49 research outputs found

    A Novel Apex-Time Network for Cross-Dataset Micro-Expression Recognition

    Get PDF
    The automatic recognition of micro-expression has been boosted ever since the successful introduction of deep learning approaches. As researchers working on such topics are moving to learn from the nature of micro-expression, the practice of using deep learning techniques has evolved from processing the entire video clip of micro-expression to the recognition on apex frame. Using the apex frame is able to get rid of redundant video frames, but the relevant temporal evidence of micro-expression would be thereby left out. This paper proposes a novel Apex-Time Network (ATNet) to recognize micro-expression based on spatial information from the apex frame as well as on temporal information from the respective-adjacent frames. Through extensive experiments on three benchmarks, we demonstrate the improvement achieved by learning such temporal information. Specially, the model with such temporal information is more robust in cross-dataset validations.Comment: 6 pages, 3 figures, 3 tables, code available, accepted in ACII 201

    Recognizing Facial Mimicry In Virtual Group Conversations

    Get PDF
    With the current COVID-19 pandemic, group communication is often restricted to virtual video-conferencing platforms like Zoom in order to inhibit the spread of the virus. The virtual communication environment affects our ability to assess group emotion and support verbal messages through nonverbal communication. Because virtual meetings create visibility restrictions due to limited camera view, body language is occluded, and faces are now at the forefront of social interactions within groups. Since faces are still visible, it allows for some key components of interpersonal interactions to still occur, such as facial mimicry. Facial mimicry occurs when one person mirrors another person\u27s facial expressions. Most research on facial mimicry has been conducted on face-to-face interactions. Further studies have also shown that facial mimicry exists when an individual is reacting to a recorded video containing different expressions. However, there is limited research on facial mimicry within video-conferencing conversations. Our research aims to use facial expression recognition techniques to analyze if facial mimicry exists during group conversations over virtual platforms through facial action units and expressions. For this purpose, we used current state-of-the-art methods to recognize and analyze the activation of eye gaze, seven universal facial expressions, and seventeen commonly presented facial action units over time for each participant within various Zoom meetings that were uploaded on Youtube to measure facial mimicry. From observing the simultaneous activation of facial action units, our findings suggest that facial mimicry, specifically in reaction to smiling and positive facial expressions, does exist in video-conferencing group conversations. We plan to conduct future research to determine whether this positive facial mimicry improves group emotion and productivity.https://orb.binghamton.edu/research_days_posters_2021/1105/thumbnail.jp

    Reverse Engineering Psychologically Valid Facial Expressions of Emotion into Social Robots

    Get PDF
    Social robots are now part of human society, destined for schools, hospitals, and homes to perform a variety of tasks. To engage their human users, social robots must be equipped with the essential social skill of facial expression communication. Yet, even state-of-the-art social robots are limited in this ability because they often rely on a restricted set of facial expressions derived from theory with well-known limitations such as lacking naturalistic dynamics. With no agreed methodology to objectively engineer a broader variance of more psychologically impactful facial expressions into the social robots' repertoire, human-robot interactions remain restricted. Here, we address this generic challenge with new methodologies that can reverse-engineer dynamic facial expressions into a social robot head. Our data-driven, user-centered approach, which combines human perception with psychophysical methods, produced highly recognizable and human-like dynamic facial expressions of the six classic emotions that generally outperformed state-of-art social robot facial expressions. Our data demonstrates the feasibility of our method applied to social robotics and highlights the benefits of using a data-driven approach that puts human users as central to deriving facial expressions for social robots. We also discuss future work to reverse-engineer a wider range of socially relevant facial expressions including conversational messages (e.g., interest, confusion) and personality traits (e.g., trustworthiness, attractiveness). Together, our results highlight the key role that psychology must continue to play in the design of social robots

    Linguistically-driven framework for computationally efficient and scalable sign recognition

    Full text link
    We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated data. The novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also incorporating features based on what we know about the linguistic composition of lexical signs. In particular, we analyze hand shape, orientation, location, and motion trajectories, and then use CRFs to combine this linguistically significant information for purposes of sign recognition. Our robust modeling and recognition of these sub-components of sign production allow an efficient parameterization of the sign recognition problem as compared with purely data-driven methods. This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from American Sign Language (ASL)

    Face morphing detection in the presence of printing/scanning and heterogeneous image sources

    Get PDF
    Face morphing represents nowadays a big security threat in the context of electronic identity documents as well as an interesting challenge for researchers in the field of face recognition. Despite of the good performance obtained by state-of-the-art approaches on digital images, no satisfactory solutions have been identified so far to deal with cross-database testing and printed-scanned images (typically used in many countries for document issuing). In this work, novel approaches are proposed to train Deep Neural Networks for morphing detection: in particular generation of simulated printed-scanned images together with other data augmentation strategies and pre-training on large face recognition datasets, allowed to reach state-of-the-art accuracy on challenging datasets from heterogeneous image sources

    Public mental health through social media in the post COVID-19 era

    Get PDF
    Social media is a powerful communication tool and a reflection of our digital environment. Social media acted as an augmenter and influencer during and after COVID-19. Many of the people sharing social media posts were not actually aware of their mental health status. This situation warrants to automate the detection of mental disorders. This paper presents a methodology for the detection of mental disorders using micro facial expressions. Micro-expressions are momentary, involuntary facial expressions that can be indicative of deeper feelings and mental states. Nevertheless, manually detecting and interpreting micro-expressions can be rather challenging. A deep learning HybridMicroNet model, based on convolution neural networks, is proposed for emotion recognition from micro-expressions. Further, a case study for the detection of mental health has been undertaken. The findings demonstrated that the proposed model achieved a high accuracy when attempting to diagnose mental health disorders based on micro-expressions. The attained accuracy on the CASME dataset was 99.08%, whereas the accuracy that was achieved on SAMM dataset was 97.62%. Based on these findings, deep learning may prove to be an effective method for diagnosing mental health conditions by analyzing micro-expressions

    Social Robots in Hospitals: A Systematic Review

    Full text link
    Hospital environments are facing new challenges this century. One of the most important is the quality of services to patients. Social robots are gaining prominence due to the advantages they offer; in particular, several of their main uses have proven beneficial during the pandemic. This study aims to shed light on the current status of the design of social robots and their interaction with patients. To this end, a systematic review was conducted using WoS and MEDLINE, and the results were exhaustive analyzed. The authors found that most of the initiatives and projects serve the el- derly and children, and specifically, that they helped these groups fight diseases such as dementia, autism spectrum disorder (ASD), cancer, and diabetes

    Robust mouse tracking in complex environments using neural networks.

    Get PDF
    The ability to track animals accurately is critical for behavioral experiments. For video-based assays, this is often accomplished by manipulating environmental conditions to increase contrast between the animal and the background in order to achieve proper foreground/background detection (segmentation). Modifying environmental conditions for experimental scalability opposes ethological relevance. The biobehavioral research community needs methods to monitor behaviors over long periods of time, under dynamic environmental conditions, and in animals that are genetically and behaviorally heterogeneous. To address this need, we applied a state-of-the-art neural network-based tracker for single mice. We compare three different neural network architectures across visually diverse mice and different environmental conditions. We find that an encoder-decoder segmentation neural network achieves high accuracy and speed with minimal training data. Furthermore, we provide a labeling interface, labeled training data, tuned hyperparameters, and a pretrained network for the behavior and neuroscience communities
    corecore