34 research outputs found

    Real-Time Numerical Simulation for Accurate Soft Tissues Modeling during Haptic Interaction

    Get PDF
    The simulation of fabrics physics and its interaction with the human body has been largely studied in recent years to provide realistic-looking garments and wears specifically in the entertainment business. When the purpose of the simulation is to obtain scientific measures and detailed mechanical properties of the interaction, the underlying physical models should be enhanced to obtain better simulation accuracy increasing the modeling complexity and relaxing the simulation timing constraints to properly solve the set of equations under analysis. However, in the specific field of haptic interaction, the desiderata are to have both physical consistency and high frame rate to display stable and coherent stimuli as feedback to the user requiring a tradeoff between accuracy and real-time interaction. This work introduces a haptic system for the evaluation of the fabric hand of specific garments either existing or yet to be produced in a virtual reality simulation. The modeling is based on the co-rotational Finite Element approach that allows for large displacements but the small deformation of the elements. The proposed system can be beneficial for the fabrics industry both in the design phase or in the presentation phase, where a virtual fabric portfolio can be shown to customers around the world. Results exhibit the feasibility of high-frequency real-time simulation for haptic interaction with virtual garments employing realistic mechanical properties of the fabric materials

    Sensors Allocation and Observer Design for Discrete Bilateral Teleoperation Systems with Multi-Rate Sampling

    Get PDF
    This study addresses sensor allocation by analyzing exponential stability for discrete-time teleoperation systems. Previous studies mostly concentrate on the continuous-time teleoperation systems and neglect the management of significant practical phenomena, such as data-swap, the effect of sampling rates of samplers, and refresh rates of actuators on the system’s stability. A multi-rate sampling approach is proposed in this study, given the isolation of the master and slave robots in teleoperation systems which may have different hardware restrictions. This architecture collects data through numerous sensors with various sampling rates, assuming that a continuous-time controller stabilizes a linear teleoperation system. The aim is to assign each position and velocity signals to sensors with different sampling rates and divide the state vector between sensors to guarantee the stability of the resulting multi-rate sampled-data teleoperation system. Sufficient Krasovskii-based conditions will be provided to preserve the exponential stability of the system. This problem will be transformed into a mixed-integer program with LMIs (linear matrix inequalities). These conditions are also used to design the observers for the multi-rate teleoperation systems whose estimation errors converge exponentially to the origin. The results are validated by numerical simulations which are useful in designing sensor networks for teleoperation systems

    High-throughput variable-to-fixed entropy codec using selective, stochastic code forests

    Get PDF
    Efficient high-throughput (HT) compression algorithms are paramount to meet the stringent constraints of present and upcoming data storage, processing, and transmission systems. In particular, latency, bandwidth and energy requirements are critical for those systems. Most HT codecs are designed to maximize compression speed, and secondarily to minimize compressed lengths. On the other hand, decompression speed is often equally or more critical than compression speed, especially in scenarios where decompression is performed multiple times and/or at critical parts of a system. In this work, an algorithm to design variable-to-fixed (VF) codes is proposed that prioritizes decompression speed. Stationary Markov analysis is employed to generate multiple, jointly optimized codes (denoted code forests). Their average compression efficiency is on par with the state of the art in VF codes, e.g., within 1% of Yamamoto et al.\u27s algorithm. The proposed code forest structure enables the implementation of highly efficient codecs, with decompression speeds 3.8 times faster than other state-of-the-art HT entropy codecs with equal or better compression ratios for natural data sources. Compared to these HT codecs, the proposed forests yields similar compression efficiency and speeds

    Survey of computer vision algorithms and applications for unmanned aerial vehicles

    Get PDF
    This paper presents a complete review of computer vision algorithms and vision-based intelligent applications, that are developed in the field of the Unmanned Aerial Vehicles (UAVs) in the latest decade. During this time, the evolution of relevant technologies for UAVs; such as component miniaturization, the increase of computational capabilities, and the evolution of computer vision techniques have allowed an important advance in the development of UAVs technologies and applications. Particularly, computer vision technologies integrated in UAVs allow to develop cutting-edge technologies to cope with aerial perception difficulties; such as visual navigation algorithms, obstacle detection and avoidance and aerial decision-making. All these expert technologies have developed a wide spectrum of application for UAVs, beyond the classic military and defense purposes. Unmanned Aerial Vehicles and Computer Vision are common topics in expert systems, so thanks to the recent advances in perception technologies, modern intelligent applications are developed to enhance autonomous UAV positioning, or automatic algorithms to avoid aerial collisions, among others. Then, the presented survey is based on artificial perception applications that represent important advances in the latest years in the expert system field related to the Unmanned Aerial Vehicles. In this paper, the most significant advances in this field are presented, able to solve fundamental technical limitations; such as visual odometry, obstacle detection, mapping and localization, et cetera. Besides, they have been analyzed based on their capabilities and potential utility. Moreover, the applications and UAVs are divided and categorized according to different criteria.This research is supported by the Spanish Government through the CICYT projects (TRA2015-63708-R and TRA2013-48314-C3-1-R)

    Vehicle dynamics virtual sensing and advanced motion control for highly skilled autonomous vehicles

    Get PDF
    This dissertation is aimed at elucidating the path towards the development of a future generation of highly-skilled autonomous vehicles (HSAV). In brief, it is envisaged that future HSAVs will be able to exhibit advanced driving skills to maintain the vehicle within stable limits in spite of the driving conditions (limits of handling) or environmental adversities (e.g. low manoeuvrability surfaces). Current research lines on intelligent systems indicate that such advanced driving behaviour may be realised by means of expert systems capable of monitoring the current vehicle states, learning the road friction conditions, and adapting their behaviour depending on the identified situation. Such adaptation skills are often exhibited by professional motorsport drivers, who fine-tune their driving behaviour depending on the road geometry or tyre-friction characteristics. On this basis, expert systems incorporating advanced driving functions inspired by the techniques seen on highly-skilled drivers (e.g. high body slip control) are proposed to extend the operating region of autonomous vehicles and achieve high-level automation (e.g. manoeuvrability enhancement on low-adherence surfaces). Specifically, two major research topics are covered in detail in this dissertation to conceive these expert systems: vehicle dynamics virtual sensing and advanced motion control. With regards to the former, a comprehensive research is undertaken to propose virtual sensors able to estimate the vehicle planar motion states and learn the road friction characteristics from readily available measurements. In what concerns motion control, systems to mimic advanced driving skills and achieve robust path-following ability are pursued. An optimal coordinated action of different chassis subsystems (e.g. steering and individual torque control) is sought by the adoption of a centralised multi-actuated system framework. The virtual sensors developed in this work are validated experimentally with the Vehicle-Based Objective Tyre Testing (VBOTT) research testbed of JAGUAR LAND ROVER and the advanced motion control functions with the Multi-Actuated Ground Vehicle “DevBot” of ARRIVAL and ROBORACE.Diese Dissertation soll den Weg zur Entwicklung einer zukünftigen Generation hochqualifizierter autonomer Fahrzeuge (HSAV) aufzeigen. Kurz gesagt, es ist beabsichtigt, dass zukünftige HSAVs fortgeschrittene Fahrfähigkeiten aufweisen können, um das Fahrzeug trotz der Fahrbedingungen (Grenzen des Fahrverhaltens) oder Umgebungsbedingungen (z. B. Oberflächen mit geringer Manövrierfähigkeit) in stabilen Grenzen zu halten. Aktuelle Forschungslinien zu intelligenten Systemen weisen darauf hin, dass ein solches fortschrittliches Fahrverhalten mit Hilfe von Expertensystemen realisiert werden kann, die in der Lage sind, die aktuellen Fahrzeugzustände zu überwachen, die Straßenreibungsbedingungen kennenzulernen und ihr Verhalten in Abhängigkeit von der ermittelten Situation anzupassen. Solche Anpassungsfähigkeiten werden häufig von professionellen Motorsportfahrern gezeigt, die ihr Fahrverhalten in Abhängigkeit von der Straßengeometrie oder den Reifenreibungsmerkmalen abstimmen. Auf dieser Grundlage werden Expertensysteme mit fortschrittlichen Fahrfunktionen vorgeschlagen, die auf den Techniken hochqualifizierter Fahrer basieren (z. B. hohe Schlupfregelung), um den Betriebsbereich autonomer Fahrzeuge zu erweitern und eine Automatisierung auf hohem Niveau zu erreichen (z. B. Verbesserung der Manövrierfähigkeit auf niedrigem Niveau) -haftende Oberflächen). Um diese Expertensysteme zu konzipieren, werden zwei große Forschungsthemen in dieser Dissertation ausführlich behandelt: Fahrdynamik-virtuelle Wahrnehmung und fortschrittliche Bewegungssteuerung. In Bezug auf erstere wird eine umfassende Forschung durchgeführt, um virtuelle Sensoren vorzuschlagen, die in der Lage sind, die Bewegungszustände der Fahrzeugebenen abzuschätzen und die Straßenreibungseigenschaften aus leicht verfügbaren Messungen kennenzulernen. In Bezug auf die Bewegungssteuerung werden Systeme zur Nachahmung fortgeschrittener Fahrfähigkeiten und zum Erzielen einer robusten Wegfolgefähigkeit angestrebt. Eine optimale koordinierte Wirkung verschiedener Fahrgestellsubsysteme (z. B. Lenkung und individuelle Drehmomentsteuerung) wird durch die Annahme eines zentralisierten, mehrfach betätigten Systemrahmens angestrebt. Die in dieser Arbeit entwickelten virtuellen Sensoren wurden experimentell mit dem Vehicle-Based Objective Tyre Testing (VBOTT) - Prüfstand von JAGUAR LAND ROVER und den fortschrittlichen Bewegungssteuerungsfunktionen mit dem mehrfach betätigten Bodenfahrzeug ”DevBot” von ARRIVAL und ROBORACE validiert

    「スヌーズレン環境における定量的評価手法に関する研究」

    Get PDF

    Design of a Huggable Social Robot with Affective Expressions Using Projected Images

    Get PDF
    We introduce Pepita, a caricatured huggable robot capable of sensing and conveying affective expressions by means of tangible gesture recognition and projected avatars. This study covers the design criteria, implementation and performance evaluation of the different characteristics of the form and function of this robot. The evaluation involves: (1) the exploratory study of the different features of the device, (2) design and performance evaluation of sensors for affective interaction employing touch, and (3) design and implementation of affective feedback using projected avatars. Results showed that the hug detection worked well for the intended application and the affective expressions made with projected avatars were appropriated for this robot. The questionnaires analyzing users’ perception provide us with insights to guide the future designs of similar interfaces

    A systematic review of perception system and simulators for autonomous vehicles research

    Get PDF
    This paper presents a systematic review of the perception systems and simulators for autonomous vehicles (AV). This work has been divided into three parts. In the first part, perception systems are categorized as environment perception systems and positioning estimation systems. The paper presents the physical fundamentals, principle functioning, and electromagnetic spectrum used to operate the most common sensors used in perception systems (ultrasonic, RADAR, LiDAR, cameras, IMU, GNSS, RTK, etc.). Furthermore, their strengths and weaknesses are shown, and the quantification of their features using spider charts will allow proper selection of different sensors depending on 11 features. In the second part, the main elements to be taken into account in the simulation of a perception system of an AV are presented. For this purpose, the paper describes simulators for model-based development, the main game engines that can be used for simulation, simulators from the robotics field, and lastly simulators used specifically for AV. Finally, the current state of regulations that are being applied in different countries around the world on issues concerning the implementation of autonomous vehicles is presented.This work was partially supported by DGT (ref. SPIP2017-02286) and GenoVision (ref. BFU2017-88300-C2-2-R) Spanish Government projects, and the “Research Programme for Groups of Scientific Excellence in the Region of Murcia" of the Seneca Foundation (Agency for Science and Technology in the Region of Murcia – 19895/GERM/15)
    corecore