284 research outputs found

    Decremental Single-Source Reachability in Planar Digraphs

    Full text link
    In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn)O(n\log^2{n}\log\log{n}) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2nloglogn)O(\log^2 n \log \log n), which improves upon a previously known O(n)O(\sqrt{n}) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs

    Structural liveness of petri nets is ExpSpace-hard and decidable

    Get PDF
    Place/transition Petri nets are a standard model for a class of distributed systems whose reachability spaces might be infinite. One of well-studied topics is verification of safety and liveness properties in this model; despite an extensive research effort, some basic problems remain open, which is exemplified by the complexity status of the reachability problem that is still not fully clarified. The liveness problems are known to be closely related to the reachability problem, and various structural properties of nets that are related to liveness have been studied. Somewhat surprisingly, the decidability status of the problem of determining whether a net is structurally live, i.e. whether there is an initial marking for which it is live, remained open for some time; e.g. Best and Esparza (Inf Process Lett 116(6):423–427, 2016. https://doi.org/10.1016/j.ipl.2016.01.011) emphasize this open question. Here we show that the structural liveness problem for Petri nets is ExpSpace-hard and decidable. In particular, given a net N and a semilinear set S, it is decidable whether there is an initial marking of N for which the reachability set is included in S; this is based on results by Leroux (28th annual ACM/IEEE symposium on logic in computer science, LICS 2013, New Orleans, LA, USA, June 25–28, 2013, IEEE Computer Society, pp 23–32, 2013. https://doi.org/10.1109/LICS.2013.7)

    On Petri Nets with Hierarchical Special Arcs

    Get PDF
    We investigate the decidability of termination, reachability, coverability and deadlock-freeness of Petri nets endowed with a hierarchy of places, and with inhibitor arcs, reset arcs and transfer arcs that respect this hierarchy. We also investigate what happens when we have a mix of these special arcs, some of which respect the hierarchy, while others do not. We settle the decidability status of the above four problems for all combinations of hierarchy, inhibitor, reset and transfer arcs, except the termination problem for two combinations. For both these combinations, we show that deciding termination is as hard as deciding the positivity problem on linear recurrence sequences -- a long-standing open problem

    Faculty Publications & Presentations, 2005-2006

    Get PDF

    Engineering Art Galleries

    Full text link
    The Art Gallery Problem is one of the most well-known problems in Computational Geometry, with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes

    Fifth Biennial Report : June 1999 - August 2001

    No full text

    Clemson Newsletter, 1969-1971

    Get PDF
    Information for the faculty and staff of Clemson Universityhttps://tigerprints.clemson.edu/clemson_newsletter/1004/thumbnail.jp

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Eight Biennial Report : April 2005 – March 2007

    No full text
    corecore