core within the given node. This is the preferred
choice of the authors since it shows the best performance
in most scenarios while keeping a low overhead.

• By migrating memory pages, LMMA manages to improve
system stability, and even improve performance in some
scenarios. Once that the aforementioned inefficiency of
Linux memory migration [18,28] is improved, results of
LMMA are expected to improve too.

• User space tools are a feasible option in terms of managing
thread and memory mapping. Even though they introduce
some overhead (under 8% in our tool), it can be compensated
up to a point where system performance is improved, up to
60% in our tests.

Future work will be focused on the improvement of the mem-
ory migration algorithms. While performance has been improved
in codes and systems in which latency is critical, there is room
for improvements on those which require high bandwidth. The
bandwidth of the system should be analysed and incorporated
into the algorithms of memory migrations in order to achieve this
objective.

CRediT authorship contribution statement

Ruben Laso: Conceptualization, Methodology, Software, Writ-
ng – original draft, Visualization. Oscar G. Lorenzo: Conceptu-
alization, Software, Writing – original draft. José C. Cabaleiro:
Conceptualization, Writing – original draft, Supervision. Tomás
F. Pena: Conceptualization, Writing – original draft, Supervision.
Juan Ángel Lorenzo: Conceptualization, Writing – original draft,
Supervision. Francisco F. Rivera: Conceptualization, Writing –

original draft, Supervision.



R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32

D

c
t

A

M
P
C
(
g

e
s

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This research work has received financial support from the
inisterio de Ciencia e Innovación, Spain within the project
ID2019-104834GB-I00. It was also funded by the Consellería de
ultura, Educación e Ordenación Universitaria of Xunta de Galicia
accr. 2019–2022, ED431G 2019/04 and reference competitive
roup 2019–2021, ED431C 2018/19).
Thanks to the people working at CESGA (https://www.cesga.

s) for sharing with us anonymous data of the use of their
ystems.

eferences

[1] M. Ju, H. Jung, H. Che, A performance analysis methodology for multicore,
multithreaded processors, IEEE Trans. Comput. 63 (2) (2014) 276–289, URL
https://doi.org/10.1109/TC.2012.223.

[2] G.C. Chasparis, M. Rossbory, Efficient dynamic pinning of parallelized
applications by distributed reinforcement learning, Int. J. Parallel Program.
(2017) http://dx.doi.org/10.1007/s10766-017-0541-y.

[3] D. Gureya, J. Neto, R. Karimi, J.a. Barreto, P. Bhatotia, V. Quema, R.
Rodrigues, P. Romano, V. Vlassov, Bandwidth-aware page placement in
NUMA, in: 2020 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), 2020, pp. 546–556, http://dx.doi.org/10.1109/
IPDPS47924.2020.00063.

[4] M. Schulz, B.R. de Supinski, PNMPI tools: A whole lot greater than the sum
of their parts, in: SC’07: Proceedings of the 2007 ACM/IEEE Conference
on Supercomputing, ACM/IEEE, 2007, pp. 1–10, http://dx.doi.org/10.1145/
1362622.1362663.

[5] A. Cheung, S. Madden, Performance profiling with EndoScope, an acqui-
sitional software monitoring framework, Proc. VLDB Endow. 1 (1) (2008)
42–53, URL https://doi.org/10.14778/1453856.1453866.

[6] M. Geimer, F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker, B. Mohr, The
scalasca performance toolset architecture, Concurr. Comput.: Pract. Exper.
22 (6) (2010) 702–719, URL https://doi.org/10.1002/cpe.1556.

[7] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
N.R. Tallent, Hpctoolkit: Tools for performance analysis of optimized
parallel programs, Concurr. Comput.: Pract. Exper. 22 (6) (2010) 685–701,
URL https://doi.org/10.1002/cpe.1553.

[8] S. Williams, A. Waterman, D. Patterson, Roofline: An insightful visual
performance model for multicore architectures, Commun. ACM 52 (4)
(2009) 65–76, URL https://doi.org/10.1145/1498765.1498785.

[9] O.G. Lorenzo, T.F. Pena, J.C. Cabaleiro, J.C. Pichel, F.F. Rivera, 3DYrm: A
dynamic roofline model including memory latency information, J. Super-
comput. 70 (2) (2014) 696–708, URL https://doi.org/10.1007/s11227-014-
1163-4.

[10] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V.
Quema, M. Roth, Traffic management: A holistic approach to memory
placement on NUMA systems, SIGPLAN Not. 48 (4) (2013) 381–394, http:
//dx.doi.org/10.1145/2499368.2451157.

[11] C. Lameter, Local and remote memory: Memory in a linux/NUMA system,
in: Linux Symposium, 2006, pp. 1–25.

[12] M. Diener, E.H. Cruz, P.O. Navaux, A. Busse, H.-U. Heiß, KMAF: Automatic
kernel-level management of thread and data affinity, in: Proceedings of the
23rd International Conference on Parallel Architectures and Compilation,
in: PACT ’14, Association for Computing Machinery, New York, NY, USA,
2014, pp. 277–288, http://dx.doi.org/10.1145/2628071.2628085.

[13] I. Di Gennaro, A. Pellegrini, F. Quaglia, OS-based NUMA optimization:
Tackling the case of truly multi-thread applications with non-partitioned
virtual page accesses, in: 2016 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2016, pp. 291–300, http:
//dx.doi.org/10.1109/CCGrid.2016.91.

[14] M.-L. Chiang, C.-J. Yang, S.-W. Tu, Kernel mechanisms with dynamic
task-aware scheduling to reduce resource contention in NUMA multi-
core systems, J. Syst. Softw. 121 (2016) 72–87, http://dx.doi.org/10.
1016/j.jss.2016.08.038, URL http://www.sciencedirect.com/science/article/
pii/S0164121216301376.
31
[15] M.-L. Chiang, S.-W. Tu, W.-L. Su, C.-W. Lin, Enhancing inter-node process
migration for load balancing on linux-based NUMA multicore systems, in:
2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), Vol. 2, IEEE, 2018, pp. 394–399.

[16] M.-L. Chiang, W.-L. Su, S.-W. Tu, Z.-W. Lin, Memory-aware kernel mech-
anism and policies for improving internode load balancing on NUMA
systems, Softw. - Pract. Exp. 49 (10) (2019) 1485–1508.

[17] C. Bienia, Benchmarking Modern Multiprocessors, (Ph.D. thesis), Princeton
University, USA, 2011, AAI3445564.

[18] B. Lepers, V. Quema, A. Fedorova, Thread and memory placement on NUMA
systems: Asymmetry matters, in: 2015 USENIX Annual Technical Confer-
ence (USENIX ATC 15), USENIX Association, Santa Clara, CA, 2015, pp.
277–289, URL https://www.usenix.org/conference/atc15/technical-session/
presentation/lepers.

[19] M. Agung, M.A. Amrizal, R. Egawa, H. Takizawa, Deloc: A locality and
memory-congestion-aware task mapping method for modern NUMA sys-
tems, IEEE Access 8 (2020) 6937–6953, http://dx.doi.org/10.1109/ACCESS.
2019.2963726.

[20] H. Khaleghzadeh, H. Deldari, R. Reddy, A. Lastovetsky, Hierarchical
multicore thread mapping via estimation of remote communication, J.
Supercomput. 74 (3) (2018) 1321–1340, http://dx.doi.org/10.1007/s11227-
017-2176-6.

[21] Q. Fettes, A. Karanth, R. Bunescu, A. Louri, K. Shiflett, Hardware-level
thread migration to reduce on-chip data movement via reinforcement
learning, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 39 (11)
(2020) 3638–3649.

[22] T.E. Carlson, W. Heirman, L. Eeckhout, Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation, in:
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[23] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-2 pro-
grams: Characterization and methodological considerations, ACM SIGARCH
Comput. Archit. News 23 (2) (1995) 24–36.

[24] Intel Corp, Intel 64 and IA-32 architectures software developer manuals,
2017, https://software.intel.com/articles/intel-sdm [Online; Dec. 2019].

[25] S. Eranian, Perfmon2: A Standard Performance Monitoring Interface for
Linux, HP Labs, HP Labs, 2008, http://perfmon2.sf.net/perfmon2-20080124.
pdf.

[26] D. Terpstra, H. Jagode, H. You, J. Dongarra, Collecting performance data
with PAPI-c, in: M.S. Müller, M.M. Resch, A. Schulz, W.E. Nagel (Eds.), Tools
for High Performance Computing 2009, Springer, Berlin, Heidelberg, 2010,
pp. 157–173.

[27] R. Laso, O.G. Lorenzo, F.F. Rivera, J.C. Cabaleiro, T.F. Pena, J.A. Lorenzo,
LBMA And IMAR2: Weighted lottery based migration strategies for NUMA
multiprocessing servers, Concurr. Comput.: Pract. Exper. 33 (11) (2021)
e5950, http://dx.doi.org/10.1002/cpe.5950, URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.5950.

[28] J. Funston, M. Lorrillere, A. Fedorova, B. Lepers, D. Vengerov, J.-P. Lozi,
V. Quéma, Placement of virtual containers on NUMA systems: A practical
and comprehensive model, in: Proceedings of the 2018 USENIX Conference
on Usenix Annual Technical Conference, in: USENIX ATC ’18, USENIX
Association, USA, 2018, pp. 281–293.

[29] Intel
®

memory latency checker v3.9, 2021, https://software.intel.com/
content/www/us/en/develop/articles/intelr-memory-latency-checker.html
(Accessed: 2021-04-21).

[30] H. Jin, M. Frumkin, J. Yan, The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance, Tech. Rep. Technical Report NAS-99-011,
NASA Ames Research Center, 1999.

[31] S. Ghemawat, J. Dean, Leveldb, 2011.
[32] Phoronix test suite, 2021, https://www.phoronix-test-suite.com/ (Ac-

cessed: 2021-04-21).
[33] Intel

®
advisor, 2021, https://software.intel.com/content/www/us/en/

develop/tools/oneapi/components/advisor.html (Accessed: 2021-06-07).
[34] A.C. De Melo, The new linux ‘‘perf’’ tools, in: Slides from Linux Kongress,

Vol. 18, 2010, pp. 1–42.
[35] A.B. Yoo, M.A. Jette, M. Grondona, SLURM: Simple linux utility for resource

management, in: D. Feitelson, L. Rudolph, U. Schwiegelshohn (Eds.), Job
Scheduling Strategies for Parallel Processing, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003, pp. 44–60.

[36] A. Kleen, A NUMA API for Linux, Novel Inc, 2005.
[37] C. Lameter, NUMA (non-uniform memory access): An overview, ACM

Queue 11 (7) (2013) 40, URL https://queue.acm.org/detail.cfm?id=2513149.
[38] A. Rane, D. Stanzione, Experiences in tuning performance of hybrid

MPI/OpenMP applications on quad-core systems, in: Proc. of 10th LCI Int’L
Conference on High-Performance Clustered Computing, 2009, pp. 1–10.

https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://doi.org/10.1109/TC.2012.223
http://dx.doi.org/10.1007/s10766-017-0541-y
http://dx.doi.org/10.1109/IPDPS47924.2020.00063
http://dx.doi.org/10.1109/IPDPS47924.2020.00063
http://dx.doi.org/10.1109/IPDPS47924.2020.00063
http://dx.doi.org/10.1145/1362622.1362663
http://dx.doi.org/10.1145/1362622.1362663
http://dx.doi.org/10.1145/1362622.1362663
https://doi.org/10.14778/1453856.1453866
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1007/s11227-014-1163-4
https://doi.org/10.1007/s11227-014-1163-4
https://doi.org/10.1007/s11227-014-1163-4
http://dx.doi.org/10.1145/2499368.2451157
http://dx.doi.org/10.1145/2499368.2451157
http://dx.doi.org/10.1145/2499368.2451157
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb11
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb11
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb11
http://dx.doi.org/10.1145/2628071.2628085
http://dx.doi.org/10.1109/CCGrid.2016.91
http://dx.doi.org/10.1109/CCGrid.2016.91
http://dx.doi.org/10.1109/CCGrid.2016.91
http://dx.doi.org/10.1016/j.jss.2016.08.038
http://dx.doi.org/10.1016/j.jss.2016.08.038
http://dx.doi.org/10.1016/j.jss.2016.08.038
http://www.sciencedirect.com/science/article/pii/S0164121216301376
http://www.sciencedirect.com/science/article/pii/S0164121216301376
http://www.sciencedirect.com/science/article/pii/S0164121216301376
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb15
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb16
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb16
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb16
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb16
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb16
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb17
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb17
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb17
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
http://dx.doi.org/10.1109/ACCESS.2019.2963726
http://dx.doi.org/10.1109/ACCESS.2019.2963726
http://dx.doi.org/10.1109/ACCESS.2019.2963726
http://dx.doi.org/10.1007/s11227-017-2176-6
http://dx.doi.org/10.1007/s11227-017-2176-6
http://dx.doi.org/10.1007/s11227-017-2176-6
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb21
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb21
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb21
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb21
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb21
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb21
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb21
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb23
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb23
http://software.intel.com/articles/intel-sdm
http://perfmon2.sf.net/perfmon2-20080124.pdf
http://perfmon2.sf.net/perfmon2-20080124.pdf
http://perfmon2.sf.net/perfmon2-20080124.pdf
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb26
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb26
http://dx.doi.org/10.1002/cpe.5950
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5950
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5950
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5950
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb28
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb28
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb28
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb28
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb28
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb28
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb28
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb28
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb28
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb30
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb30
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb30
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb30
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb30
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb31
https://www.phoronix-test-suite.com/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb34
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb34
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb34
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb35
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb35
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb35
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb35
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb35
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb35
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb35
http://refhub.elsevier.com/S0167-739X(21)00437-4/sb36
https://queue.acm.org/detail.cfm?id=2513149


R. Laso, O.G. Lorenzo, J.C. Cabaleiro et al. Future Generation Computer Systems 129 (2022) 18–32
Ruben Laso obtained his B.Sc. in Computer Engineering
in 2017 and his M.Sc. in Industrial Mathematics in
2019. Currently, he is a Ph.D. student at the Uni-
versity of Santiago de Compostela, working on the
improvement of performance in NUMA servers via
hardware counters. His research interests include com-
puter architecture, particularly manycore and NUMA
architectures, and the development of parallel algo-
rithms in fields such as applied mathematics and
numerical methods.

Oscar G. Lorenzo received the Ph.D. degree from the
University of Santiago de Compostela in 2016, hav-
ing previously obtained his B.Sc. in Computer Science
Engineering in 2010 and M.Sc. in High Performance
Computing in 2012, in said University. Currently he is
a Post-Doc associate researcher at the Centro Singular
de Investigación en Tecnoloxías Intelixentes (CITIUS).

José C. Cabaleiro received a Ph.D. degree from the
University of Santiago de Compostela in 1994. Cur-
rently, he is an associate professor in the Department
of Electronics and Computer Science at the University
of Santiago de Compostela. Since 2010 he is a member
of the Research Centre in IT (CiTIUS) of this University.
His research interests include the architecture of par-
allel systems, the development of parallel algorithms
for irregular problems and particularly for processing
LiDAR data, and the prediction and improvement of the
performance of parallel applications.
32
Tomás F. Pena got his Ph.D. in Physics in 1994 from
the University of Santiago de Compostela (Spain). Since
1994, he is a professor in the Department of Electronics
and Computer Science of the University of Santiago de
Compostela. Since 2010, he is a senior researcher at the
Research Center in IT (CiTIUS) of this University. His
main research lines include high-performance comput-
ing in general, the architecture of parallel systems, the
development of parallel algorithms for clusters and su-
percomputers, the optimisation of the performance in
irregular codes and with sparse matrices, the prediction

and improvement of the performance of parallel applications in general, and the
use of Big Data technologies for scientific applications.

Juan Angel Lorenzo is an associate professor at CY
Cergy Paris Université. After obtaining a M.Sc. degree
in telecommunications engineering and a Ph.D. at the
University of Santiago de Compostela, he worked at
Hewlett-Packard Laboratories (Bristol, UK) as a re-
searcher and cloud engineer. He later joined INRIA
Bordeaux to carry out research in the field of resource
allocation problems in cloud platforms. He has been
a visiting researcher at the Edinburgh Parallel Com-
puting Centre and the Department of Distributed and
Dependable Systems at Charles University in Prague.

His research interests lie in the development of strategies to improve resource
locality in HPC, management of cloud infrastructures and profiling of large-scale
architectures.

Francisco F. Rivera is a full professor at the University
of Santiago de Compostela (Spain). Throughout his
career, he has supervised researches and published
extensively in the areas of computer-based applica-
tions, parallel processing and computer architecture.
His current research interests include the compilation
of irregular codes for parallel and distributed systems;
the analysis and prediction of performance on parallel
systems and the design of parallel algorithms; mem-
ory hierarchy optimisations, GIS, image processing, 3D
point clouds computing, etc.


	CIMAR, NIMAR, and LMMA: Novel algorithms for thread and memory migrations in user space on NUMA systems using hardware counters
	Introduction
	Related work
	Kernel and user space migrations

	Performance measurement
	Migration algorithms
	Problem formulation
	
	
	

	Experimental environment
	Experiments description
	Experimental results
	Experiment A
	Experiment B
	Experiment C

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


