597 research outputs found

    Exploring Different Dimensions of Attention for Uncertainty Detection

    Full text link
    Neural networks with attention have proven effective for many natural language processing tasks. In this paper, we develop attention mechanisms for uncertainty detection. In particular, we generalize standardly used attention mechanisms by introducing external attention and sequence-preserving attention. These novel architectures differ from standard approaches in that they use external resources to compute attention weights and preserve sequence information. We compare them to other configurations along different dimensions of attention. Our novel architectures set the new state of the art on a Wikipedia benchmark dataset and perform similar to the state-of-the-art model on a biomedical benchmark which uses a large set of linguistic features.Comment: accepted at EACL 201

    Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure

    Get PDF
    It has been established that incorporating word cluster features derived from large unlabeled corpora can significantly improve prediction of linguistic structure. While previous work has focused primarily on English, we extend these results to other languages along two dimensions. First, we show that these results hold true for a number of languages across families. Second, and more interestingly, we provide an algorithm for inducing cross-lingual clusters and we show that features derived from these clusters significantly improve the accuracy of cross-lingual structure prediction. Specifically, we show that by augmenting direct-transfer systems with cross-lingual cluster features, the relative error of delexicalized dependency parsers, trained on English treebanks and transferred to foreign languages, can be reduced by up to 13%. When applying the same method to direct transfer of named-entity recognizers, we observe relative improvements of up to 26%

    Predicting speculation: a simple disambiguation approach to hedge detection in biomedical literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper presents a novel approach to the problem of <it>hedge detection</it>, which involves identifying so-called hedge cues for labeling sentences as certain or uncertain. This is the classification problem for Task 1 of the CoNLL-2010 Shared Task, which focuses on hedging in the biomedical domain. We here propose to view hedge detection as a simple disambiguation problem, restricted to words that have previously been observed as hedge cues. As the feature space for the classifier is still very large, we also perform experiments with dimensionality reduction using the method of <it>random indexing</it>.</p> <p>Results</p> <p>The SVM-based classifiers developed in this paper achieves the best published results so far for sentence-level uncertainty prediction on the CoNLL-2010 Shared Task test data. We also show that the technique of random indexing can be successfully applied for reducing the dimensionality of the original feature space by several orders of magnitude, without sacrificing classifier performance.</p> <p>Conclusions</p> <p>This paper introduces a simplified approach to detecting speculation or uncertainty in text, focusing on the biomedical domain. Evaluated at the sentence-level, our SVM-based classifiers achieve the best published results so far. We also show that the feature space can be aggressively compressed using random indexing while still maintaining comparable classifier performance.</p

    Semantic Sentiment Analysis of Twitter Data

    Full text link
    Internet and the proliferation of smart mobile devices have changed the way information is created, shared, and spreads, e.g., microblogs such as Twitter, weblogs such as LiveJournal, social networks such as Facebook, and instant messengers such as Skype and WhatsApp are now commonly used to share thoughts and opinions about anything in the surrounding world. This has resulted in the proliferation of social media content, thus creating new opportunities to study public opinion at a scale that was never possible before. Naturally, this abundance of data has quickly attracted business and research interest from various fields including marketing, political science, and social studies, among many others, which are interested in questions like these: Do people like the new Apple Watch? Do Americans support ObamaCare? How do Scottish feel about the Brexit? Answering these questions requires studying the sentiment of opinions people express in social media, which has given rise to the fast growth of the field of sentiment analysis in social media, with Twitter being especially popular for research due to its scale, representativeness, variety of topics discussed, as well as ease of public access to its messages. Here we present an overview of work on sentiment analysis on Twitter.Comment: Microblog sentiment analysis; Twitter opinion mining; In the Encyclopedia on Social Network Analysis and Mining (ESNAM), Second edition. 201

    Viable Dependency Parsing as Sequence Labeling

    Get PDF
    We recast dependency parsing as a sequence labeling problem, exploring several encodings of dependency trees as labels. While dependency parsing by means of sequence labeling had been attempted in existing work, results suggested that the technique was impractical. We show instead that with a conventional BiLSTM-based model it is possible to obtain fast and accurate parsers. These parsers are conceptually simple, not needing traditional parsing algorithms or auxiliary structures. However, experiments on the PTB and a sample of UD treebanks show that they provide a good speed-accuracy tradeoff, with results competitive with more complex approaches.Comment: Camera-ready version to appear at NAACL 2019 (final peer-reviewed manuscript). 8 pages (incl. appendix
    • 

    corecore