864 research outputs found

    In Pursuit of a Good Glass and Good Company

    Get PDF
    While glass appears rather homogeneous compared to ceramics and pipes, these small bits of amorphous solid silica can still reveal hidden information when aspects of their chemical composition are tested using a means as simple as short-wave UV light or as complex as X-Ray Fluorescence. Using short-wave UV light and a comparative approach, this thesis reevaluates archaeological table glass collections from Southern Maryland and the Northern Neck of Virginia dating from the mid-17th century to the early 18th century to find evidence for the presence and absence of English lead glass (flint glass). Using these data, the patterns in access, acquisition, and use of glass tableware in this Chesapeake region show a steep difference in the occurrence of lead glass in assemblages before and after the turn of the 18th century. Before 1700, lead glass at these sites tends to comprise less than half the tableware assemblages, yet on sites with occupations extending into the 18th century, more than three quarters of the glassware contains lead. Some inhabitants of this region may have begun consuming English lead glass by the 1680s, primarily in the form of drinking glasses and other beverage related tableware. By the 1690s, lead glass was taking over table space, and by 1700, it was the dominant type of glass tableware

    Conditional Lower Bounds for Dynamic Geometric Measure Problems

    Get PDF

    Tailoring r-index for Document Listing Towards Metagenomics Applications

    Get PDF
    A basic problem in metagenomics is to assign a sequenced read to the correct species in the reference collection. In typical applications in genomic epidemiology and viral metagenomics the reference collection consists of a set of species with each species represented by its highly similar strains. It has been recently shown that accurate read assignment can be achieved with k-mer hashing-based pseudoalignment: a read is assigned to species A if each of its k-mer hits to a reference collection is located only on strains of A. We study the underlying primitives required in pseudoalignment and related tasks. We propose three space-efficient solutions building upon the document listing with frequencies problem. All the solutions use an r-index (Gagie et al., SODA 2018) as an underlying index structure for the text obtained as concatenation of the set of species, as well as for each species. Given t species whose concatenation length is n, and whose Burrows-Wheeler transform contains r runs, our first solution, based on a grammar-compressed document array with precomputed queries at non terminal symbols, reports the frequencies for the distinct documents in which the pattern of length m occurs in time. Our second solution is also based on a grammar-compressed document array, but enhanced with bitvectors and reports the frequencies in time, over a machine with wordsize w. Our third solution, based on the interleaved LCP array, answers the same query in time. We implemented our solutions and tested them on real-world and synthetic datasets. The results show that all the solutions are fast on highly-repetitive data, and the size overhead introduced by the indexes are comparable with the size of the r-index.Peer reviewe

    UFSS 2020 Program Book

    Get PDF
    The 2020 Urban Food Systems Symposium (UFSS) Nourishing Cities in a Changing Climate was held to bring together a national and international audience of academic and research-oriented professionals to share and gain knowledge on urban food systems and the role they play in a changing climate. The symposium included knowledge on: urban agricultural production, local food systems distribution, urban farmer education, urban agriculture policy, planning and development, food access and justice, and food sovereignty. The program book provides the full program of plenary talks, concurrent oral and poster sessions,for the 2020 UFSS

    On Complexity of 1-Center in Various Metrics

    Get PDF
    We consider the classic 1-center problem: Given a set P of n points in a metric space find the point in P that minimizes the maximum distance to the other points of P. We study the complexity of this problem in d-dimensional p\ell_p-metrics and in edit and Ulam metrics over strings of length d. Our results for the 1-center problem may be classified based on d as follows. \bullet Small d: We provide the first linear-time algorithm for 1-center problem in fixed-dimensional 1\ell_1 metrics. On the other hand, assuming the hitting set conjecture (HSC), we show that when d=ω(logn)d=\omega(\log n), no subquadratic algorithm can solve 1-center problem in any of the p\ell_p-metrics, or in edit or Ulam metrics. \bullet Large d. When d=Ω(n)d=\Omega(n), we extend our conditional lower bound to rule out sub quartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a (1+ϵ)(1+\epsilon)-approximation for 1-center in Ulam metric with running time Oϵ~(nd+n2d)\tilde{O_{\epsilon}}(nd+n^2\sqrt{d}). We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension d, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of n strings each of length n, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set

    How Fast Can We Play Tetris Greedily With Rectangular Pieces?

    Get PDF
    Consider a variant of Tetris played on a board of width ww and infinite height, where the pieces are axis-aligned rectangles of arbitrary integer dimensions, the pieces can only be moved before letting them drop, and a row does not disappear once it is full. Suppose we want to follow a greedy strategy: let each rectangle fall where it will end up the lowest given the current state of the board. To do so, we want a data structure which can always suggest a greedy move. In other words, we want a data structure which maintains a set of O(n)O(n) rectangles, supports queries which return where to drop the rectangle, and updates which insert a rectangle dropped at a certain position and return the height of the highest point in the updated set of rectangles. We show via a reduction to the Multiphase problem [P\u{a}tra\c{s}cu, 2010] that on a board of width w=Θ(n)w=\Theta(n), if the OMv conjecture [Henzinger et al., 2015] is true, then both operations cannot be supported in time O(n1/2ϵ)O(n^{1/2-\epsilon}) simultaneously. The reduction also implies polynomial bounds from the 3-SUM conjecture and the APSP conjecture. On the other hand, we show that there is a data structure supporting both operations in O(n1/2log3/2n)O(n^{1/2}\log^{3/2}n) time on boards of width nO(1)n^{O(1)}, matching the lower bound up to a no(1)n^{o(1)} factor.Comment: Correction of typos and other minor correction
    corecore