74 research outputs found

    Fusion of information from multiple Kinect sensors for 3D object reconstruction

    Get PDF
    Основная статьяIn this paper, we estimate the accuracy of 3D object reconstruction using multiple Kinect sensors. First, we discuss the calibration of multiple Kinect sensors, and provide an analysis of the accuracy and resolution of its the depth data. Next, the precision of coordinate mapping between sensors data for registration of depth and color images is evaluated. We test a system with four Kinect V2 sensors and present reconstruction accuracy results. Experiments and computer simulation are carried out using Matlab and Kinect V2

    Fine-grained action recognition by motion saliency and mid-level patches

    Get PDF
    Effective extraction of human body parts and operated objects participating in action is the key issue of fine-grained action recognition. However, most of the existing methods require intensive manual annotation to train the detectors of these interaction components. In this paper, we represent videos by mid-level patches to avoid the manual annotation, where each patch corresponds to an action-related interaction component. In order to capture mid-level patches more exactly and rapidly, candidate motion regions are extracted by motion saliency. Firstly, the motion regions containing interaction components are segmented by a threshold adaptively calculated according to the saliency histogram of the motion saliency map. Secondly, we introduce a mid-level patch mining algorithm for interaction component detection, with object proposal generation and mid-level patch detection. The object proposal generation algorithm is used to obtain multi-granularity object proposals inspired by the idea of the Huffman algorithm. Based on these object proposals, the mid-level patch detectors are trained by K-means clustering and SVM. Finally, we build a fine-grained action recognition model using a graph structure to describe relationships between the mid-level patches. To recognize actions, the proposed model calculates the appearance and motion features of mid-level patches and the binary motion cooperation relationships between adjacent patches in the graph. Extensive experiments on the MPII cooking database demonstrate that the proposed method gains better results on fine-grained action recognition

    Real-time head-based deep-learning model for gaze probability regions in collaborative VR

    Get PDF
    Eye behaviour has gained much interest in the VR research community as an interaction input and support for collaboration. Researchers implemented gaze inference models when eye-tracking is missing by using head behavior and saliency. However, these solutions are resource-demanding and thus unfit for untethered devices, and their angle accuracy is around 7°, which can be a problem in high-density informative areas. To address this issue, we propose a lightweight deep learning model that generates the probability density function of the gaze as a percentile contour. This solution allows us to introduce a visual attention representation based on a region rather than a point and manage a trade-off between the ambiguity of a region and the error of a point. We tested our model in untethered devices with real-time performances; we evaluated its accuracy which outperforms our identified baselines (average fixation map and head direction)

    Highly Efficient Multiview Depth Coding Based on Histogram Projection and Allowable Depth Distortion

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Mismatches between the precisions of representing the disparity, depth value and rendering position in 3D video systems cause redundancies in depth map representations. In this paper, we propose a highly efficient multiview depth coding scheme based on Depth Histogram Projection (DHP) and Allowable Depth Distortion (ADD) in view synthesis. Firstly, DHP exploits the sparse representation of depth maps generated from stereo matching to reduce the residual error from INTER and INTRA predictions in depth coding. We provide a mathematical foundation for DHP-based lossless depth coding by theoretically analyzing its rate-distortion cost. Then, due to the mismatch between depth value and rendering position, there is a many-to-one mapping relationship between them in view synthesis, which induces the ADD model. Based on this ADD model and DHP, depth coding with lossless view synthesis quality is proposed to further improve the compression performance of depth coding while maintaining the same synthesized video quality. Experimental results reveal that the proposed DHP based depth coding can achieve an average bit rate saving of 20.66% to 19.52% for lossless coding on Multiview High Efficiency Video Coding (MV-HEVC) with different groups of pictures. In addition, our depth coding based on DHP and ADD achieves an average depth bit rate reduction of 46.69%, 34.12% and 28.68% for lossless view synthesis quality when the rendering precision varies from integer, half to quarter pixels, respectively. We obtain similar gains for lossless depth coding on the 3D-HEVC, HEVC Intra coding and JPEG2000 platforms

    Postgraduate study at UCA

    Get PDF
    Presentation on day two of the ISCAEE conference held at UCA, and organised by Ashley Howard. The International Society for Ceramic Art Education and Exchange (ISCAEE) is a unique consortium of undergraduate and postgraduate ceramics courses from around the world. An ISCAEE symposium comprises a catalogued exhibition, published lectures and making demonstrations. At each stage students are involved on a level playing field with their staff and form the fulcrum around which the event is run. Since last staging the event in 2007, UCA Farnham was proud once again to play host to the 2017 symposium. The exhibition was held at the James Hockey and Foyer Galleries and will feature work by over 100 practitioners from educational institutions in China, Korea, Africa, Turkey, Japan, USA and UK. Presentation day and name listed in catalogue

    On-Site and External Energy Harvesting in Underground Wireless

    Get PDF
    Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture

    ソーシャルメディアにおけるコンテンツの人気度の予測・向上に向けたタグ解析と推薦

    Get PDF
    corecore