39 research outputs found

    Extensible sparse functional arrays with circuit parallelism

    Get PDF
    A longstanding open question in algorithms and data structures is the time and space complexity of pure functional arrays. Imperative arrays provide update and lookup operations that require constant time in the RAM theoretical model, but it is conjectured that there does not exist a RAM algorithm that achieves the same complexity for functional arrays, unless restrictions are placed on the operations. The main result of this paper is an algorithm that does achieve optimal unit time and space complexity for update and lookup on functional arrays. This algorithm does not run on a RAM, but instead it exploits the massive parallelism inherent in digital circuits. The algorithm also provides unit time operations that support storage management, as well as sparse and extensible arrays. The main idea behind the algorithm is to replace a RAM memory by a tree circuit that is more powerful than the RAM yet has the same asymptotic complexity in time (gate delays) and size (number of components). The algorithm uses an array representation that allows elements to be shared between many arrays with only a small constant factor penalty in space and time. This system exemplifies circuit parallelism, which exploits very large numbers of transistors per chip in order to speed up key algorithms. Extensible Sparse Functional Arrays (ESFA) can be used with both functional and imperative programming languages. The system comprises a set of algorithms and a circuit specification, and it has been implemented on a GPGPU with good performance

    Useful Open Call-By-Need

    Get PDF
    This paper studies useful sharing, which is a sophisticated optimization for ?-calculi, in the context of call-by-need evaluation in presence of open terms. Useful sharing turns out to be harder in call-by-need than in call-by-name or call-by-value, because call-by-need evaluates inside environments, making it harder to specify when a substitution step is useful. We isolate the key involved concepts and prove the correctness and the completeness of useful sharing in this setting

    Functional Programming for Embedded Systems

    Get PDF
    Embedded Systems application development has traditionally been carried out in low-level machine-oriented programming languages like C or Assembler that can result in unsafe, error-prone and difficult-to-maintain code. Functional programming with features such as higher-order functions, algebraic data types, polymorphism, strong static typing and automatic memory management appears to be an ideal candidate to address the issues with low-level languages plaguing embedded systems. However, embedded systems usually run on heavily memory-constrained devices with memory in the order of hundreds of kilobytes and applications running on such devices embody the general characteristics of being (i) I/O- bound, (ii) concurrent and (iii) timing-aware. Popular functional language compilers and runtimes either do not fare well with such scarce memory resources or do not provide high-level abstractions that address all the three listed characteristics. This work attempts to address this gap by investigating and proposing high-level abstractions specialised for I/O-bound, concurrent and timing-aware embedded-systems programs. We implement the proposed abstractions on eagerly-evaluated, statically-typed functional languages running natively on microcontrollers. Our contributions are divided into two parts - Part 1 presents a functional reactive programming language - Hailstorm - that tracks side effects like I/O in its type system using a feature called resource types. Hailstorm’s programming model is illustrated on the GRiSP microcontroller board.Part 2 comprises two papers that describe the design and implementation of Synchron, a runtime API that provides a uniform message-passing framework for the handling of software messages as well as hardware interrupts. Additionally, the Synchron API supports a novel timing operator to capture the notion of time, common in embedded applications. The Synchron API is implemented as a virtual machine - SynchronVM - that is run on the NRF52 and STM32 microcontroller boards. We present programming examples that illustrate the concurrency, I/O and timing capabilities of the VM and provide various benchmarks on the response time, memory and power usage of SynchronVM

    A Semantic Framework to Debug Parallel Lazy Functional Languages

    Get PDF
    It is not easy to debug lazy functional programs. The reason is that laziness and higherorder complicates basic debugging strategies. Although there exist several debuggers for sequential lazy languages, dealing with parallel languages is much harder. In this case, it is important to implement debugging platforms for parallel extensions, but it is also important to provide theoretical foundations to simplify the task of understanding the debugging process. In this work, we deal with the debugging process in two parallel languages that extend the lazy language Haskell. In particular, we provide an operational semantics that allows us to reason about our parallel extension of the sequential debugger Hood. In addition, we show how we can use it to analyze the amount of speculative work done by the processes, so that it can be used to optimize their use of resources

    Detecting Decidable Classes of Finitely Ground Logic Programs with Function Symbols

    Get PDF

    On Computational Small Steps and Big Steps: Refocusing for Outermost Reduction

    Get PDF
    We study the relationship between small-step semantics, big-step semantics and abstract machines, for programming languages that employ an outermost reduction strategy, i.e., languages where reductions near the root of the abstract syntax tree are performed before reductions near the leaves.In particular, we investigate how Biernacka and Danvy's syntactic correspondence and Reynolds's functional correspondence can be applied to inter-derive semantic specifications for such languages.The main contribution of this dissertation is three-fold:First, we identify that backward overlapping reduction rules in the small-step semantics cause the refocusing step of the syntactic correspondence to be inapplicable.Second, we propose two solutions to overcome this in-applicability: backtracking and rule generalization.Third, we show how these solutions affect the other transformations of the two correspondences.Other contributions include the application of the syntactic and functional correspondences to Boolean normalization.In particular, we show how to systematically derive a spectrum of normalization functions for negational and conjunctive normalization

    A Relational Logic for Higher-Order Programs

    Full text link
    Relational program verification is a variant of program verification where one can reason about two programs and as a special case about two executions of a single program on different inputs. Relational program verification can be used for reasoning about a broad range of properties, including equivalence and refinement, and specialized notions such as continuity, information flow security or relative cost. In a higher-order setting, relational program verification can be achieved using relational refinement type systems, a form of refinement types where assertions have a relational interpretation. Relational refinement type systems excel at relating structurally equivalent terms but provide limited support for relating terms with very different structures. We present a logic, called Relational Higher Order Logic (RHOL), for proving relational properties of a simply typed λ\lambda-calculus with inductive types and recursive definitions. RHOL retains the type-directed flavour of relational refinement type systems but achieves greater expressivity through rules which simultaneously reason about the two terms as well as rules which only contemplate one of the two terms. We show that RHOL has strong foundations, by proving an equivalence with higher-order logic (HOL), and leverage this equivalence to derive key meta-theoretical properties: subject reduction, admissibility of a transitivity rule and set-theoretical soundness. Moreover, we define sound embeddings for several existing relational type systems such as relational refinement types and type systems for dependency analysis and relative cost, and we verify examples that were out of reach of prior work.Comment: Submitted to ICFP 201

    Iris-Wasm: robust and modular verification of WebAssembly programs

    Get PDF
    WebAssembly makes it possible to run C/C++ applications on the web with near-native performance. A WebAssembly program is expressed as a collection of higher-order ML-like modules, which are composed together through a system of explicit imports and exports using a host language, enabling a form of higher- order modular programming. We present Iris-Wasm, a mechanized higher-order separation logic building on a specification of Wasm 1.0 mechanized in Coq and the Iris framework. Using Iris-Wasm, we are able to specify and verify individual modules separately, and then compose them modularly in a simple host language featuring the core operations of the WebAssembly JavaScript Interface. Building on Iris-Wasm, we develop a logical relation that enforces robust safety: unknown, adversarial code can only affect other modules through the functions that they explicitly export. Together, the program logic and the logical relation allow us to formally verify functional correctness of WebAssembly programs, even when they invoke and are invoked by unknown code, thereby demonstrating that WebAssembly enforces strong isolation between modules

    ISA semantics for ARMV8-A, RISC-V, and ChERI-MIPs

    Get PDF
    Architecture specifications notionally define the fundamental interface between hardware and software: the envelope of allowed behaviour for processor implementations, and the basic assumptions for software development and verification. But in practice, they are typically prose and pseudocode documents, not rigorous or executable artifacts, leaving software and verification on shaky ground. In this paper, we present rigorous semantic models for the sequential behaviour of large parts of the mainstream ARMv8-A, RISC-V, and MIPS architectures, and the research CHERI-MIPS architecture, that are complete enough to boot operating systems, variously Linux, FreeBSD, or seL4. Our ARMv8-A models are automatically translated from authoritative ARM-internal definitions, and (in one variant) tested against the ARM Architecture Validation Suite. We do this using a custom language for ISA semantics, Sail, with a lightweight dependent type system, that supports automatic generation of emulator code in C and OCaml, and automatic generation of proof-assistant definitions for Isabelle, HOL4, and (currently only for MIPS) Coq. We use the former for validation, and to assess specification coverage. To demonstrate the usability of the latter, we prove (in Isabelle) correctness of a purely functional characterisation of ARMv8-A address translation. We moreover integrate the RISC-V model into the RMEM tool for (user-mode) relaxed-memory concurrency exploration. We prove (on paper) the soundness of the core Sail type system. We thereby take a big step towards making the architectural abstraction actually well-defined, establishing foundations for verification and reasoning.</jats:p

    On polymorphic sessions and functions: A tale of two (fully abstract) encodings

    Get PDF
    This work exploits the logical foundation of session types to determine what kind of type discipline for the -calculus can exactly capture, and is captured by, -calculus behaviours. Leveraging the proof theoretic content of the soundness and completeness of sequent calculus and natural deduction presentations of linear logic, we develop the first mutually inverse and fully abstract processes-as-functions and functions-as-processes encodings between a polymorphic session -calculus and a linear formulation of System F. We are then able to derive results of the session calculus from the theory of the -calculus: (1) we obtain a characterisation of inductive and coinductive session types via their algebraic representations in System F; and (2) we extend our results to account for value and process passing, entailing strong normalisation
    corecore