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Abstract. A basic problem in metagenomics is to assign a sequenced
read to the correct species in the reference collection. In typical appli-
cations in genomic epidemiology and viral metagenomics the reference
collection consists of a set of species with each species represented by
its highly similar strains. It has been recently shown that accurate read
assignment can be achieved with k-mer hashing-based pseudoalignment :
a read is assigned to species A if each of its k-mer hits to a reference
collection is located only on strains of A. We study the underlying prim-
itives required in pseudoalignment and related tasks. We propose three
space-efficient solutions building upon the document listing with frequen-
cies problem. All the solutions use an r-index (Gagie et al., SODA 2018)
as an underlying index structure for the text obtained as concatenation
of the set of species, as well as for each species. Given t species whose con-
catenation length is n, and whose Burrows-Wheeler transform contains r
runs, our first solution, based on a grammar-compressed document array
with precomputed queries at non terminal symbols, reports the frequen-
cies for the ndoc distinct documents in which the pattern of length m
occurs in O(m + log(n)ndoc) time. Our second solution is also based on
a grammar-compressed document array, but enhanced with bitvectors
and reports the frequencies in O(m+ ((t/w) logn+ log(n/r))ndoc) time,
over a machine with wordsize w. Our third solution, based on the in-
terleaved LCP array, answers the same query in O(m + log(n/r)ndoc)
time. We implemented our solutions and tested them on real-world and
synthetic datasets. The results show that all the solutions are fast on
highly-repetitive data, and the size overhead introduced by the indexes
are comparable with the size of the r-index.

Keywords: Metagenomics · r-index · document listing.
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1 Introduction

Metagenomics is the study of genomic material recovered directly from envi-
ronmental samples. Thus, conversely to genomic samples, metagenomic samples
consist of genome sequences of a community of organisms sharing the same en-
vironment, highlighting the microbial diversity in the environmental samples.
The samples of genome sequences are collected using shotgun sequencing. This
creates a mixture of genome fragments from all organisms in the environment.
One important step in metagenomics is to assign each fragment to its owner,
allowing to identify and quantify species. This step is called read assignment
[19], and it is the basic step in most metagenomic analysis workflows such as in
genomic epidemiology [25], and viral epidemiology [6].

Read assigners were first implemented using computationally expensive read
aligners [19,38,23]. In [37] the authors showed that similar results are achieved re-
placing the read aligners with the computationally less expensive k-mer hashing
methods. Read assigners based on k-mer set indexing are referred to as pseu-
doaligners. Efficient indexing of k-mer sets, including colored de Bruijn graphs
[20], has been deeply investigated and we refer the reader to the survey [27]
for further reading. Pseudoaligners such as Kallisto [4], MetaKallisto [34], and
Themisto [25] use colored de Bruijn graphs and are based on the following pseu-
doalignment criterion. Given a set of references T1, . . . , Tt (representing t distinct
species), and read P , the read P is pseudoaligned with Ti if there exists a k-mer
of P that occurs in Ti and for all other k-mers u of P , either u occurs in Ti or
u does not occur in T1, . . . , Tt. This approach is motivated by the fact that the
species are usually quite dissimilar, but the strains inside the species are highly
similar.

In this paper, we study some basic primitives that are required in different
variations of the pseudoalignment criteria. We argue that the specific criterion
given above is just one example of a family of criteria, and it is important to study
the general framework rather than tailoring the methods to a very narrow setting.
Towards this goal of obtaining general results, instead of studying directly k-mers
of a pattern, we focus here on searching the complete pattern. We continue the
discussion in Sect. 6 on how to integrate the results with k-mer based criteria.

We modelled this read assignment problem as a document listing with fre-
quencies problem, where the set of species is a collection and each species is a
document formed by the concatenation of its strains. Given a pattern P we want
to report all documents where P occurs, and their frequencies. This problem was
first introduced in [35] and further refined in [3] and [15] (details in Sect. 3). We
propose three solutions. All solutions use an r-index [14] as text index for the
concatenation of all documents. The first solution is an extension to frequencies
of the solution proposed in [9] in which a grammar-compressed document array
is used, and for each non terminal node, precomputed answers are stored. The
second and the third solution are based on the term frequency approach pre-
sented in [33] which uses an additional index for all documents. The key idea
is to find the leftmost and rightmost occurrence of the pattern P in the index
of each document, by searching the pattern in the index of the concatenation
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of all documents. To do this, the second solution uses the grammar-compressed
document array of [9] enhanced with bitvectors at non terminal nodes marking
which descendant contains the leftmost and rightmost occurrence of the pattern
in each document. The third solution relies on a modified version of the inter-
leaved longest common prefix array [13]. We implemented our solutions and we
tested them using real-world and synthetic datasets.

2 Basics

A string S[1..n] is a sequence of n characters over an alphabet Σ of size σ = |Σ|.
A document T is a string terminated by a special symbol $ /∈ Σ that is lexico-
graphically smaller than all characters in Σ. A collection D = {T1, T2, . . . , Tt}
is a set of t documents, which is usually represented as the concatenation of its
documents, i.e. D[1..n] = T1T2 · · ·Tt. When it is clear from the context, we will
refer to Ti as document i. Given a string S[1..n], let rankc(S, i) be the number
of occurrences of symbol c in S[1..i], and let selectc(S, j) be the position of
the j-th symbol c in S[1..n]. When string S is from alphabet {0, 1}, we call it a
bitvector. For bitvector S it holds rank0(S, i) = i− rank1(S, i).

Given a string S over an alphabet σ, the suffix array [26] SA[1..n] of S is
an array of integers providing the starting position of the suffixes of S sorted in
lexicographic order. The inverse suffix array ISA[1..n] of S is an array of integers
that, for each suffix of S, provides the position of the suffix in the suffix array.
In particular we have that for all 1 ≤ i ≤ n, SA[ISA[i]] = i.

A compressed suffix array [31] CSA[1..n] is a space-efficient representation of
the suffix array whose size |CSA| in bits is usually bounded by O(n log σ). We
denote by tsearch(m) the time to find the interval of the suffix array correspond-
ing to all occurrences of P [1..m], while by tlookup(n) the time necessary to access
any value SA[i].

The r -index [14] is a compressed text index whose main components are a
run-length encoded Burrows-Wheeler transform (BWT) [5] and the sample of
the suffix array at the beginning and at the end of each run of the BWT. We
denote by r the number of equal character runs of the BWT. The r-index of
the document T [1..n] can be computed in O(n) time and occupies O(r log(n/r))
space. We can find all occurrences of a given pattern P [1..m] in the document
T [1..n] in time O(m + occ) time. The r-index supports SA and ISA queries in
O(log(n/r)) time and O(r log(n/r)) space4.

Given a collection D = {T1, . . . , Tt} of t documents and its concatenation
D = T1T2 · · ·Tt of length n, the document array [28] DA[1..n] stores in each
position i the index of the document which the suffix SA[i] belongs to.

Given a document T [1..n], the longest common prefix array LCPT [1..n] stores
in each position 2 ≤ i ≤ n the length of the longest common prefix between the
two strings T [SA[i− 1]..n] and T [SA[i]..n].

4 Throughout the paper, we report the space in words, where not otherwise specified.
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Given a collection D = {T1, . . . , Tt} whose concatenation is D[1..n], the in-
terleaved longest-common-prefix array ILCP[1..n] is defined in [13] as the inter-
leaving of the LCP arrays of the documents T1, . . . , Tt in the order they appear
in the suffix array of D, i.e., if SA[i] is the lexicographically j-th suffix of the
k-th document, ILCP[i] = LCPk[j]. Let the ILCP array be run-length encoded in
ρ runs. Then, it can be represented using two arrays: LILCP[1..ρ] contains the
prefix sums of the lengths of the ρ runs; VILCP[1..ρ] contains the values of these
runs. Furthermore, the LILCP array can be replaced by a sparse bitvector L[1..n]
such that LILCP[i] = select1(L, i).

Given a string S[1..n], a straight line grammar for S is a context-free grammar
G that uniquely generates the string S. We denote by T the parse tree of S.
Given a node t ∈ T , t is a terminal node if t has no children, t is a non terminal
node otherwise. Each node t ∈ T uniquely identifies an interval of S denoted
by S[`t..rt]. For the ease of explanation we say that a character c occurs in t by
meaning that the character c occurs in S[`t..rt]. The parse tree T is binary if its
maximum arity is 2, and T is balanced if every substring is covered by O(log n)
maximal nodes, which are the highest nodes of the tree whose expansions form
a partition of the substring. Computing the smallest grammar is an NP-hard
problem [22], but various O(log(n/G∗))-approximation exists. We consider those
that are binary and balanced [32,7,21].

3 Related Work

In this section we define three problems and report solutions and techniques
from the literature that are used in our approach. For a complete overview we
refer the reader to the survey [29].

Problem 1 (Document listing). Given a collection D = {T1, T2, . . . , Tt}, and a
pattern P , return the set of documents L ⊆ D where P occurs.

Muthukrishnan [28] proposed the first solution to Problem 1 in optimal time
and linear space. He defined the document array DA and used a suffix tree [36] to
find all occurrences of the pattern P represented as an interval [sp..ep]. Then, he
proposed a recursive algorithm to find all distinct documents ndoc in DA[sp..ep]
in optimal time O(ndoc).

Sadakane [33] replaced the suffix tree with a compressed suffix array CSA
and the document array with a bitvector marking the starting position of each
document in text order. He also replaced the data structures to find all distinct
documents ndoc in DA[sp..ep] with a succinct version using only O(n) bits. With
this solution, Problem 1 can be solved in O(tsearch(m) + ndoctlookup(n)) using
a data structures of |CSA|+O(n) bits.

Gagie et al. [13] introduced the ILCP array whose property stated in Lemma 1
allows to apply almost verbatim the technique used by Sadakane to find distinct
elements in DA[sp..ep]. The solution uses a run-length compressed suffix array
RLCSA [24] which allows to answer the queries of Problem 1 in O(tsearch(m) +
ndoctlookup(n)) time.
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Claude and Munro [8] proposed the first grammar-based document listing
later improved by Navarro in [30]. Cobas and Navarro [9], later proposed a
practical variant in which they store the document array as a binary balanced
straight line grammar. Then, they precompute and store the answers for all non
terminal nodes of the grammar. The queries are answered by using a CSA to find
the interval DA[sp..ep] and merging the precomputed answers for the O(log n)
non terminal symbols covering DA[sp..ep]. This leads to a solution that solves
Problem 1 in O(tsearch(m) + ndoc log n) time.

Problem 2 (Term frequency). Given D = {T1, T2, . . . , Tt}, and a pattern P , for
each document T ∈ D return the number of occurrences of P in T .

Sadakane [33], addressed also the term frequency problem. The solution to
Problem 1 is enhanced building a compressed suffix array CSA for each docu-
ment. Given the interval [sp..ep] of all occurrences of the pattern P , he uses the
data structure to find the distinct documents in DA[sp..ep] and their leftmost and
rightmost occurrences. Those positions are then mapped into an interval in the
CSA of the document. The sizes of these intervals represent the frequencies of the
documents. This approach solves Problem 2 in O(tsearch(m) + ndoctlookup(n))
time.

Problem 3 (Document listing with frequencies). Given D = {T1, T2, . . . , Tt}, and
a pattern P , return the set of documents where P occurs and their frequencies.

Välimäki and Mäkinen [35] first proposed Problem 3 and showed that the
document listing problem can be solved using a rank and select data structure
on the document array, to simulate Muthukrishnan’s [28] solution. In addition,
after locating the interval SA[sp..ep] of all occurrences of P in D, the frequen-
cies for each distinct document in DA[sp..ep] are computed using a rank ar-
ray on the document array, i.e., the number of occurrences of P in document
Ti are ranki(DA, se) − ranki(DA, sp − 1). Using a wavelet tree [18] to repre-
sent the document array, given a pattern P [1..m], Problem 3 can be solved in
O(tsearch(m) + ndoc log t) time.

Belazzougui et al. [3] built a monotone minimum perfect hash function [1]
on the document array. Combining Muthukrishnan’s [28] and Sadakane’s [33]
approaches, it is possible to find the leftmost and rightmost occurrence of the
pattern P in the i-th document. Using the constant time rank on the document
array, Problem 3 can be solved in O(tsearch(m) + ndoc) time.

Gagie et al. [15] proposed a solution based on wavelet trees [18], that does not
rely on Muthukrishnan’s [28] solution. The idea is to use the range quantile [16]
problem to find the i-th smallest value in the range DA[sp..ep]. Then, retrieve
its frequency as the length of the interval corresponding to [sp..ep] in its leaf in
the wavelet tree. With this approach Problem 3 can be solved in O(tsearch(m)+
ndoc log t) time.



6 Cobas et al.

4 The document listing with frequencies

We are now ready to describe our document listing with frequencies approaches.
We propose three different solutions, which rearrange and adapt different con-
cepts of previous work. The first solution is based on the solution for the docu-
ment listing proposed in [9]. We grammar compress DA, and for all non terminal
nodes, we precompute and store the results of document listing with frequencies
queries. The second solution combines Sadakane’s approach [33] for the term
frequency problem, with the grammar compressed document array. We enhance
the grammar compressed document array with bitvectors in each non terminal,
to locate the leftmost and rightmost occurrences of each document in the corre-
sponding interval in the document array. The third solution combines Sadakane’s
approach [33] for the term frequency problem with the ILCP array. In this case we
use two copies of the ILCP array to locate the leftmost and rightmost occurrences
of each document in the corresponding interval in the document array.

As a common step in all three approaches, given a collection
D = {T1[1..n1], . . . , Tt[1..nt]}, we build one r -index for the concatenation of the
documents D. Given the pattern P [1..m], in order to find the frequencies of the
occurrences of the pattern in each document, we first find all occurrences of the
pattern P in the concatenation of all documents D using the r -index in O(m)
time and O(r log(n/r)) space. All occurrences of the pattern P are identified as
an interval in the suffix array of D, i.e. SA[sp..ep].

For the second and the third approach we also build an r -index for each doc-
ument Ti, for 1 ≤ i ≤ t. The r -index for T1, . . . , Tt can be built in O(

∑t
i=1 ni) =

O(n) time and occupying O(
∑t

i=1 ri log(ni/ri)) = O(Rt log(n/rk)) space, where

ri is the number of runs in the BWT of Ti,R =
∑t

i=1 ri, and k =argmin(r1, . . . , rt).

4.1 Precomputed document list with frequencies

Following the ideas for the document listing problem proposed in [9], we grammar
compress DA producing a binary and balanced grammar of ν non-terminals,
that can be stored in O(r log(n/r)) space [14]. Let T be the parse tree of the
document array DA[1..n], given a non terminal node nt ∈ T let DA[snt..ent] be
its expansion. For all non terminal nodes nt ∈ T , we precompute and store the
list Dnt of the distinct documents in DA[snt..ent] with their frequencies. The
lists are stored in ascending order.

Query. Given the range [sp..ep] of all occurrences of P , we find maximal nodes
of the parse tree T that cover DA[sp..ep]. Since the grammar is binary and
balanced, the number of maximal non terminal nodes covering DA[sp..ep] is
O(log n). Those nodes can be found in O(log n) time traversing the parse tree
T from the root towards the interval DA[sp..ep]. We use an atomic heap [12]
to merge the O(log n) lists and compute the frequencies of the documents, by
inserting the head of each list in the heap; extracting the minimum and inserting
the next element from the same list. While extracting the document, we compute
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the frequencies for each document. The atomic heap allows to insert end extract
the minimum in constant amortized time, thus the total time to compute the
output is O(ndoc log n) since each document can appear in each list.

Summarizing, we can answer to Problem 3 in O(m+ ndoc log n) time, using
O(r log(n/r) + t× ν) space.

4.2 Grammar-compressed document array with bitvectors

Let T be the parse tree of the document array DA[1..n] with ν non-terminals.
For each non terminal node nt ∈ T we store if the i-th document occurs in the
expansion of nt and, if so, whether the leftmost (resp. rightmost) occurrence is
in the left child or in the right child of nt. Let ` and r be the left child and right
child of nt, respectively. The above information can be stored into two bitvectors
Lnt and Rnt of length t, such that for all documents i = 1, . . . , t, Lnt[i] = 0 if the
leftmost occurrence of the i-th document is in `, and 1 otherwise, and Rnt[i] = 1
if the rightmost occurrence of the i-th document is in r, and 0 otherwise. Note
that if Lnt[i] > Rnt[i], then the i-th document does not occur in nt.

For the i-th document it holds that Lnt[i] = L`[i] ∧ R`[i] and Rnt[i] =
Lr[i] ∨ Rr[i] where x is 1 − x. We compute Lnt and Rnt for each non terminal
node in a bottom up fashion and we store them. Considering that non terminal
nodes associated to the same non terminal symbol have the same subtree, we
can compute the Lnt and Rnt bitvectors only once for each non terminal sym-
bol. Thus, the whole running time of the algorithm is O((t/w) × ν) using bit
parallelism on words of w bits.

Query. Let t1, . . . , tk be the k = O(log n) maximal non terminals that cover
the interval corresponding to DA[sp..ep]. We build a binary tree T ′ having as
leaves the nodes corresponding to t1, . . . , tk. Each internal node stores a pair of
bitvectors L and R, computed using the rules described above. The height of
T ′ is O(log log n). To retrieve the leftmost and rightmost occurrences of each
document, we start from the root of T ′, for each document present in the root,
we descend the tree, using the information stored in the bitvectors, to find first
the leftmost, and then the rightmost occurrence of the document.

We perform exactly two traversals of the tree for each document that occurs
at least once in the interval, since the L and R bitvectors store the information
that a document does not appear in the interval of the node. Using bit parallelism
on words of size w, we can find the leftmost and rightmost occurrence of each
document in O(ndoc(t/w)(log n+ log log n)) time.

Once we have computed the leftmost and rightmost occurrences `i and ri for
each document i, we use random access to SA of the r -index to find their corre-
sponding suffix values SA[`i] and SA[ri] in the concatenation of the documents.
We, then, find the corresponding suffix values in the document Ti, and, using
random access to ISA we find the leftmost and rightmost occurrence `′i and r′i
in the suffix array of the document Ti. The size of this interval is the number of
occurrences of the pattern P in Ti, i.e. r′i − `′i + 1.
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Keeping all together, we can answer queries to Problem 3 inO(m+((t/w) log n+
log(n/r))ndoc) time, using O(r log(n/r) +Rt log(n/rk) + (t/w)× ν) space.

4.3 Double run-length encoded ILCP

We first introduce a variation of the interleaved LCP array (ILCP) introduced
in [13] called double run-length encoded ILCP, denoted by ILCPF. The ILCPF is
composed by the array VILCPF storing the values of the runs, and the array
LILCPF storing their lengths. Given the run-length encoded ILCP array for the
collection D = {T1, T2. . . . , Tt} we merge together consecutive runs whose ele-
ments are from the same document, keeping the smallest value as the value of the
run. Formally, let ρ be the number of runs of ILCP, let `1 = 1 and r1 = LILCP[1],

and for all i = 2, . . . , ρ let `i =
∑i−1

j=1 LILCP[j] and ri = `i + LILCP[i] − 1.
Moreover, for all 1 ≤ i ≤ j ≤ n, let |DA[i..j]| = |{DA[k] | i ≤ k ≤ j}| .

Definition 1. Let us assume that we have computed the run-length encoding
up to position i of VILCP, the next run of ILCPF is defined as follows. Let ` =
max{k | |DA[`i..rk]| = 1} if |DA[`i..ri]| = 1 and 0 otherwise. Then VILCPF[j] =

min{VILCP[i..i+ `]}, and LILCPF[j] =
∑i+`

k=i LILCP[k].

The ILCP has a nice property described in [13] that we are going to recall.

Lemma 1 ([13, Lemma 1]). Given a collection D = {T1, . . . , Tt} whose con-
catenation is D[1..n], let SA be its suffix array, and let DA be its document ar-
ray. Let SA[sp..ep] be the interval corresponding to the occurrences of the pattern
P [1..m] in D. Then, the leftmost occurrences of the distinct document identi-
fiers in DA[sp..ep] are in the same positions as the values strictly less than m in
ILCP[sp..ep].

Extending Lemma 1 to ILCPF we have that:

Lemma 2. Given a collection D = {T1, . . . , Tt} whose concatenation is D[1..n],
let SA be its suffix array, and let DA be its document array. Let SA[sp..ep] be the
interval corresponding to the occurrences of the pattern P [1..m] in D. Then, the
leftmost occurrences of the distinct document identifiers in DA[sp..ep] are in the

same positions as the values strictly less than m in ILCPF[sp..ep]. If there are
two values smaller than m for one document, we consider the leftmost one.

Proof. For the runs of ILCPF that are also runs of ILCP, the property of Lemma 1
holds. We have to show that the same property holds also for runs of values from
the same document.

Let [sp..ep] be the interval of all occurrences of P in the text. If a same-
document run has value greater than or equals to m, then all occurrences in the
run have ILCP value larger than or equals to m, hence by Lemma 1 the property
is satisfied. If the considered run has value strictly smaller than m we have to
consider three cases. The first case to consider is if the run is entirely included in
ILCP[sp..ep], than the head of the run is the value strictly less than m, otherwise
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the head of the run would not be in the interval ILCP[sp..ep]. The second case
to consider is if the run is not entirely included in ILCP[sp..ep], and the run is
broken by the left boundary of the interval, then, the leftmost occurrence of the
document is in sp. The last case is if the run is broken by the right boundary
of the interval, then, if there is another run containing a value smaller than m
for document i, by Lemma 1 the leftmost occurrence is the head of the other
run, otherwise the leftmost occurrence is the head of the run crossing the right
boundary.

Thus, considering the last run in the interval as a special case, we can apply
the same approach as in [13]. Then we consider the last run, checking if it is
a same-document run or not, and if it is, we check if the same document has
already been found by the algorithm.

We build the double run-length encoded LCP array on D. We, then, build
a range minimum query data structure [11] on VILCPF and a bitvector L[1..n]
such that LILCPF[i] = select1(L, i). This allows, together with Lemma 2, to
use Sadakane’s approach to find distinct documents to VILCPF. This allows us
to retrieve the leftmost occurrences of the distinct documents. To retrieve the
rightmost occurrence, we build the ILCP array using the right LCP, i.e. the LCP
array defined as follows. We store in each position 1 ≤ i ≤ n−1 the length of the
longest common prefix between the two strings T [SA[i]..n] and T [SA[i + 1]..n].
In this case, we have that the rightmost occurrences of the distinct documents in
DA[sp..ep] correspond to values of the ILCP strictly smaller than m. In particular,
all properties that apply to the ILCP array also apply to the ILCP array defined
array using the right LCP. We, then, also double run-length encode it.

Query. Given the interval [sp..ep], as in [13], we apply Sadakane’s technique
to find distinct elements in DA, to find distinct values in both the double run-
length encoded ILCP arrays. Provided the positions of the leftmost and rightmost
occurrences of each document, we then use the r -index to find the corresponding
value of the suffix array. We map those positions back in the original document,
and, using random access to ISA of the document, we obtain the interval [s′p..e

′
p]

in the suffix array of the document, whose size corresponds to the frequency of
the document.

Keeping all together, we can answer queries to Problem 3 inO(m+log(n/r)ndoc)
time, using O(r log(n/r)+Rt log(n/rk)+ |ILCPFs|) space, where |ILCPFs| is the
size of both the ILCPF arrays.

5 Experimental result

We implemented the data structures and measured their performance on real-
world datasets. Experiments were performed on a server with Intel(R) Xeon(R)
CPU E5-2407 processors @ 2.40 GHz and 250 GiB RAM running Debian Linux
kernel 4.9.0-11-amd64. The compiler was g++ version 6.3.0 with -O3 -DNDEBUG



10 Cobas et al.

Table 1: Statistics for document col-
lections (small, medium, and large
variants): Collection name; Size in
megabytes; R-Index bits per symbol
(bps); Docs, number of documents;
Seqs, average number of sequences (or
versions) per each document; number
of Patterns; For the synthetic collec-
tions (second group), we sum-up vari-
ants that use 10 or 100 base documents
with the different mutation probabili-
ties.

Collection Size R-Index Docs Seqs Patterns

Species
105 11.79 3 10 7658
631 3.15 3 60 20 536

Page
110 0.60 60 147 7658
641 0.38 190 164 14 286

Concat
95 10 1000 7538–10 832
95 100 100 10 614–13 165

options. Runtimes were recorded with Google Benchmark framework5. The source
code is available online at: github.com/duscob/dret

Datasets. To evaluate our proposals, we experimented on different real and
synthetic datasets. We used a variation of the dataset described by Mäklin et
al. [25], and some of the datasets tested by Cobas and Navarro [9]. These are
available at zenodo.org and jltsiren.kapsi.fi/RLCSA, respectively. Table 1
summarizes some statistics on the collections and patterns used in the queries.

Real datasets. We used two repetitive datasets from real-life scenarios: Species
and Page. Species collection is composed of sequences of Enterococcus fae-
calis6, Escherichia coli7 and Staphylococcus aureus8 species. We created three
documents, one per species, containing sequences of different strains of the cor-
responding species. We created two variants of Species dataset with 10 and
60 strains per document. Page is a collection composed of pages extracted from
Finnish-language Wikipedia. Each document groups an article and all its previ-
ous revisions. We tested on two variants of Page collection of different sizes: the
smaller composed of 60 pages and 8834 revisions, and the bigger with 190 pages
and 31208 revision.

Synthetic datasets. Synthetic collections allow us to explore the performance of
our solutions on different repetitive scenarios. We experimented on the Concat

datasets, very similar to Page. Each Concat collection contains d = {10, 100}
documents. Each document groups a base document and 10000/d versions of
this. We generate the different versions of a base document with a mutation
probability R. Notice that we have a Concat dataset for each combination of
d = {10, 100} and R = {0.001, 0.003, 0.01, 0.03}. A mutation is a substitution
by a different random symbol. The base documents sequences of 1000 symbols
randomly extracted from English file of Pizza&Chili [10].

5 github.com/google/benchmark
6 DOI: 10.5281/zenodo.3724100
7 DOI: 10.5281/zenodo.3724112
8 DOI: 10.5281/zenodo.3724135

github.com/duscob/dret
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Queries. The query patterns for Species collections are substrings of lengths
m = {8, 12, 16} extracted from the dataset. In the case of Page datasets, the
patterns are Finnish words of length m ≥ 5 that appears in the collections. For
Concat collections, the queries are terms selected from an MSN query log. See
Gagie et al. [13] for more details.

Implementation details. All our implementations use the r -index as text in-
dex. We use the implementation of [14] available at github.com/nicolaprezza/
r-index. Since the implementation does not support random access to the suffix
array SA and to the inverse suffix array ISA, we used a grammar-compressed
differential suffix array and differential inverse suffix array — the differential
versions store the difference between two consecutive values of the array —.
Mäkinen et al. [24] show that SA of repetitive collections contains large self-
repetitions which are suitable to be compressed using a grammar compressor
like balanced Re-Pair.

Since we use the random access to SA and ISA to retrieve the frequencies of
the distinct documents, we implemented also a variant using a wavelet tree on the
document array, as in [35], to support the rank functionalities over the document
array DA. For our experiments, we use the sdsl-lite [17] implementation of
the wavelet tree.

Algorithms. We plugged-in our proposal with two different approaches to cal-
culate the frequencies from the occurrences. All implementations marked with
-ISA uses the random access to SA and ISA to retrieve the frequencies, while the
one marked with -WT uses the wavelet tree.

– GCDA-PDL: Grammar-Compressed Document Array with Precomputed Doc-
ument Lists. Solution described in Section 4.1, using balanced Re-Pair9 for
DA and sampling the sparse tree as in [9].

– GCDA: Grammar-Compressed Document Array. Solution described in Sec-
tion 4.2, using balanced Re-Pair for DA and bit-vectors stored in the non-
terminals. We implemented the variants: GCDA-ISAs and GCDA-WT.

– ILCP: Interleaved Longest Common Prefix. Solution described in Section 4.3,
using ILCP array (not double run-length encoded). We implemented the vari-
ants: ILCP-ISAs and ILCP-WT.

– ILCPF: double run-length encoded Interleaved Longest Common Prefix. So-
lution described in Section 4.3, using ILCPF array. We implemented the
variants: ILCPF-ISAs and ILCPF-WT.

– Sada: Sadakane. The algorithm proposed in [33]. We provide the variants:
Sada-ISAs and Sada-WT.

– R-Index: r-index. Bruteforce algorithm that scans all occurrences of the pat-
tern, counting the frequencies.

9 www.dcc.uchile.cl/gnavarro/software/repair.tgz

github.com/nicolaprezza/r-index
github.com/nicolaprezza/r-index
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Fig. 1: Document listing with frequencies on Species and Page datasets. The x axis
shows the total size of the index in bits per symbol (bps). The broken y axis shows the
average time per query.

Note that in all our algorithms we do not use the random access to SA and
ISA of the r -index, thus we do not need to store the samples. The only exception
is R-Index which needs the samples to compute the frequencies.

Results. Figure 1 contains our experimental results for document listing with
frequencies on real datasets. We show the trade-off between time and space for
all tested indexes on different variants of the collections Species and Page.

The two variants of Species collections are composed of few large documents
(only three, one per species). In this scenario, GCDA-PDL proves to be the best
solution, finding the document frequencies in 27–36 microseconds (µsec) per each
pattern in average, and requiring only 1.5–3.5 bits per symbol (bps). GCDA-PDL
is the fastest and smallest index, requiring even less space than R-Index, since
GCDA-PDL does not store the samples. The large size of the sampling scheme
for collections with low repetitiveness has also been observed in [14]. The best
competitor is ILCPF-WT, being almost as fast (30–36 µsec per query) as GCDA-
PDL, but requiring 1.85–2.4 times more space. In these collections, -WT indexes
perform better than -ISAs solutions. They can answer the queries at least 1.45
times faster, while they are 2–7 times smaller. In terms of space, GCDA-WT
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Fig. 2: Document listing with frequencies on synthetic collection Concat. The x axis
shows the total size of the index in bits per symbols (bps). The y axis shows the average
time per query. R-index is omitted from the plots due to its excessively high time.

represents a good option, improving even the space required by R-Index in some
cases, but much slower than GCDA-PDL and ILCPF-WT.

Page collections that contain more documents than Species collections: 60
documents in its small version and 190 in the bigger one. Again GCDA-PDL turns
up as the best index. It uses less than 1.05 bps and answers the queries in 17–22
µsec. R-Index requires the least space among the solutions, 0.38–0.60 bps, but
is 15.86–40.35 times slower. The second overall-best index is ILCPF-ISAs, with
1.80–2.69 bps and query times of 37–95 µsec, closely followed by GCDA-ISAs.
On the Page variants, -WT indexes are faster than its counterparts -ISAs, but
1.47–4.05 times bigger.

On real datasets GCDA-PDL outperforms the rest of the competitors, but the
ILCPF-variants are also relevant solutions obtaining a good space/time tradeoff.

The comparison of the indexes on synthetic collections Concat are shown in
Figure 2. These kinds of collections allow us to observe the indexes’ behavior
as the repetitiveness varies. Each plot combines the results for the different
mutation probabilities of a given collection and number of base documents. The
plots show the increasing mutation rates using variations of the same color, from
lighter to darker.

GCDA-PDL outperforms all the other indexes. For the collections composed
of 10 base documents, our index obtains the best space/time tradeoff, requiring
1.22–3.84 bps with a query time of 16–19 µsec. Only GCDA-WT and ILCPF-WT
obtain competitive query times, but they are 2.20–4.20 times bigger. R-Index
requires the least space for lower mutation rates, but it is 79–83 times slower
than GCDA-PDL (note that the R-Index data for this collection is not shown in
Figure 2 due to its high query times). In the case of the collections composed of
100 base documents, GCDA-PDL dominates the space/time map.
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6 Discussion

Future work includes the integration of the results with real pseudoaligners. A
trivial approach for such integration is to query each k-mer of a pattern with
our methods, and check if a single document (species) receives positive term
frequency. This approach multiplies the O(m) part of the running time with
O(k), in addition to affecting the output-sensitive part of the running time.
To avoid the O(k) multiplier, we need to maintain the frequencies in a sliding
window of length k through the pattern. Such solution requires the techniques
of the fully-functional bidirectional BWT index [2] extended to work on the r-
index. However, one could also modify the pseudoalignment criterion into looking
at maximal runs of k-mer hits, in the order of the (reverse) pattern. For this,
our methods are readily applicable: just do backward search with the pattern P
until obtaining an empty interval with suffix P [i..m]. Report term frequency of
P [i+ 1..m] if m− i ≥ k. Continue analogous process backward searching P [1..i].
If all the maximal runs of k-mer hits report a single document (species) Ti,
assign P to Ti. The O(m) part of the running time remains unaffected, and the
output-sensitive part remains smaller than with the sliding window approach.
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