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Abstract

A longstanding open question in algorithms and data structures is
the time and space complexity of pure functional arrays. Imperative
arrays provide update and lookup operations that require constant
time in the RAM theoretical model, but it is conjectured that there
does not exist a RAM algorithm that achieves the same complexity
for functional arrays, unless restrictions are placed on the opera-
tions. The main result of this paper is an algorithm that does achieve
optimal unit time and space complexity for update and lookup on
functional arrays. This algorithm does not run on a RAM, but in-
stead it exploits the massive parallelism inherent in digital circuits.
The algorithm also provides unit time operations that support stor-
age management, as well as sparse and extensible arrays. The main
idea behind the algorithm is to replace a RAM memory by a tree
circuit that is more powerful than the RAM yet has the same asymp-
totic complexity in time (gate delays) and size (number of compo-
nents). The algorithm uses an array representation that allows ele-
ments to be shared between many arrays with only a small constant
factor penalty in space and time. This system exemplifies circuit
parallelism, which exploits very large numbers of transistors per
chip in order to speed up key algorithms. Extensible Sparse Func-
tional Arrays (ESFA) can be used with both functional and imper-
ative programming languages. The system comprises a set of algo-
rithms and a circuit specification, and it has been implemented on
a GPGPU with good performance.

Categories and Subject Descriptors E.1 [Data Structures]: Ar-
rays; D.1.1 [Programming Techniques]: Applicative (Functional)
programming; B.6.1 [Logic Design]: Parallel circuits; B.3.2
[Memory Structures]: Associative memories; F.1.2 [Modes of
Computation]: Parallelism and concurrency

General Terms Algorithms, Languages, Performance

Keywords functional array, sparse array, extensible array, func-
tional programming, circuit parallelism

1. Introduction

A longstanding problem in algorithms and data structures is the
complexity of operations on pure functional arrays. This question
has both theoretical and practical significance, because arrays are
fundamental to much software and the complexity of their opera-
tions affects the complexity of many algorithms.

[Copyright notice will appear here once ’preprint’ option is removed.]
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An imperative array supports two operations: fetching an array
element a[i] and modifying an array element a[i] := exp. Both
operations require O(1) time, according to common cost models,
and they do not require any space beyond the memory originally
allocated for the array. After an element of an imperative array is
modified the previous content of that element is destroyed.

A pure functional program defines new values but does not per-
form side effects, such as modifying an existing value. Thus a pure
functional array allows new arrays to be constructed but does not al-
low old ones to be changed. When a functional array is updated, the
result is a new array that differs from the old array at one index, but
the old array is still accessible. This paper generalises functional
arrays to handle sparse and extensible operations as well, and the
data structure is called ESFA (extensible sparse functional arrays).

Imperative arrays are trivial to implement, as they are based
on basic machine instructions and addressing modes. In contrast,
straightforward implementations of functional arrays are inefficient
in space or time, and the most efficient implementations are com-
plex and still asymptotically slower than imperative arrays.

Since unrestricted access to functional arrays is inefficient, there
has been relatively little exploration of algorithms that rely on
them. Nevertheless, functional arrays remain interesting in their
own right, and they do have practical applications (Sec. 8).

Functional arrays are not simply arrays used in a functional lan-
guage. Imperative and functional arrays are distinct data structures
that support different operations. Both data structures can be used
in both imperative and functional languages. The choice between
imperative and functional arrays should be based on the needs of
the algorithm using them, not on the programming language used
to express the algorithm.

This paper discusses the relationship between imperative and
functional arrays, and conjectures (in Sec. 6.1) that that it is impos-
sible to implement functional arrays with O(1) access time using
a Random Access Machine (a theoretical model of computation).
However, the main result of the paper is an algorithm that does in-
deed implement functional arrays with the same time complexity
as imperative arrays, using the same cost models. This result ap-
pears to contradict the conjecture—but the new algorithm runs on
a different model of computation which we call circuit parallelism.
The essential idea is that the RAM model—as well as conventional
computers—makes inefficient use of the digital logic components
that make up the memory. By redesigning the hardware as well as
the software we can sometimes beat lower bounds on algorithmic
complexity without increasing the complexity in circuit elements
or delay time.

Parts of the ESFA algorithm were presented in 1993 [10]. This
paper briefly reviews the earlier work, and goes on to make several
new contributions: operations and algorithms for memory manage-
ment, correctness proofs of key parts of the system, specification
of the hardware as well as software, an analysis of the complexity,
specification of the operations to support sparse and extensible ar-
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rays, a discussion of applications, and executable implementations
of the algorithm and a simulator for the hardware.

Every one of the ESFA operations takes a small fixed number
of clock cycles. No iteration is used in any of the operations; the
execution time is constant, and does not depend on the past history
of updates or deletions that led to the current state of the machine.
No restrictions are placed on the operations that can be performed
in order to achieve these perfectly tight time bounds. If an array
is deleted, the deletion takes a small fixed number of clock cycles
(like all ESFA operations), and it immediately identifies or recov-
ers every memory cell that is inaccessible, in constant time. This
constant time performance does not come at the cost of increased
hardware complexity: the clock speed of the hardware has the same
time complexity as the clock for an ordinary addressable memory,
and the hardware complexity in terms of number of logic gates and
flip flops is also the same. The complexity of ESFA operations is
discussed in more depth in Sec. 6.

The algorithm presented here uses circuit parallelism. This
approach originated in associative processors [6] and active data
structures [1]; other examples include priority queues [2], sys-
tems with chunks of memory organised as trees [15], smart memo-
ries for multicore processors [5], associative searching [9]. Circuit
parallelism is the target platform for compilation of a declarative
committed-choice rule language [16]. The idea is to bring the par-
allelism inherent in digital circuits to bear directly on the compu-
tations required by an algorithm, rather than organising the circuit
into conventional processors. In circuit parallelism, the computa-
tion is melded into the memory at the level of individual words,
allowing algorithms that perform a parallel computation within ev-
ery word in the memory; it differs from data parallelism, where an
operation performs a computation on every word of a data structure
(rather than every word in the machine). Current hardware trends
will make this approach increasingly productive, as the number of
transistors per chip continues to increase.

The algorithms presented here are fine grain and massively
parallel, and they require suitable hardware in order to be usable.
They do not run efficiently on a sequential computer that lacks
a hardware accelerator. The fastest platform for ESFA is a direct
VLSI implementation of the underlying parallel circuit, but an
FPGA or GPU chip could also be used (see Sec. 5.2).

The ESFA system has been implemented and tested in two
ways. First, it is implemented using a digital circuit that is specified
and simulated using the Hydra hardware description language [12].
The design has not been fabricated as a physical chip, but the
Hydra specification is precise down to the level of flip flops and
logic gates (it is “synthesizable”), and the simulation is accurate
in clock cycles and also in gate delays within a cycle. Second,
the system is implemented as a program, written in C+CUDA,
that runs on a general purpose GPU [4]. The GPU implementation
gives good performance, and there is extremely low variation in
execution time of the operations, making it especially valuable for
real time applications and a good platform for research. An FPGA
implementation would be faster, but the GPU program is far more
portable and can run on many consumer computers.

The software is available on the web [13], including the cir-
cuit simulator, the GPU program, a random test data generator,
and sample test data files. The programs have been tested using a
combination of small hand-written test cases, an SECD machine
interpreter that uses ESFA for the environment, and large scale
randomly-generated test data. The circuit simulator has run se-
quences of 725,000 operations, and the GPU has run tens of mil-
lions of operations, without error.

Section 2 introduces the operations on extensible sparse func-
tional arrays. Sec. 3 gives an overview of the algorithm, which con-
tains three layers. Sec. 4 presents the algorithms that comprise the
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empty :: AName
update :: AName — Idz — Val — Maybe AName
lookup :: AName — Idx — Maybe Val
mandef, mazdef :: AName — Maybe (Idz, Val)
nextdef , prevdef :: AName — Idz — Maybe (Idz, Val)
delete :: AName — StESFA ()

killZombie : StESFA (Maybe Val)

Table 1. ESFA operations

upper level of the implementation, and Sec. 5 describes the parallel
circuit that constitutes the lower level. Related work on arrays in
functional languages is described in Sec. 6, and the time and space
complexity of ESFA are analyzed. Sec. 7 discusses the implementa-
tion and performance of the system Sec. 8 describes some practical
applications, and Sec. 9 concludes.

2. Operations on ESF arrays

An array consists of a set of elements, each with an index of type
Idz and a value of type a which is determined by the user program.
All elements of all arrays in the ESFM must have the same type a,
which can be an algebraic data type defined by the user. As far
as the ESFM is concerned, an array element is just a word of bits;
typing issues are up to the programming language used for the main
program.

Table 1 lists the operations supported by the ESFM. The update
operation function takes an existing array, index, and value, and
returns a new array with the given value at that index. It returns
Nothing if the ESFM is full, or if the “existing” array does not
actually exist. Thus update a ¢ =z corresponds roughly to the
imperative notation a[i] := x, but there is a crucial difference:
update creates a new array without modifying the old one.

Array elements are accessed using lookup, which takes an array
and an index and returns the array element defined at that index, if
one exists. Thus lookup a ¢ corresponds to the imperative notation
ali].

The relationship between empty, update, and lookup is spec-
ified by two laws. For simplicity, these are written using the non-
monadic versions and error conditions are ignored.

Law 1. (Empty array)
lookup empty i = Nothing

Law 2. (Nonempty array)

lookup (update a (j,v)) i
|i=j7=Justv
| i # j = lookup a j

The first law says that an empty array contains no elements, and
the second one says that an update to an existing array a gives an
array that is identical to a except at index ¢, where it has the new
value v.

The programmer does not declare the size of an array or allocate
space for it, and an array of undefined elements cannot be allocated
all at once, as in Fortran. Instead, elements are added one by
one using update, and the system allocates space automatically as
needed. The programmer cannot modify an existing array; update
creates a completely new array and leaves the old array unchanged.
Every array is built incrementally through a sequence of updates,
starting ultimately from empty. For example, a3 is constructed
using three updates:
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al = update empty 1 101
a2 = update al 2 102
a3 = update a2 3 103

The values of the resulting arrays are:

al = {1~ 101}
a2 = {1~ 101,2 ~ 102}
a3 = {1~ 101,2~ 102,3 ~» 103}

This is an example of “single threaded” construction, where
there is a simple linear chain of updates. However, update is not
restricted just to extending the most recently created array. Any
array can be updated at any time, allowing for a tree-structured set
of relationships among arrays. Consider the following definitions,
with the previous definitions still in scope:

a4 = update a2 4 104
a5 = update al 5 105

The values of ¢l and a2 have never changed, and the results are:

aj = {1~101,2~ 102,4 ~ 104}
a5 {1~ 101,5 ~ 105}

If an update gives a new value to an index that has already been
defined, the old value is shadowed: it does not appear in the new
array but is still present in the old one.

ab = update a4 2 202

a6 = {1~ 101,2 ~ 202,4 ~~ 104}

These examples illustrate the chief characteristic of functional
arrays: update produces a new array, but does not change the old
one. They also show why implementation of the operations in O(1)
time and space is difficult: it is essential to share each element
among any number of arrays without using linked data structures
to find them.

An extensible array is one whose minimum and maximum
bound can be changed at any time. The update operation gives
extensibility for free, as there is no restriction on the value of
the index that is provided. For example, we could define a7 =
update 1000000 7. Naturally this can leave many indices where
no element is defined.

In a sparse array, many elements may have a default value (often
0). The representation should use memory only for the non-default
elements, saving space. Furthermore, there needs to be a way to
traverse the non-default elements without having to iterate over all
the indices. ESF arrays support sparse traversal using the mindef,
mazdef, nextdef and prevdef operations.

Suppose we wish to iterate over all the non-default elements of
an array, from the lowest to highest index. The starting point of the
iteration is determined using mindef to find the lowest index with
a non-default value, and the iteration repeatedly applies neztdef to
the current index to find the next one.

It is essential to be able to reclaim memory when ESFAs are
deleted. There are several ways to do this, depending on the nature
of the host program and programming language. The delete oper-
ation asserts that a given array will not be accessed again, so its
space should be reclaimed.

There are several other ESFA operations not discussed in this
paper. Some of them measure space utilisation and extract diagnos-
tic information. Others exploit the hardware’s capabilities to per-
form more general associative searching; for example, you can pro-
vide a value and find (in constant time) an index, if any, where that
value exists in a given array.
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3. Overview of the system

This section introduces the key issues and ideas behind the ESFA
algorithm—the “big picture”—and the details are given in subse-
quent sections.

A good introduction to the implementation problem is to con-
sider two naive algorithms.

e We implement update a i z by copying the array a into a
fresh region of contiguous words of memory, and storing the
value of z at location . All future lookups will take O(1) time,
as normally expected for imperative arrays. Unfortunately, the
update requires both time and space of O(n) where n is the

size of a. The equivalent of for i := 0 to n-1; x[i] :=
x[i+q] ; would require O(n?) time and allocate O(n?) words
of memory.

Since the previous approach is disastrous, we could focus
on making update efficient. Define an algebraic data type
data Arr a = Empty | Update Arr Idz a.Now the update
operation is simply an application of the constructor Update,
and it builds a tree of nodes. Lookup requires traversing the
tree, from an Update node back toward the root, until the in-
dex is found. This approach makes update take O(1) time and
space, and lookup requires time that depends on the shape of
the tree and the location of the index—potentially O(n) where
n is the size of the array.

Clearly the first approach—wholesale copying—is hopeless.
The second approach invites attempts to restructure the tree to
reduce the height and thereby make lookup faster, but that will
never produce O(1) time. Many sophisticated techniques have been
developed for making functional data structures more efficient [14].
Generally, a tree structure stored in the heap will give access time
proportional to the height of the tree.

The result in this paper is an algorithm with the same time and
circuit complexity as a conventional RAM memory—where every
ESFA operation takes O(1) time—with no variation in execution
time—and there are no restrictions on the usage of the operations.
The naive algorithms above suggest that sharing and searching are
the fundamental difficulties, and we now consider these issues more
deeply.

Functional arrays allow an arbitrary amount of sharing. If both
al and a2 are defined as updates to a, then every element of a
is shared among all three arrays. We begin by observing that an
element must be represented in the machine only once, no matter
how many arrays it belongs to. To achieve constant time access,
however, we cannot follow chains of pointers that link the elements
together.

An imperative array is really an address that can be used to
calculate the address of any element; we can think of an array as
“knowing” where its elements are. That won’t work for ESFA, be-
cause of the sharing. So consider a major change of perspective:
consider placing each element at an arbitrary location in the mem-
ory, and storing with each element the set of all arrays to which it
belongs. This is called the inclusion set (or iset) of the element. An
array is no longer represented by an address, but just by a natural
number called a code.

For this approach to be workable, we need to be able to represent
every inclusion set in a fixed amount of space, and also to determine
whether an arbitrary code ¢ belongs to an inclusion set. In general,
it is impossible to represent sets so efficiently, but all inclusion sets
are constructed by update. We can represent the inclusion set for
an element e by a pair (low, high) such that ¢ € iset e if and only
if low < ¢ < high.

Suppose we are updating an array with code c. It turns out that
the code of the resulting array has to be ¢ + 1, and that code is
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likely already to be in use. That means that the codes that are larger
than ¢ must be incremented, and also the (low, high) fields in many
of the cells need to be adjusted. The cost would be prohibitive on
a sequential computer, but by adding some logic gates to the flip
flops comprising a cell, this can be done in parallel in every cell in
unit time.

Since the array codes will be changing frequently, how can we
represent a pointer to an array? Each array has a stable array name,
which will never change, and the system contains a mapping from
array names to codes. When an array code needs to be changed, the
mapping is also adjusted so that every array name still refers to the
same set of elements, even if the code has changed.

Every update or delete operations can cause wholesale changes
to the representation, affecting an number of memory cells (possi-
bly even all of them). The parallelism of digital circuits is needed
to support this, so ESF arrays are implemented using ‘“hard-
ware/software codesign”, with three layers:

1. The lowest layer (Sec. 5.1) is a parallel machine: a “smart mem-
ory” consisting of a tree-structured digital circuit (or abstract
machine) that implements a basic machine operation called
sweep. The circuit is synchronous, with a fixed speed clock. A
sweep requires one clock cycle. The clock speed is determined
primarily by the gate delay in combinational logic within the
circuit. This gate delay is O(k) where k is the depth of the tree.
If the circuit is built with a balanced tree, then k£ = log n where
there are n memory cells, allowing for n array elements to be
stored. A conventional memory also has a logarithmic time gate
delay, because it needs to decode the memory address.

2. The middle layer (Sec. 5.3) uses the sweep operation to imple-
ment a family of combinators that execute in one clock cycle.
These include parallel maps, folds, and scans. It is also possible
to program directly with sweep, which is more powerful than
the standard scans.

3. The upper layer (Sec. 4) is software that defines the ESFA
operations using the middle layer combinators. Each operation
is defined as “straight line code” with no iteration of any kind.
In other words, every ESFA operation takes a fixed number of
clock cycles, typically 2 or 3.

ESF arrays are stored in a special circuit, the ESF machine
(ESFM), a “smart memory” that uses circuit parallelism to provide
a richer set of operations than a RAM (random access memory).
The ESFM is an attached device, analogous to a floating point
unit or a graphics processing unit, and is separate from the host
processor and memory. The user program runs in a host computer
with an ordinary processor and memory, and its only access to
the ESFM is through the operations described below. Some of the
operations change the state of the ESFM, while others only fetch
data without changing the state.

There are two Haskell interfaces to the operations: a pure func-
tional one and a monadic one that makes the ESFM machine state
explicit, whose details are not discussed here. It is not necessary to
use the monadic interface in Haskell, and the pure functional one
may be more convenient for some users’ applications. The system
contains several features that support an interface with a host sys-
tem, and some of these require the monadic interface; for details
see the web page [13].

Each ESF array has a unique array name with type AName,
which is represented internally as an Int. An AName is a stable
pointer [8] providing a permanent reference to the array. It is an
opaque reference: two names can be compared for equality, but the
main program cannot perform any other useful operations on array
names, such as address arithmetic. The system always has an array
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Field name Type  Purpose

celllD Nat array name (if mapDef)
select Bool  control associative operation
mark Bool  control associative operation
mapDef Bool  cellID is name of an array
code Nat code of array (if mapDef)
eltDef Bool  cell contains element
zombie Bool elt exists but is garbage

nfy Bool  notify (not delete) when inaccessible
low, high Nat inclusion set

rank Nat distance from empty

ind Word  array elt index

val Word  array elt value

Table 2. Fields of a machine cell

empty :: AName that contains no elements. This is unique and
indestructible: the programmer can neither create nor delete it.

4. Algorithms for the operations

In an imperative array, each array element must be stored at a
specific address that is calculated from the address of the array and
the index of the element. Thus the position of a word in the memory
determines the position of the contents of the word within an array.

The essential difficulty in implementing functional arrays is that
we need to maintain full sharing of array elements—otherwise the
cost in both space and time would be prohibitive—yet this means
that there is no simple relationship between the location of an
element in the memory and its location within all the arrays that
contain it.

Consequently, it is necessary to abandon the idea of using ma-
chine addresses to encode indices. Instead, a technique is developed
that decorates each memory location that contains an array element
with a representation of the set of arrays that contain the element.
This is called the inclusion set of the element. In general, arbitrary
sets cannot be represented in a small fixed amount of space. How-
ever, the inclusion sets that appear in the ESF memory are not ar-
bitrary: they satisfy some structural properties that are forced by
the fact that the memory state must be the result of a sequence of
update operations.

4.1 Representation

Each array is identified by a unique natural number called an array
code. An inclusion set can be represented by a pair of indices, low
and high, such that an array is in the inclusion set if and only if its
code lies between low and high. Every location in the array memory
contains several fields, including an element value, and index value,
an inclusion set, and a few more.

Suppose we are evaluating lookup a 4. The algorithm begins by
determining for each word in the memory whether a is a member
of the inclusion set for that word. This calculation is performed
in parallel in every word, and the result is used to set a mask bit
in each word where the inclusion set contains a; this defines a set
of words that might contain the right result; call these words the
“candidates”. We then compare the value of ¢ with the index field
in the candidates, and clear the mask where there is no match. It is
possible that several candidates remain; this happens if an array has
been calculated with several updates to the same index. The final
step uses the rank fields of the remaining candidates: the rank is the
number of updates, starting from empty, that created the element,
so the candidate with the highest rank is the correct result.

There are no loops in the lookup algorithm. The same is true
for update, delete, and all the other operations: each requires a
fixed number of steps. Each step performs a lot of work—a small
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0 1
*
(a) -1
[]=11
0 1 1 2
*
(b) 1-2 2-2
[]=11 2]=22
0 1 1 2 2 3
*
(© 1-3 2-3 3-3
[1]=11 [2] =22 [3]1 =33
0 1 1 2 2 3 3 4
*
(@) 1-4 2-4 3_4 4-4
[1]=11 [2]=22 [31=33 [4]=44
al(0) = update empty 111
= 0= 1~11
a2(1) = update al 222
= 1=1~11,2~22
a3(2) = update al 333
= 2= 111, 222, 3~ 33
a4(3) = update a3 444

= 3=>1~11,2~22 3~33, 4~ 44

Figure 1. Building an array by successive updates. The intermedi-
ate arrays are retained. Each box shows one ESFM cell. Consider
the bottom right cell in the figure. The notation “a4(3)” means that
array a4 has AName=3. The AName appears in the top left corner,
and the corresponding code (if any) is in the top right corner. Thus
the bottom right box shows that AName=3 currently has code=4.
The * indicates that select=True in this cell. The lo-hi interval 44
is below the flags, and the bottom row shows the index and value.
(a) The cell number O (upper left corner) is allocated; the cell num-
ber is the AName. The empty array is being updated, and its code is
0, so the code of al is 1 (upper right corner). (b) Cell 1 is allocated
so a2 has AName=1 and code=2 (1 + code of al). The inclusion
set of the new element is 2-2 which contains {a2}; the inclusion
set of the element in cell 0 is modified, so it now contains codes 1
and 2, representing {al, a2}. (c,d) Each update allocates a new cell
for the value of the element, and modifies the inclusion sets of the
other elements.

computation in each location—but these can all be performed in
parallel.

Each memory cell in the machine contains several fields and
flags (Table 2).

e The cellld field is an Int giving the address of the cell; this is
used as the name of an array if the update that creates the array
stores its element into this cell. As long as this array still exists,
the mapDef Boolean is True and the code for the array is held
in the code field. If the array is deleted, then mapDef will be
set to False, but if the element is shared by other arrays it will
not be deleted.

There are four Boolean flags that are used by some of the op-
erations to keep track of specific cells. Their usage is shown in
the algorithms for the operations; select is set in the active cell
(e.g. the cell that will hold a new element during update); mark
identifies a set of cells (e.g. candidates for lookup), eltDef indi-
cates that the cell contains an index/value, notify indicates that
if the element is deleted the host should be notified; zombie in-
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dicates that the cell contains garbage and can be deleted after
the host is notified.

e The inclusion set is represented by low and high (sometimes
abbreviated lo and hi).

o The element contains an index and value.

4.2 Implementation of update

Most of the operations, including lookup and the sparse array op-
erations, are relatively straightforward. However, the update algo-
rithm is delicate and non-obvious. An update not only modifies the
data structures related to the array being updated; it can potentially
modify every array and array element in the entire memory. This
section proves the correctness of update using a traditional infor-
mal mathematical style.

The update and delete operations are largely similar; they all do
local computations that involve arithmetic on integers that can be
performed in parallel on all the memory locations.

When an update is performed, the inclusion sets and array codes
need to be adjusted. Many of the memory locations will need to
modify one or more of their fields, but again these operations can
all be performed in parallel. It is also necessary to modify some
of the existing array codes (think of a memory allocation scheme
that moves data and has to note the changed addresses of objects
that have moved). Since the array codes change frequently, they are
useful only inside the ESF array memory. Consequently the system
maintains an association table between stable array names—which
never change—and the rapidly changing codes. This association
table is also maintained in the array memory. It requires two more
fields in each location, and all of the operations on name/code
translation are parallel.

Many of the operations need to find the code correspond-
ing to a given array name. This is performed by a function
encode :: AName — Maybe (Nat, Nat). Encode uses an asso-
ciative search to check the mapDef field of the cell whose cellld
matches the array name. If there is no match then encode returns
Nothing; otherwise it fetches the code and rank fields. The entire
operation requires a parallel fold (one clock cycle).

Another basic function allocates a free cell, by performing
an associative search for a cell where mapDef = False. (It is
straightforward to prove that such a cell cannot contain an ele-
ment.) This operation also requires a parallel fold, and takes one
clock cycle.

If an update cannot find the code for an array, or if it cannot
allocate a cell because the memory is full, an error indication is
returned. The algorithms below omit the error handling, but the
full algorithms on the web page [13] check and handle all error
conditions.

Algorithm update a ¢ v

1. The code for the array with AName = a, and the rank of the
corresponding element, are found by an associative search (1
clock cycle): (¢, r) + encode a.

2. A free cell is allocated (1 cycle); this sets the select flag in the
allocated cell. The name of the new array is the nm = cellld
of the new cell, and the code is ¢/ = ¢ + 1.

3. If the allocation failed (no free cell) Nothing is returned; other-
wise each cell is updated in parallel (1 clock cycle) as follows:

if select
then --this is the allocated cell
mapDef’ = True; code’ = ¢';
lo:=c';hi:=c;rank :=r+1;
ind :=i;val == v
else -- update existing cells
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0 3 1 2 2 1
*
3-3 2-2 -1
[1]1=11 [2] =22 [3]1 =33
al(0) = update empty 1 11
a2(1) = update empty 2 22
a3(2) = update empty 3 33

Figure 2. Creating arrays with no shared elements

lo' =if ¢ < lo then lo + 1 else lo
hi’ = if ¢ < hi then hi + 1 else hi
code’ = if ¢ < code

then code + 1

else code

4. The AName of the new array, Just nm, is returned.

4.3 Example of update

Several examples are helpful in following how the algorithm works.
We begin with a single threaded array, and then examine what
happens with more complicated update patterns. Fig. 1 shows a
simple sequence of updates. Each element is represented in exactly
one cell but it is included in every array which should contain
that element. Because of the single-threaded sequence of updates,
none of the array codes have changed, but more complex update
sequences require changes to some existing codes (see Figs. 2 and
3).

Fig. 2 shows the representation of separate arrays, where the
elements are not shared. Fig. 3 shows what happens when one of the
arrays in the previous figure is updated, resulting in some elements
that are shared and some that are not.

4.4 Correctness of update

An update can fail due to two possible conditions: (1) if the array
being updated does not exist (i.e. its name does not appear in the
array name/code map); (2) if the memory is full, so a new cell
cannot be allocated. These conditions could be handled by any
suitable technique, such as using the Maybe or Error monad, or
by raising an exception.

Definition of update. Consider update a i v where array a has
code c. Then the code of the new array is ¢’ = ¢ + 1. All existing
cells in the entire system memory are adjusted as follows. For a cell
that contains an element, the new values of the cell are:

e [0 =if ¢ < lo then lo + 1 else lo
e hi’ =if ¢ < hi then hi + 1 else hi

e ac’ =if ¢ < ac then ac + 1 else ac

Invariants. Immediate corollaries of the definition are that the
name and code of empty are always 0, and for every array element,
lo < ha.

Correctness conditions. It is necessary to show that the new array
and new element are correct, and also that all existing arrays and
elements remain correct.

Theorem: Correctness of update. The update algorithm locates
an empty cell. The cell id (address of the cell) is used as the name of
the new array (this is guaranteed to be a name that is not currently
in use). The code of the new array is ¢ + 1, where c is the code of
the original array that is being updated, and is stored in the cell.
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0 4 1 2 2 1
4-4 2-3 1-1
[1]=11 [2] =22 [3]=33
3 3
*
3-3
[4] = 44
a4(3) = update a2444

Figure 3. Both shared and unshared elements.

There are two ways to prove that all the arrays are represented
correctly after an update: we could consider each array and show
that it has exactly the right elements, or we could consider each
element and show that it is contained in exactly the right arrays.
This proof takes the second approach, focusing on the elements.

The following notation is useful: e refers to the array element
contained in a cell before the update, and e’ refers to the element
after the operation. Similarly, we use names like o to refer to the
value of the field in a cell before the update, and lo’ (with a prime)
to refer to the new value after the operation. Note that c, the code
of the array being updated, is a global value.

The AName/code map is adjusted: for any array with code d,
the array’s new code d’ = if d > c then d + 1 else d.

First we consider cells in the memory that contain existing data,
and show that after the update their contents remain correct. Then
we show that the new element that is allocated is correct.

There are five classes of cell. Consider an arbitrary cell; if it is
not empty, then it contains an element e with [o and hs.

e Empty: the cell contains no element, and is not allocated by the
update, so it remains empty and does not affect the representa-
tion of any array.

No change: lo’ = lo and hi’ = hi, so by definition lo < c and
hi < c. For ac € iset e, lo < ac < hi < ¢, s0 ac < ¢ hence
ac’ = ac. Therefore ac’ € iset ¢’ if and only if ac € iset e.
Shift: o’ = lo + 1 and hi’ = hi + 1,50 ¢ < lo and ¢ < hi.
For ac € iset e, ¢ < lo < ac < hi so ac’ = ac + 1. Since
lo < ac < hiifandonlyiflo4+1 < ac+1 < hi+ 1, we have
ac’ € iset ¢’ if and only if ac € iset e.

e Expand: lo’ = lo and hi’ = hi+1, so by definition lo < c and
¢ < hi. Unlike the other cases, the interval between lo and hi
has expanded. Then either ac’ = ac or ac’ = ac + 1. In either
case lo < ac’ < hi’. Therefore each array that was in iset e
remains in iset e’. Furthermore, the code for the new array
enters the inclusion set: this element belonged to the array that
was being updated, so it also belongs to the result of the update.

Allocate: the cell is empty, and is selected by update for allo-
cating the new element. Then lo’ = ¢’ = hi’, so iset e/ =

{'}.

Thus it has been shown that each element in the memory is included
in the right set of arrays. The dual of this is that the new array a’
contains the new element as well as the elements of the original
array a, and all other arrays remain unchanged. This completes the
proof.

4.5 Implementation of lookup

Algorithm lookup a i
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1. The code for the array with AName = a is found by an
associative search (1 clock cycle): ¢ < encode a.

2. The mark flag is set in each cell where ind = i A lo <
¢ A ¢ < hi. This is a parallel map taking 1 clock cy-
cle. The marked cells include the elements of the array, but
they also include shadowed elements. For example, if a =
update (update al 5 50) 5 60, both elements 5 ~~ 50 and
5 ~» 60 are marked.

3. The marked element with the highest rank fetched, using a
parallel fold (1 clock cycle); this is the correct value at the index
i.

The lookup algorithm is straightforward, using standard asso-
ciative searching. It uses the fact that if a2 = update al i v then
the rank of (4, v) element is greater than the ranks of the elements
of al.

4.6 Implementation of delete

Algorithm delete a

1. The code for the array with AName = a is found by an
associative search (1 clock cycle): ¢ <— encode a.

2. Each cell is updated in parallel (1 clock cycle) as follows:

mapDef’ = mapDef A cellld # a
code’ = if ¢ < code

then code — 1

else code
lo' = if ¢ < lo then lo — 1 else lo
hi’ = if ¢ < hi then hi — 1 else hi
eltDef’ = eltDef A (keep V delLater)
zombie’ = zombie V (eltDef A delLater)

where keep = eltDef A lo’ < hi’
delLater = eltDef N — keep A requestNotify

4.7 Example of delete

Fig. 4 shows how a sequence of deletions can leave all the array
elements undisturbed until a final deletion removes the last bit of
sharing; as a result many cells are reclaimed simultaneously.

4.8 Correctness of delete

We are deleting an array with AName = a and code = c. The
array name/code map is adjusted: for any array with code d, that
array’s new code d’ = if ¢ < d then d — 1 else d.

Consider an arbitrary cell. We show that if it contains an element
that is identified as inaccessible then its inclusion set is empty, and
otherwise its inclusion set is unchanged.

e Empty: the cell contains no element, and delete does not
change that status.

e No change: lo’ = lo and hi’ = hi. Then lo < c and hi < c.
Consider acode d in iset e,so lo < d < hi.Since d < hi<e,
then d’ = d,so lo’ < d’ < hi’, hence d’ in iset ¢’. Similarly,
if d’ in iset €', then d in iset e. Hence iset e’ = iset e.

Shift: lo’ = lo — 1 and hi’ = hi — 1. Then ¢ < lo and ¢ < hi.
If d in iset e,then lo < d < hiand c < dsod = d — 1.
Since lo < d < hiifflo —1 < d—1 < hi — 1, we have
iset e = iset €.

Shrink: lo’ = lo and hi’ = hi—1, and lo’ < hi’ so the element
e is not marked as inaccessible. Then lo < ¢ and ¢ < hi. The
interval from lo to hi has shrunk, so we need to verify that
the only element removed from the inclusion set is the array
with code c; i.e. we need to show that iset e = iset e’ U {c}.
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0 4 1 1 2 2 3 3
*
(a) 4-4 1-3 2-3 3.3
[1]=11 [21] = 201 [22] =202 [23] =203
0 3 1 2 1 3 2
*
(b) 3-3 1-2 1-2 2-2
[1]=11 [21] = 201 [22] =202 [23] =203
0 2 1 2 3 1
*
(c) 2.2 1-1 1-1 1-1
[1]1=11 [21] =201 [22] =202 [23] =203
0 1
(d) 1-1
[11=11

(a) Several arrays are created; b1-b3 share elements
al(0) = update empty 1 11

1~ 11
b1(1) = update empty 21 201
21 ~~ 201
b2(2) = update bl 22 202
21 ~ 201, 22~ 202
b3(3) = update b2 23 203
21 ~» 201, 22 ~+202, 23 ~203
(b) bl is deleted but its element remains
delete bl
(c) b2 is deleted; all elements remain
delete b2
(d) Deleting b3 removes sharing; all b elements are gone
delete b3

Figure 4. Deleting an array leaves shared elements intact.

Suppose d in iset e, so lo < d < hi. Suppose that d = ¢;
then this is the code of the array being deleted, and its AName
no longer exists and will not give a code of d. Suppose that
dZcIfd<cthend =dandlo’ < d < hi'.If c < d then
d’ = d — 1 and again lo’ < d’ < hi’. The conclusion is that an
array with code d is removed from the inclusion set if it is the
array being deleted, and otherwise it remains in the inclusion
set.

Inaccessible: lo’ = lo and hi’ = hi — 1, and hi’ < lo’
so the element e is marked as inaccessible (either reclaimed
immediately, or marked as a zombie for reclamation later). So
lo < ¢ < hi. Since hi’ < lo’, then lo = ¢ = hi. Suppose
d in iset e, then lo = d = hi, so d = c. Since d is the
only element of iset e, and d is being deleted, this element e’
is inaccessible.

4.9 Implementation of sparse operations

To find the element of an ESFA with the minimum (or maximum)
index, the elements are first marked, just as with lookup. A parallel
scan then locates the extremal index in one cycle. Similar tech-
niques are used to locate the next (previous) element in an array.

5. Parallel circuit

The hardware is an extremely fine grain parallel architecture; for
best performance, there should be one processing element for each
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location in the array memory. The processing elements are not full
scale processors; they need only the ability to perform comparisons
and increments on natural numbers, and a few bit level operations.
A processing element would contain on the order of 100 bits of
memory and a few hundred logic gates. The algorithm is suited for
implementation on a fine grain parallel system, such as a digital
circuit, an FPGA program, or a GPU.

5.1 Circuit structure and sweep

The foundation of the algorithm is a digital memory circuit with
a tree structure. This structure is similar to the organisation of a
standard random access memory; see Section 6 for a comparison.
Each leaf in the tree contains a state of type a, and the nodes
provide combinational logic functions but have no state. The state
of the entire machine is modeled by the type TreeMachine.

data TreeMachine a
= TMcell a
| TMnode (TreeMachine a) (TreeMachine a)

Each leaf cell is a circuit with one input and one output port,
which are connected to the parent node. A port is a set of signals
(wire) organised as a tuple of fields. A cell is a state machine with
type s — d — (s, u) where s is the type of the state, u is the type
of the output which goes up the tree, and d is the type of the input
which comes down from the tree.

Each node is a pure function implemented by combinational
logic gates. It receives three inputs coming down from the parent
and up from the two subtrees, and produces three outputs. The
type of the node function is d — v — u — (u, d, d). This is
a completely general type which allows for circularities, but the
specific node functions used in this paper are noncircular, so the
entire tree circuit is synchronous. This has several consequences:
there is no state or memory in the tree apart from the state in the
leaf cells, there is a fixed depth of combinational logic between flip
flops, and there is a fixed number of logic gates that must settle
down in each clock cycle.

At a clock tick, each flip flop updates its state by storing the
value of its input signal. As the logic gates settle down, information
flows from the cells up the tree to the root, which also receives an
input from the main processor, and information then flows back
down the trees to the cells, preparing for the next clock tick. This
general operation is called a sweep.

sweep
s(s = d— (s,u)) -- cell function
—(d = u—u— (u,d,d)) --node function
—d -- root input
— TreeMachine s -- state of tree circuit
— (TreeMachine s, u) -- (new state, root output)

A sweep causes each cell to apply a logic function to its state to
produce an output to send up; later this function also calculates the
new state using the current state and the incoming down message.
These two logic functions are combined in the single function cf.

sweep cf nf x (TMcell s) = (TMcell s',y)
where (s',y) =cf sz

Each node uses its nf function to calculate the value a’ to send
up, and the the values p’ and ¢’ to send down to the left and right
subtrees. Again, all these calculations are combined in one function
nf. An alternative way to define a general tree circuit is to separate
the cell and node functions into separate up and down functions,
and then to define separate upsweep and dnsweep functions.

sweep cf nf a (TMnode = y) = (TMnode ' y', a’)
where (a’,p",¢') = nf ap q
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(a',p) = sweep cf nf p' @
(y',q) = sweep cf nf ¢’y

5.2 Parallel circuit platforms

Any implementation of sweep can be used as a foundation for
the higher levels of the ESFA system. However, sweep requires
computation in every leaf cell and every tree node during every
clock cycle.

The tree machine is a synchronous circuit. This means that each
flip flop updates its state simultaneously at every clock tick. During
the time between clock ticks, the logic gates settle down to produce
stable outputs that do not change again for the rest of the clock
cycle (the period between ticks). The combinational logic gates
(stateless devices, such as the logical and?2 gate, that calculate pure
functions) can be partitioned into equivalence classes based on the
longest gate delay on any of their inputs. After d gate delays, all
the logic gates in the classes below d are stable, the gates in classes
above d do not have stable inputs so their outputs are immaterial,
and all the gates in class d perform a useful calculation in parallel.
The clock period must be slow enough for all the logic gates to
settle down to a stable value; this is the maximal gate delay through
the circuit, with an additional safety factor.

An alternative platform is an FPGA (field programmable gate
array). This is a hardware device consisting of an array of small
scale units (general logic functions, small memories, and the like)
along with a programmable interconnection network that can be
used to connect the small units to form a digital circuit. The ad-
vantage of an FPGA is that it is an off the shelf component; the
disadvantage is that it is considerably slower and less dense than a
custom VLSI chip.

In practice, the hardest part of using an FPGA is often interfac-
ing it with a host computer. This is not at all standardised, and it
requires a combination of communication software, device driver
software, and interfacing hardware that is laid out on the FPGA
chip itself. Some FPGAs are tightly coupled with a processor on
the same chip, but others require slower I/O connections.

An FPGA platform might benefit by tiling. The idea is that k
(where is a small number, such as 2) tree machine cells are mapped
onto one physical cell. Each sweep operation would require k
cycles to allow each physical cell to emulate its virtual ones. This
increases the size of the memory without requiring the extra tree
nodes and logic functions, with a commensurate slowdown.

GPGPU (general purpose graphical processing units) are a form
of fine grain multicore processor targeted at a restricted form of
data parallelism. Originally these devices were intended for graph-
ics algorithms, but they have found increasing usage for more gen-
eral data parallel computation, including circuit simulation. Cur-
rent GPGPU chips have many small processor cores (on the order
of 1000), and offer good performance for regular applications.

A GPU implementation of ESFA has been developed, and it
gives good performance with extremely small variance in execution
time. This is discussed in more detail in Section 7.3

It would also be possible to run the circuit simulator on a
conventional multicore system, but that is unlikely to give adequate
performance. A GPU, with a much larger number of processing
elements, is a much better host for ESFA.

5.3 Parallel map, fold and scan

The second level in the system uses the general tree circuit to
implement three key combinators: tmap, tfold, and tscanl. There
are other algorithms that use further combinators supported by the
general circuit, and it is sometimes more convenient to program
directly with sweep, but this set of combinators suffices for ESF
arrays.

2013/6/13



The tmap combinator maps a function f over the cells, which
define a sequence similar to a list. The nodes have no role other
than to fan out the signals. If map were the only operation to be
performed, there would be no need for a tree, but in a synchronous
circuit the clock speed is determined by the longest gate delay path.
This occurs in the tree when it is instantiated to perform scanl, so
the system would not run faster if tmap were implemented without
the tree sweep. Furthermore, it is common for the function f being
mapped to be specified as a partial application; in the digital circuit
this requires information to be broadcast to the cells, and the tree
does this efficiently.

tmap :: (s = s) — TreeMachine s — TreeMachine s

tmap f t = fst (sweep cf nf () t)
where ¢f s _ = (f s,())

nf apqg=1(0,0,0)

It is straightforward to configure the tree circuit to perform a
fold over a sequence of values that are extracted from the leaf cells
of the tree. The tfold! applies f to each cell to obtain a message
that moves up the tree; messages are combined using g, which
is usually chosen to be associative (although tfold! is defined
unambiguously even if g is not associative).

tfold1
(s = a) -- f: get msg from cell
— (a— a—a)  --g combine msgs
— TreeMachine s --initial state
—a -- result

tfoldl f g t = snd (sweep cf nf () t)
where ¢f s _ = (s,f s)
nfapqg=(9p4¢0,0)

The tree circuit can also be programmed to perform a parallel
scan. Again, there is a function f to obtain a message from a
cell, and an update function g to update the cell with an incoming
message. The h function is used to combine messages.

tscanl

(s = a) -- get singleton from cell
= (s—=a—s) -- update cell using singleton
—(a—a—a) -- h: function to be folded
—a -- initial accumulator
— TreeMachine s -- initial state

— (TreeMachine s, a) -- (new state, final foldl result)

The tscanl defines a communication pattern that begins with the
cells, transmits information up the tree, and then transmits further
information back down the tree. If h is associative, then tscanl
performs a scan-from-left over the cells of the tree; see [11] for a
correctness proof.

tscanl f g h a t = sweep cf nf at
where ¢f sa=(gsa,fs)
nfapqg=(hpqahap)

The combinators defined above specify the state explicitly, but
it is easier to use monadic versions that hide the state. In order to
make I/O convenient for experimenting with the simulator, the type
StateT (TreeMachine s) IO a is used.

5.4 Key operations

The most straightforward steps in the ESFA algorithms are parallel
maps (every cell does the same computation, perhaps using a global
value that is sent down the tree), and parallel folds (for example,
determining whether a cell exists with a certain property). A few
operations use a parallel scan to perform a calculation that uses
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information from all the cells, and identifies a specific cell to
receive special treatment. Two typical examples are:

® ¢ < encode (a) performs a parallel fold: the cell function
determines whether the cellld matches the array name a, and
the node function transmits the result up to the root.

e 1 <+ newCell uses a parallel scan; the cell function determines
whether a cell is available, and the associative function being
scanned picks the first one.

6. Complexity

If it can be proved that access to a functional array is single-
threaded, so that an array is never accessed again after it has been
updated, then the compiler can implement a functional array update
by overwriting the old array element, achieving the efficiency of
imperative arrays. This approach can be supported using compiler
analysis, the type system, or monads [7]. It works well for algo-
rithms that were designed in the first place for imperative arrays,
but it does not help when the flexibility of pure functional arrays is
needed. This approach has been developed quite far, with efficient
array accesses for parallel processors [3]. However, our concern is
with general functional arrays where there is no restriction on the
usage of the operations.

6.1 Functional arrays and the Random access machine

In talking about the complexity of algorithms, it is essential to
be clear about what machine model we are using. The Random
Access Machine is a theoretical model that corresponds closely
to standard von Neumann computer architectures. The Random
Access Machine has a Random Access Memory, which allows any
memory location to be accessed in O(1) time, regardless of the
address. This differs from a Turing Machine, which takes account
of locality and makes it more expensive to access distant locations.

Conjecture There does not exist an implementation of functional
arrays such that every operation always takes O(1) time and space
on a Random Access Machine.

The conjecture is simply saying that the performance of impera-
tive arrays cannot be attained by functional arrays, without placing
restrictions on how the arrays are used.

In complexity theory, it is common to consider the costs of
operations using unbounded memory size and unbounded word
size. In real computer systems, there is a fixed word size k and
memory size limited by 2. We can still analyze the complexity
of an algorithm running in a bounded system; the algorithm will
fail if it exceeds the bounds. In an unbounded system, many of
the complexity measures have an additional factor of log(log IV)
because the index size grows as the memory grows. In this section,
we will consider machines of bounded size, but the essential result
(unit time ESFA operations with the same circuit size and delay as
for RAM) remains valid for the unbounded case as well.

6.2 Circuit parallelism

The ESFA system presented in this paper uses its massively parallel
digital circuit to do exactly what the conjecture says is impossible
on a RAM architecture.

The time required by a computer system to perform a computa-
tion is k x p, where k is the number of clock cycles required and p
is the clock period (the reciprocal of the clock speed). It is straight-
forward to find k. In calculating p it is essential to state clearly
what cost model for the circuit is being used. It is a fallacy to say
that each instruction in a RAM takes O(1) time but the ESFM has
a tree circuit so its clock period is O(log ), and then to use these
figures to compare their speeds.
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cost model RAM ESFM
unit time cycle o(1) o(1)
gate delay O(logn) O(logn)

O(vn)  O(Vn)

propagation delay

Table 3. Comparison of cycle time for RAM and ESFM. In the
gate delay model, the RAM needs a tree of multiplexers with delay
O(logn) to decode addresses; the ESFM uses a tree of slightly
more complex circuits to perform the folds, and the delay is also
O(logn). The point is that the basic operations provided by the
ESFM circuit are far more powerful than those provided by RAM,
yet ESFM does not require asymptotically more hardware and does
not take asymptotically more time.

Consider the number of clock cycles for update and lookup.
The ESFM performs every update in a fixed number of clock cy-
cles (3 cycles, with the current implementation), and every lookup
in a fixed number of cycles. Those cycle counts do not depend on
the past history of operations and they do not assume any restric-
tion on the usage of arrays. Furthermore, every one of the oper-
ations defined in Sec. 2 takes a constant number of clock cycles
(and the constant is small, typically 2 or 3 cycles). Memory usage
is also optimal: each update allocates exactly one cell and there is
never any loss of sharing. Each delete identifies every cell that is
inaccessible, in constant time.

Does the ESFM achieve its optimal cycle count at the expense
of an asymptotically longer clock period, or at the expense of an
asymptotically larger circuit? Table 3 shows that it does not, and
Table 4 shows why.

The ESFM contains O(n) flip flops and O(n) logic gates for a
system with n cells. There are many technologies for implementing
a random access memory, and some do not use flip flops or logic
gates, but equivalent devices are used. A RAM contains O(n) “flip
flop equivalents” and O(n) “logic gate equivalents”, so its size is
asymptotically the same as the ESFM.

The clock period must be expressed according to a cost model
that defines what aspects of the hardware are being considered, and
what aspects are abstracted away. Some reasonable cost models
include:

e Unit time cycle. Assume that each clock cycle is one unit of
time. This model is commonly used in analysis of algorithms:
the average case time for Quicksort is O(n X logn) assuming
the unit time cycle model.

Gate delay. Find the critical path in the circuit and measure its
gate delay, and multiply by a safety factor slightly more than
1. The RAM needs to decode the memory address, which re-
quires a gate delay of O(logn). The ESFM has a gate delay
proportional to the height of the tree, which is also O(logn).
A subtle point is that lookup requires a comparison of two
ranks in each tree node; this would appear to require gate delay
of O(logn x log n) with ripple comparitors or O(log(logn))
with fast comparitors. However, ESFA uses a pipelined combi-
national circuit that requires only O(log n) gate delay.

Propagation delay. Storage elements take physical space, and
accessing them requires signals to travel a distance O(+/n) for
a memory of size n. RAM and ESFM both have a propagation
delay of O(y/n).

Table 3 compares the time complexity of a clock cycle for
ESFM and RAM. The choice of cost model depends on what
aspects of a system seem most important. For small circuits the
gate delay dominates the cycle time, and the gate delay model,
which ignores the lengths of wires, is reasonable. For large circuits,
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useful calculations
o(1)
O(n)

logic gate calculations
O(n)
O(n)

RAM
ESFM

Table 4. Usage of calculations in RAM and ESFM.

the wire length dominates. The important point is that comparisons
should use the same cost model.

It is not the case that ESFM performs as well as RAM according
to every cost model. For example, it is likely to require asymptoti-
cally more power per access than a RAM.

Why does ESFM achieve the same time complexity as imper-
ative arrays, while (it is conjectured) a RAM cannot? The answer
lies in the address decoder in a RAM. This is a tree of multiplexers;
each level in the tree uses one bit of the address to select which
subtree contains the memory word being addressed. The tree has a
gate delay of O(logn) and it contains O(n) logic gates, and all it
does is to select one word based on an address even though every
flip flop and every logic gate in the tree performs a calculation. In
other words, the RAM performs O(n) logic gate calculations in a
clock cycle in order to perform O(1) useful work. The ESFM also
performs O(n) logic gate calculations, but it uses all of these to
calculate new values in every cell in the entire machine (Table 4).

7. Implementation, testing, and performance

The ESFA algorithm has been implemented in several ways. There
is an executable specification in Haskell, which uses the semantic
laws (Section 2) to implement the operations; there are circuit
specifications at several levels of abstraction; and there is a parallel
GPU implementation. The source code (simulators and parallel
GPU program), documentation, and test data are available on the
web [13].

7.1 Circuit specification

The system has been defined as a high level circuit specification,
which models the machine at the level of communicating black box
circuits, a commonly used level of abstraction in computer archi-
tecture research. There is also a synthesizable circuit specification
which spans all the levels from register-transfer level to logic gates
and flip flops, using the Hydra hardware description language. The
circuit specifications are executable, and the system runs on the
simulated circuits. Simulating a large circuit on a sequential com-
puter is, naturally, slow, but it suffices for testing.

7.2 Testing

Testing has been done using hand-written test cases, which are
necessarily small. The system has also been tested by using it to
support some application programs.

The most robust testing is performed using a custom random
test case generator. An earlier version of the ESFA software used
QuickCheck, but this has been replaced by a flexible test generator
that examines the state of the ESFA machine at each step, in order
to generate high quality test data. The reason for this is that truly
random test data is not very useful. For example, a randomly gen-
erated array name is likely not to exist, and a randomly generated
index within an array is likely to be undefined. Therefore random
operations are likely to return Nothing too often. The custom test
generator analyzes the state of the machine to adjust the probabili-
ties for the choice of operation and the operands.

There is a test generator that generates a test suite and saves it
to a file; this is used for testing the GPU program described below.
As the generator runs, it uses the state of the machine to select
useful operations to perform (in order to avoid too many “Nothing”
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k N updates  lookups deletions
4 16 17,541 14,818 17,641
13 8196 18452 14,713 16,835

Table 5. ESFA machine size and number of operations performed
in a test run with 50,000 randomly generated operations with ran-
domly generated (but meaningful) operands. The N column is the
number of cells, and k = log N. The experiment was run for
4 < k < 13 but only figures for the the smallest and largest cases
are shown.

results). The generator uses the semantic specification to calculate
the correct-by-definition result, and it uses the circuit simulator
to calculate what the machine will actually do. These results are
compared. Furthermore, after every operation the software analyzes
the entire state of the circuit and extracts the entire set of arrays
(with all their elements), and compares this with the entire set of
arrays according to the semantics. This ensures that a situation
cannot arise where the machine state is wrong but a lookup that
would expose the error happens not to be generated.

Testing via the simulator has been carried out for many sets of
random test data, with machine sizes ranging from 16 cells to 64k
cells, and with sequences of up to 100,000 operations.

7.3 GPU program

The ESFA algorithm has been implemented in C+CUDA and tested
on an NVidia GeForce GTX 590 GPU, which has 512 CUDA
Cores. The program is organised as a dialogue between the CPU,
which issues ESFA operation requests, and the GPU kernel, which
executes the requests and returns the results. The GPU kernel uses
persistent shared memory to hold an array of ESF cells.

Well over 25 million ESFA operations have been executed with-
out error on the GPU; the result of every operation was checked
by comparing it with the result of an executable specification. The
experiments show that the algorithm runs correctly on a parallel
system. Furthermore, each experimental run was long enough to
test the automatic memory management thoroughly. Table 5 shows
that every test run executed far more updates than there are cells
in the machine; most of these updates reused cells that had been
reclaimed by delete operations.

Table 6 summarises the performance of the algorithm. The total
execution time (the 7" column) grows slowly as a function of k,
the log of the number NV of cells. The execution is most efficient
at the largest size. The measurements are highly repeatable with
low variance. The times were measured by starting a CPU clock,
running the entire test suite of 50,000 operations to completion,
and then stopping the clock. The timing measurements include the
overheads of communicating between the CPU and GPU, as well
as the time for memory management.

Consider an ESFA machine with 8K cells. An efficient sequen-
tial algorithm (not a simulator) using a tree structure may require
an average of 13 RAM accesses to perform an ESFA operation,
with additional overhead for loop control. With fast memory hard-
ware, this would amount to around 0.1 to 1 microsecond. However,
if an array is long—say 5000 elements—and the tree is not bal-
anced, the access would require 50 to 500 microseconds. For com-
parison, ESFA running on the GPU requires 300 microseconds. It
is possible to rebalance the trees periodically, but that introduces
further overhead, requires more storage, and increases the variance
in execution time. The ESFA algorithm always requires a time of
300 microseconds, without any extra overheads, making it valuable
for real time applications where each operation must be completed
within a deadline.
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k N T(ms)  stdv d t(us/op)
4 16 5,071.1 323 104.0 101.4
5 32 5,374.3 309  99.9 107.5
6 64 5,606.1 259 117.1 112.1
7 128 6,447.8 260 123.7 128.9
8 256 7,946.3 327 122.8 158.9
9 512 7,994.0 140 65.7 159.9
10 1,024 84262 25.1 101.0 168.5
11 2,048 12,1440 359 1250 242.9
12 4,096 13,4244 335 106.5 268.5
13 8,192 15,037.2 447 183.1 300.7

Table 6. ESFA performance on GPU. Each line shows the config-
uration (k = tree depth, N = number of cells) and the total time 7 in
milliseconds for a run consisting of 50,000 randomly-generated op-
erations including a mix of updates, lookups, and deletes. For each
configuration, the execution was repeated 25 times, and the result
of every operation was compared with the result calculated by an
executable specification. Thus 10 x 25 x 50,000 = 12, 500, 000
ESFA operations were performed without error. The stdv column is
the standard deviation of T; d = max-min of T. The ¢ column gives
the time in microseconds per ESFA operation. The system used is
running CUDA version 4 on an NVidia GeForce GTX 590, with
512 CUDA cores (16 multiprocessors with 32 cores per mp), and a
1.22 GHz clock speed, with CUDA capability 2.0.

The fastest way to implement ESFA would be a custom VLSI
design, and an FPGA would give an efficient emulation of the cir-
cuit. A GPU has a level of granularity that is intermediate between
a multicore and an FPGA. The GPU implementation already gives
excellent performance for applications where low variance of op-
eration time is important, and it is poised to benefit from newer
generations with more parallel processing cores. Another advan-
tage of the GPU is that the code is far more portable than an FPGA
would be.

8. Applications

Most algorithms have been developed for languages that provide
imperative arrays. These algorithms use single-threaded access to
arrays, and there is no particular advantage in replacing them with
ESFA. The most promising applications for ESFA make essential
use of sharing with multi-threaded access and/or sparse traversal
and searching.

Functional arrays provide a flexible undo/redo facility. Suppose
a program records transactions by updating an ESFA, keeping the
most recent array as the current state. The program can revert to any
previous state simply by accessing the corresponding state; there is
no need to rebuild any data structures.

ESFA can represent the environment in a lambda calculus re-
ducer. Each variable is represented by a unique integer, each envi-
ronment is an ESFA, and the initial environment is empty. Obtain-
ing the value of a variable is performed by a lookup, while extend-
ing the environment for a beta reduction requires an update:

eval (Var x) env = lookup env x
eval (App (Az — el) e2) env =
eval el (update env = e2)

An SECD machine has been developed using this method, and has
been used to test the ESFA system running on a simulated circuit.
Programming language implementations sometimes use com-
plex data structures to represent the evaluation stack as well as
variable environments. Sometimes this can be inefficient: a dynam-
ically bound variable may require a list traversal to find its value,
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while an ESFA could obtain the value in one operation. Constraint
solving algorithms use backtracking or coroutines to explore sev-
eral alternative paths, and functional arrays may prove useful for
representing the constraint sets.

The GPU implementation is fast enough to support productive
experimentation with algorithms using ESF arrays.

9. Conclusion

This paper conjectures that a standard computer based on the RAM
memory cannot implement functional array operations in constant
time, unless the program makes restricted use of the operations.

Despite this conjecture, the paper gives the design of a digital
circuit implementing a smart memory and a set of algorithms that
use that memory to achieve the goal: functional array lookup and
update, as well as several other operations supporting extensible
and sparse arrays, can all be implemented in unit time. Each op-
eration requires a small constant number of steps, and there is no
restriction on the past history of updates. A lookup or update al-
ways takes exactly the same time, regardless of how much sharing
there is among all the existing arrays.

The algorithms are implemented in Haskell, and the circuit is
specified using Hydra, a hardware description language embedded
in Haskell. There is a parallel GPU implementation that gives good
performance, and the algorithm also runs on the simulated circuit.

The implementation of ESFA relies on a fine grain data parallel
host to hold the array memory. Each operation involves a small
amount of calculation in every location in the entire memory. The
system performs a lot of extra work—a small amount of arithmetic
in every location—and then mitigates the extra work with massive
parallelism—ideally, a processing element in every location.

However, there is a more insightful way to think of the algo-
rithm. Consider a sequential program running on standard hard-
ware, with a RAM memory. Programmers think of the RAM as
just doing a little work on the word that is accessed (if they think
of the RAM at all). However, a RAM is a digital circuit that actu-
ally has to perform an enormous amount of work on every access
(not exactly a computation on every location, but that is a fair intu-
ition). We think of the RAM as performing a small amount of work
because most of its work is wasted and not worth thinking about.
The ESFM does more work than the RAM, but only by a constant
factor, and it uses this work to enable it to support a useful data
structure more efficiently than a RAM can.

ESF arrays are not just a theoretical novelty. Although the
fastest host for the ESFM would be an application specific inte-
grated circuit (ASIC), which has not been implemented, the current
GPU implementation is fast enough for many applications, and is
easily portable, supporting future research in purely functional data
structures.
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