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Abstract
Nowadays, face morphing represents a big security threat in the context of electronic
identity documents as well as an interesting challenge for researchers in the field of face
recognition. Despite the good performance obtained by state‐of‐the‐art approaches on
digital images, no satisfactory solutions have been identified so far to deal with cross‐
database testing and printed‐scanned images (typically used in many countries for
document issuing).To solve this problem, the authors propose new approaches to train
Deep Neural Networks for morphing attack detection: in particular the generation of
simulated printed‐scanned images together with other data augmentation strategies and
pre‐training on large face recognition datasets, allowed reaching state‐of‐the‐art accuracy
on challenging datasets from heterogeneous image sources.

1 | INTRODUCTION

The widespread adoption of biometric identification techniques
in the context of identity documents poses some concerns for
the possibility of fraudulent misuses. Recent studies [1–4]
revealed that ePassports are particularly sensitive to the so called
morphing attack, in which the face photo printed on paper and
provided by the citizen can be altered. Such attack was first
described in [2] in the context of face verification at automated
border control (ABC) gates where two subjects cooperate to
produce a morphed face image (mixing their identities) in order
to obtain a regular travel document that could be exploited by
both subjects. Of course, in order to succeed in the attack, the
morphed face image must be very similar to one of the two
subjects (the one applying for the document) to fool the officer
during the issuing process, but at the same time must contain
enough features of the hidden subject to enable positive veri-
fication at the gate for both individuals.

The feasibility of this attack has been analysed and confirmed
by several researchers and some police agencies, thusmaking the
development of proper countermeasures very urgent.

One of the main challenges for the development of
effective solutions for morphing attack detection is that typi-
cally the id photo, natively digital, is printed by the photogra-
pher and then scanned by the officer to be stored into the
document chip. This printing/scanning (P&S) process alters

the image information, removing most of the fine details (i.e.,
digital processing artefacts) that could help to detect morphing.
Some preliminary studies, more widely discussed in the next
section, show that morphing detection from digital images can
be addressed to some extent, but P&S images are still difficult
to manage [5]. Promising solutions have been recently obtained
by using Deep Neural Networks (DNN), which proved to
effectively detect and recognise faces in uncontrolled scenarios
[6]. However, to reach a good accuracy, DNN typically require
a large training dataset. Unfortunately, in the context of
morphing attack detection, it is difficult to collect large data-
bases of samples: manually producing high quality morphed
images is in general a boring and time‐consuming activity.
Moreover, due to the need of detecting morphing from P&S
images, the costs/efforts for printing the images and scanning
them again must be also considered. For this reason, most of
the approaches in the literature exploit pre‐trained deep net-
works as feature extractors and build on the top of them
traditional classifiers (e.g., Support‐Vector Machine (SVM))
that can be trained with relatively small datasets. The aim of
this study is to investigate the possibility of artificially gener-
ating large sets of morphed images to train DNNs. In partic-
ular, the authors focus on the simulation of the P&S process
which, coupled with the automatic generation of morphs, can
produce large datasets for (i) training new networks from
scratch or (ii) fine‐tuning pre‐trainedDNNs such as AlexNet [7]
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or VGG [8]. Moreover, an extensive analysis of the network
behaviour with respect to bona fide/morphed and digital/
printed‐scanned images enables a deeper understanding of the
most relevant image features exploited for classification.

The rest of the paper is organised as follows: Section 2
discusses the state of the art; in Sections 3 and 4, the procedure
for automatic printed/scanned image generation and the da-
tabases used for train and test are described, respectively. The
DNNs used for the experiments are briefly introduced in
Section 5 and the experimental results are reported and com-
mented in Section 6. Finally, Section 7 draws some conclusions
and discusses possible future research directions.

2 | RELATED WORKS AND
CONTRIBUTION

Although face morphing detection is a recently emerged
research area, an increasing number of researchers are working
on this topic and the related literature is constantly growing
[9–11]. Existing techniques can be mainly framed under two
categories:

� Single‐image based, where the presence of morphing alter-
ations is detected on a single image, such as the id photo
presented to the officer at enrolment time or the face image
read from an e‐document during verification at the gate;
image‐pair based (a.k.a. differential morphing attack detec-
tion), where the comparison between a live image (e.g.,
acquired at the gate) and that stored on the e‐document is
exploited for morphing attack detection.

Several literature approaches belong to the first category.
The works based on handcrafted features mainly try to analyse
the small image degradations produced by the morphing pro-
cess. In [12], the authors propose a technique for morphing
attack detection based on the analysis of micro‐texture varia-
tions using Binarized Statistical Image Features (BSIF): an SVM
classifier is trained to discriminate bona fide/morphed faces.
The authors of [13] argue that the morphed images are char-
acterised by a different texture with respect to the unaltered
ones and that a progressive JPG compression can further
highlight this aspect; the image content is finally represented by
different corner features exploited for classification. In [14–16],
morphing detection is based on Benford features extracted
from quantized DCT coefficients and in [17] key‐points fea-
tures (such as SURF, ORB, FAST, etc.) are used, while in [18–
21] texture features such as LBP or BSIF are analysed. An
interesting outcome of [18] is that low‐level features are not
robust when used in cross‐database testing or in the presence of
simple image manipulations (e.g., rescaling). The authors of
[22–24] exploit the principle of image source identification for
morphing attack detection, observing that a morphing is a
computer‐generated image and its sensor‐pattern noise is
different from that of a real image. Other works make use of
topological analysis of facial landmarks to detect alterations
introduced by morphing [25, 26]; the idea is interesting in

principle, but overall the results obtained are unsatisfactory for
real application. Most of the referred approaches, when tested
on digital images only, provide good classification performance,
but the use of different databases and different evaluation
metrics make a comparison more difficult.

Deep learning techniques based on convolutional neural
network (CNN) have been proposed for face morphing
detection [19, 27–29]. The authors of [19] evaluate some net-
works, pre‐trained for face recognition, as feature extractor for
digital images, without performing any fine‐tuning on the
specific morphing detection task, while in [27] two pre‐trained
networks, AlexNet [7] and VGG19 [8], are used for feature
extraction after a fine‐tuning step. The authors perform tests
on both digital and P&S images and the experimental results
clearly confirm that the second type of images provide the
main challenge for morphing detection. In [28], some CNNs
are used for morphing attack detection from digital images; the
accuracy of pre‐trained networks is compared to that of
networks learned from scratch, finally leading to the conclusion
that pre‐trained networks are more robust for this task. The
authors of [29] analyse the accuracy of pre‐trained networks
against semantic (partial morphing on some specific face
regions) and black box attacks (partial occlusions), and high-
light, for the two kind of images, the most relevant regions
analysed by the networks for classification. Finally the authors
of [30] combine features of different nature, hand‐crafted and
extracted by CNNs, demonstrating that a substantial
improvement in detection performance can be achieved by
their integration.

A limited number of approaches perform morphing
detection by image‐pair comparison. The first approach has
been introduced in [31, 32] where the inverse process of
morphing (called demorphing) is adopted to revert the effects
produced by morphing. The demorphing technique proved to
be effective both on digital and P&S images. The same
detection scheme has been considered in [33] where different
features are evaluated both for single‐image and differential
morphing detection. Deep features extracted from different
networks are used in [34] for image comparison, while the
authors of [35] exploit features from 3D shape and the diffuse
reflectance component estimated from the image. Finally, a
landmark‐based morphing detection approach is proposed in
[36] to compare bona fide and suspected morphed images.

Overall, an analysis of the literature allows identifying two
major challenges for morphing detection techniques: (i)
robustness to the P&S process and (ii) ability to generalise
across different databases [37]. The work of authors mainly
focuses on these two aspects. In particular, this paper provides
the following contributions:

� Adoption of a simple P&S simulation model [38] for data
augmentation, enabling the possibility of producing training
images without the cost/effort of the real P&S process. The
state‐of‐the‐art about simulating the P&S process in the
context of face recognition is very limited. We think that the
most relevant paper [39] has been proposed very recently to
the best of our knowledge. The approach exploits generative
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networks to simulate the real process, providing interesting
results from the visual point of view. This technique requires
a training stage based on real P&S images; on the contrary,
an advantage of the model used in our work is that no real
P&S images are needed for training and a variety of devices
or acquisition conditions can easily be simulated just varying
the main algorithm parameters. The experimental results will
show that such simulation produces a significant perfor-
mance improvement on morphing detection from P&S
images.

� Extensive experiments using four different well‐known
DNN architectures on several test datasets and public
benchmarks.

� Thorough performance evaluation on several public
benchmarks and comparison with state‐of‐the‐art
techniques.

� Experimental results confirming the feasibility of the print/
scan simulation model proposed here to deal with real P&S
images.

3 | AUTOMATIC IMAGE GENERATION

In order to exploit the great potential of CNNs for classifi-
cation, a very large set of images is typically needed and data
augmentation techniques are applied usually [40] to increase
the number of samples available for training; geometric and
photometric transformations are the most frequently adopted
modifications. In the context of morphing attack detection, the
network training requires both real and morphed image sam-
ples, possibly in the two formats (digital and P&S). So, we
proposed new techniques for automatically generating high
quality morphed face images (Section 3.1) and simulating the
P&S process (Section 3.2), which would avoid the effort/cost
of collecting a large dataset.

3.1 | Face morphing

Morphed images can be obtained quite easily using one of the
many existing tools and plugins (e.g., Sqirlz Morph [41]).
However, the systematic generation of morphed images with
specific characteristics can be better realised by ad hoc tech-
niques. Here we adopt the approach described in [31] which
includes an automatic image retouching phase to minimise
visible artefacts. Given two images I0 and I1, the process
generates a set of frames M¼ fIα; α ∈ ℝ; 0 < α < 1g repre-
senting the transformation of the first image (I0) into the
second one (I1) (see Figure 1). In general, each frame is a
weighted linear combination of I0 and I1, obtained by geo-
metric warping of the two images based on corresponding
landmarks and pixel‐by‐pixel blending.

IαðpÞ ¼ ð1 � αÞ ⋅ I0ðwPα→P0ðpÞÞ þ α ⋅ I1ðwPα→P1ðpÞÞ ð1Þ

where

� p is a generic pixel position;
� α is the frame weight factor (representing the presence of

the two contributing subjects);
� P0 and P1 are the two sets of landmarks in I0 and I1,

respectively;
� Pα is the set of landmarks aligned according to the frame

weight factor α; and
� wB→AðpÞ is a warping function.

A number of different morphed images can be obtained
according to the value of the weighting factor α (i.e., the weight
of the two subjects in the combination) as shown in Figure 1.

3.2 | Modelling the printing and scanning
process

The P&S process is quite complex: digital images are first
conveyed to the physical, continuous domain and then re-
ported in a digital format and discretized by the scanning
process. The image alterations introduced involve both pixel
value distortions (i.e., luminance, contrast and gamma correc-
tions, chrominance variations, and blurring of adjacent pixels)
as well as minor geometric alterations due to the positioning
on the scanner surface.

Focusing on the pixel value distortion, according to the
model proposed in [38] the P&S process of a generic digital
image I produces a modified, discrete version of the image ~I
as:

~IðpÞ ¼ K½IðpÞ ∗ τ1ðpÞ þ ðxðpÞ ∗ τ2ðpÞÞ · N1� · sðpÞ ð2Þ

where

� Function K represents the responsivity of the acquisition
device;

� sðpÞ is the sampling function which characterises the digi-
talisation process of the continuous printed image;

� τ1 models the system point spread function
τ1ðpÞ ¼ τPðpÞ ∗ τSðpÞ where τPðpÞ and τSðpÞ represent the
point spread function of printer and scanner, respectively;

� τ2 is a high‐pass filter used to represent higher noise vari-
ance near the edges; and

� N1 is a white Gaussian random noise.

The following responsivity function K is adopted:

KðxÞ ¼ ω · ðx � βxÞ
γ
þ βK þ N2ðxÞ ð3Þ

The equation includes colour adjustments coefficients (βx
and βK ), gamma correction (γ) and a noise component N2ðxÞ
whose power is related to pixel intensity (usually higher noise
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on dark pixels is observed due to the different sensors’
sensitivity to the image reflectivity).

Due to some device‐dependent unknown parameters, the
adaption of this model to real cases is not straightforward. In
particular, the point spread functions of the devices (τP and τS
in Equation (2)) are not available, and they are approximated
by two Gaussian blurring filters of size k1, k2 and standard
deviation σ1, σ2.

The model is quite flexible and allows modifying different
image characteristics, related to both visual quality and low‐

level signal content. Figures 2–5 show the impact of the
different model parameters on the result. In particular, ω
mainly controls the image contrast and brightness Formally
(see Figure 2), while the overall system gamma, that is, the
combined effect of all gamma values applied to the imaged by
the P and S devices can be adjusted by properly tuning γ (see
Figure 3).

Further variations to image colour and saturation can be
obtained though βK and βX parameters (see Figure 4). Finally the
parameters of the Gaussian smoothing filter (k and σ) produce

F I GURE 1 Example of morphed frames obtained by the morphing procedure, gradually moving from I0 to I1 (first row). In the second row the result of
the automatic retouching process used to remove visible artefacts is shown

F I GURE 2 Variation of ω parameter in the P&S
simulation model applied to Figure 6a: this parameter
mainly affects image contrast and brightness

F I GURE 3 Variation of γ in the P&S simulation
model applied to Figure 6a: this parameter regulates the
gamma corrections produced by the printing and
scanning devices
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the most evident modification introduced by the P&S process,
that is, the blurring effect represented in Figure 5.

In Figure 6, a real P&S image is compared with a simulated
P&S image of the same digital image. The image spectrum is
also reported to appreciate the low‐level signal modifications

produced by the P&S process. As clearly visible in the example,
the digital image is much richer with fine details (high
frequencies), which are noticeably attenuated after P&S. The
spectrum of the simulated P&S image (Figure 6f) is quite
similar to that of the real one (Figure 6e). We can quantify the

F I GURE 4 Variation of βK and βX in the P&S
simulation model applied to Figure 6a: these parameters
control the image colour and saturation

F I GURE 5 Variation of k in the P&S simulation
model applied to Figure 6a: this parameter controls the
amount of image blurring

F I GURE 6 For the digital image (a), the result
of the real (b) and simulated (c) P&S processes is
provided. The corresponding image spectrum is also
given for the digital image (d), the real (e) and the
simulated P&S (f)
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similarity between the image spectra adopting commonly used
metrics such as the spectral angle [42] (a measure of distance
between two spectra) or the correlation value. If we compare
the digital image and the real P&S of Figure 6, the spectral
angle is quite high (0.69) with a correlation value of 0.77. The
similarity between the real P&S and the simulated one is much
higher, as confirmed by the smaller spectral angle (0.38) and a
higher correlation value (0.93).

The parameters used for image generation (see Table 1)
have been chosen in order to produce images visually similar to
the real P&S ones (MorphDBP&S database described in Sec-
tion 4.2), but no specific optimisations have been carried out
(see Figure 6).

4 | DATABASES

4.1 | Training sets

The Progressive Morphing Database (PMDB) described in
[31] is used for network training. It contains 6000 morphed
images automatically generated starting from 280 different

subjects selected from the AR [43], FRGC [44] and Color
Feret [45, 46] databases using different morphing
factors (α ∈ f0:1; 0:15; 0:2; 0:25; 0:3; 0:35; 0:4; 0:45g in
Equation (1)).

Since PMDB contains a different number of bona fide and
morphed images, a new balanced database (called Digital) has
been derived as follows:

1. two images of each subject are chosen resulting in 560 bona
fide images;

2. 560 morphed images are randomly selected from the
PMDB morphed images.

The P&S process has been simulated by applying the
procedure described in Section 3.2 on all Digital images; we
will refer to this dataset as gP & S.

4.2 | Test sets

The models trained on the datasets introduced in Section 4.1
are then tested on the following databases:

� MorphDBD [31]: it consists of 130 bona fide images (not
morphed) and 100 morphed images (50 males and 50
females) produced with a significant manual intervention in
order to minimise visible artefacts (see Figure 7).

F I GURE 7 Images from MorphDBD database:
digital version of bona fide images of two subjects
(a) and (c) and the resulting morphed image (b)

F I GURE 8 Images from MorphDBP&S
database: P&S version of the images reported in
Figure 7

TABLE 1 Parameter values used in for P&S simulation

Parameter ω βX βK γ k1, k2 σ1, σ2

Value 15.5 20 20 0.5 3 1.2
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� MorphDBP&S [31]: P& S version of MorphDBD. The images
have been printed on high quality photographic paper by a
professional photographer and then scanned (see Figure 8).

� NIST FRVT‐MORPH benchmark [47], including several
image subsets of variable quality. The morphed images in this
dataset have been generated with a plurality of morphing al-
gorithms, thus representing a very hard challenge.

� SOTAMD benchmark [10], including high quality morphed
images (both digital and printed/scanned).

The MorphDBD, MorphDBP&S and SOTAMD datasets are
publicly available for testing in the FVC‐onGoing platform
[48, 49], a web‐based automated evaluation system for bio-
metric recognition algorithms.

4.3 | Data normalisation

Since face images come from various sources presenting
different size and resolution, it is important to normalise them

(see Figure 9) before they are passed to the network for
morphing attack detection. For this reason, each image is
normalized as follows:

1. the eye centres and the nose tip are detected using
Neurotechnology VeriLook SDK 10.0 [50];

2. the image is resized to obtain an eye centre distance of 150
pixels;

3. a sub‐image of size 350�400 pixels is cropped centred on
the nose tip.

4.4 | Data augmentation

Both training databases (Digital and gP & S) contain 1120
images, not many for an effective network training. To increase
the number of samples, data augmentation is applied obtaining
different augmented databases (see Table 2). In particular, the
following transformations are applied:

F I GURE 9 Normalised images from Figures 7
(first row) and 8 (second row)

TABLE 2 Characteristics of the different training datasets

Name P&S simulation

Data augmentation # Images

Horizontal mirroring Rotation Horizontal and vertical translation Multi‐crop Bona fide Morphed Total

Digital 560 560 1120

gP & S √

DigitalAu √ √ √ 30,240 30,240 60,480

gP & SAu √ √ √ √

DigitalMc √ √ √ 16,800 16,800 33,600

gP & SMc √ √ √ √
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‐ horizontal mirroring;
‐ rotation centred on the nose tip ({� 5°,0°,þ5°});
‐ horizontal and vertical translation ({� 1,0,þ1});
‐ multi‐crop, that is, extracting from each image (size
350�400) five sub‐images corresponding to the four corners
and the central region [7]. The crop size is fixed according to
the image input size of the specific network (see Section 5).
In the tests where multi‐crop is not enabled, only the central
region is used.

5 | DEEP NEURAL NETWORKS FOR
MORPHING DETECTION

The authors considered different well‐known pre‐trained
DNNs (see Table 3). The first two networks, already used for
morphing attack detection in previous works [27, 28], have
been trained on natural images (i.e., ImageNet [51]) and
therefore the learned filters are not specific for face repre-
sentation. The last two networks are state‐of‐the‐art models
trained on very large face datasets: we can expect that the filters
in the low and intermediate levels of these networks are
capable of extracting very powerful face features that can be
exploited for morphing detection.

The last layer of all the considered architectures has been
changed to deal with a two class problem (morphed vs. bona
fide): as a consequence, the corresponding weights need to be
learned from scratch.

5.1 | Fine‐tuning

Starting from the pre‐trained networks, a first fine‐tuning step
has been performed on DigitalAu and DigitalMc datasets,
separately, for 5 epochs each. Therefore, for each network
architecture, two differently tuned networks are obtained that
will be able to detect digital morphed images but presenting
poor results on P& S ones (see Section 6.2). To overcome this
limit, a second fine‐tuning step has been performed on
gP & SAu and gP & SMc datasets, for a single epoch each. For

both fine‐tuning stages, SGD optimisation is used with a fixed
learning rate of 0.0001 and a momentum of 0.9.

At test time, if multi‐crop augmentation were used during
training, the prediction probabilities are calculated as the average

probabilities across five sub‐images (i.e., the four corners and
the central region) cropped from the normalised 350�400 im-
age. Otherwise only the central region is used for classification.

6 | EXPERIMENTS

Several experiments have been carried out to evaluate the
robustness of DNNs for morphing attack detection with
respect to: (i) cross‐database testing and (ii) P&S images.

6.1 | Testing protocol and performance
indicators

For each experiment bona fide and morphed face images are
used to compute Bona fide Classification Error Rates
(BPCER) and Attack Presentation Classification Error Rate
(APCER), as defined in [57].

The following performance indicators are calculated:

� Accuracy: the percentage of face images correctly classified
as bona fide or morphed; Equal‐Error Rate (EER): the error
rate for which both BPCER and APCER are identical;

� BPCER@APCER¼p%: the lowest BPCER for
APCER≤p%;

Detection Error Tradeoff (DET) curve: the plot of
APCER against BPCER.

6.2 | Results on MorphDBD and
MorphDBP&S

Table 4 reports the results obtained in terms of accuracy, EER
and BPCER (at different levels of APCER) as a function of (i)
the testing database, (ii) the network and (iii) the training set
used. The corresponding DET curves are available in [58].

The results show a variable behaviour over different test
databases. The performance measured over the MorphDBD
dataset is good for all the evaluated networks, even if here the
ImageNet pre‐trained models (AlexNet and VGG‐19) often
achieve the best results. It can be argued that in detection of
artefacts and traces of digital manipulations that characterise
digital morphed images, the general filters learned from natural

TABLE 3 Neural networks used in the experimentation

Name Architecture

Pre‐trained on

Input image sizeImage Type Database name Database size

AlexNet [7] [52] AlexNet‐BVLC version Natural ImageNet [51], specific ILSVRC subsets [53] 1.2M 227� 227

VGG19 [8] VGG – 19 weight layers 224� 224

VGG‐Face16 [54] VGG – 16 weight layers [8] Face VGG‐Face dataset [54] 2.6M 224� 224

VGG‐Face2 [55] ResNet‐50 [56] VGG‐Face 2 dataset [55] More than 3M
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images can be even more powerful than specific filters
optimised for invariant face recognition. This observation is
aligned with the outcomes of [28].

The test on MorphDBP&S, allows evaluating the perfor-
mance when the P&S process comes into play. In general, the
results show that networks trained only on digital images are not
able to deal with P&S images; all the architectures suffer from
this issue and provide quite bad results. Exploiting simulated
P&S images for network training allows in some cases to obtain
a significant improvement (e.g., the accuracy of VGG‐Face16
network trained with multi‐crops grows from about 56% to
93%); these results are quite encouraging if we consider that no
real P&S images have been used during training. Overall an
accuracy of 85%–90% can be reached with reasonable values of
EER and BPCER at APCER¼10% and 5%.

In general, the multi‐crop approach provides better
results among the different data augmentation techniques.
Looking at the performance of the different networks, an
opposite behaviour is observed here with respect to the
experiments on digital images: in fact, the best performing
nets are the VGG‐Face models pre‐trained on large face
datasets with AlexNet and VGG19 struggling to reach
decent performance. Since P&S remove most of the digital
artefacts, we argue that more powerful and problem spe-
cific feature detectors are needed to solve such a complex
problem.

To better analyse the effects of extending the digital
training set with simulated P&S images, the bona fide and
morphed score distributions of AlexNet and VGG‐Face16
networks trained with the DigitalAu and the

TABLE 4 Performance indicators of the evaluated networks on the testing databases using different training sets. The best result on each test database is
highlighted in bold

Test Net Training Accuracy (%) EER (%)

BPCER (%) at

APCER ¼ 10% APCER ¼ 5% APCER ¼ 1%

MorphDBD AlexNet DigitalAu 98.3 1.8 0.8 0.8 3.8

DigitalMc 96.1 1.3 0.8 1.5 1.5

VGG19 DigitalAu 92.2 3.9 0.8 3.8 10.8

DigitalMc 94.3 4.3 0.8 3.1 5.4

VGG‐Face16 DigitalAu 93.9 3.9 0.8 1.5 10.0

DigitalMc 97.4 0.9 0.0 0.0 0.0

VGG‐Face2 DigitalAu 95.2 1.8 0.0 1.5 3.1

DigitalMc 93.0 0.9 0.0 0.8 0.8

MorphDBP&S AlexNet DigitalAu 43.5 28.7 50.8 53.8 66.2

DigitalMc 43.5 32.7 64.6 74.6 83.1

DigitalAu þ gP & SAu 67.4 20.9 43.1 52.3 70.0

DigitalMc þ gP & SMc 83.5 13.9 25.4 41.5 77.7

VGG19 DigitalAu 47.0 32.7 57.7 71.5 89.2

DigitalMc 44.3 30.4 52.3 66.9 84.6

DigitalAu þ gP & SAu 60.4 18.2 36.9 45.4 70.0

DigitalMc þ gP & SMc 56.5 24.8 49.2 54.6 55.4

VGG‐Face16 DigitalAu 60.4 12.7 13.8 20.8 69.2

DigitalMc 56.5 11.3 12.3 22.3 63.1

DigitalAu þ gP & SAu 89.6 7.3 7.7 15.4 39.2

DigitalMc þ gP & SMc 93.5 6.1 2.3 6.9 43.8

VGG‐Face2 DigitalAu 51.7 16.5 20.0 23.8 40.0

DigitalMc 45.7 15.7 18.5 33.1 80.0

DigitalAu þ gP & SAu 74.3 8.2 6.2 9.2 25.4

DigitalMc þ gP & SMc 86.5 6.1 4.6 7.7 17.7
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DigitalAu þ gP & SAu training sets are reported in Figure 10.
The graphs clearly show that the networks trained on digital
images only (DigitalAuÞ return a score close to 0 for both bona
fide and morphed images. This means that the modifications
introduced by P&S remove the textural details that makes bona
fide and morphed images distinguishable. When training is
extended with simulated P&S images (DigitalAu þ gP & SAu),
the network pre‐trained on face images (VGG‐Face16) is able
to learn P&S specific features making it able to discriminate
bona fide from morphed images. Therefore, the bona fide
scores become higher, while the morphed scores are generally
kept quite low, as clearly visible from the score distributions for
VGG‐Face16. On the contrary AlexNet does not benefit of
this further training step and its introduction determines an
increment of all the scores (bona fide and morphed).

6.3 | Results on NIST FRVT MORPH

Two of the most promising solutions identified in our internal
tests (AlexNet trained on DigitalAu for the digital images and
VGG‐Face16 trained on DigitalAu þ gP & SAu for the P&S
images) have been submitted for evaluation at NIST FRVT
MORPH which provides a huge and thorough comparative
evaluation of face morphing detection algorithms; most of the
tests are related to the digital context, but a small set of printed
and scanned images is also considered for performance eval-
uation. Please refer to the report [47] and the evaluation
website [59] for the full set of results; for lack of space,
Figure 11 is used to report a subset of the NIST DET plots

comparing single‐image based detection algorithms on several
image subsets (5 digital and 1 printed and scanned). Overall the
results show that morphing attack detection from single images
is a very hard task, in particular, when heterogeneous datasets
are considered. The proposed approach compares favourably
with most of the evaluated approaches, and presents overall
comparable performance with the ntnussl_002 algorithm. In
the Lincoln subset (Figure 11e) the proposed approach is
outperformed by other techniques, even if the best reference
value (APCER@BPCER ¼ 0.01%) is reached by the proposed
algorithm. In the Print and Scan dataset the proposed
approach ranks second among the tested algorithms and this is
very encouraging if we consider that no real printed/scanned
images have been used to train our system; this confirms the
efficacy of the simulation procedure proposed here.

The results in Figure 11d are worth of attention; in this
case the morphed images were generated using the morphing
algorithm described in Section 3.1 so the level of performance
achieved is of course very good, which is significantly better
than all the other results. This behaviour confirms the
importance of training the system with representative data and
suggests that a higher robustness can be achieved by extending
the training data to a variety of morphing algorithms. This
would probably also allow to improve the results on the sub-
sets of Figures 11e and 11(f)

6.4 | Results on SOTAMD benchmark

The same solutions tested at NIST have also been tested on
the SOTAMD benchmark, which revealed to be a very hard

AlexNet

VGG-Face16

F I GURE 1 0 Bona fide and morphed score distribution on MorphDBP&S for AlexNet and VGG‐Face16 networks obtained using the DigitalAu training set

(first column) and the DigitalAu þ gP & SAu training set (second column)
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challenge, as confirmed by the very modest results reached by
the tested algorithms (see Table 5). The proposed approach
achieves an EER value better than the other approaches in the

P&S testing set and this is a positive indicator since the
SOTAMD P&S images have been produced by multiple pro-
cessing pipelines reproducing the real workflow used by

F I GURE 1 1 DET plots reporting BPCER as a function of APCER for different testing subsets. The horizontal dotted dark green line represents
BPCER¼0.01. The proposed algorithm corresponds to the violet curve (unibo_000)
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different countries for passport issuing. However, in general,
the BPCER values measured in this benchmark are very bad,
confirming that morphing attack detection from single images
is still an open problem.

7 | CONCLUSIONS

In this work, different network architectures have been used
for single image face morphing detection in both digital and
P&S scenarios. In particular, P&S images are focused, which
still represent a big challenge today. Our initial experiments
on the MorphDBD dataset proved that good performance can
be achieved on digital images (BPCER¼0% at
APCER¼10%), confirming the effectiveness of different
networks already discussed in [19, 27, 28]. Unfortunately such
low error rates cannot be extended to P&S images (BPCER
about 12% at APCER¼10% on MorphDBP&S) if only digital
images are used for training. To overcome this problem, an
automatic generation procedure has been proposed to simu-
late the typical P&S image degradation. When combined with
automatic morphing generation it allows to produce a vast
amount of training data for network training/tuning without
the costs/efforts needed to manually print and scan face
images. The use of simulated P&S images allowed to signif-
icantly improve morphing attack detection performance,
achieving a BPCER¼2.3% at APCER¼10% on the
MorphDBP&S dataset. As to the different network architec-
tures analysed, the limited size of our training databases does
not allow to train large models from scratch, so all the CNN
used in this work were pre‐trained.

The experiments highlighted that CNN pre‐trained on
natural images (ImageNet) can perform well on digital im-
ages, while CNN specifically pre‐trained on face images
(VGG Face datasets) perform better on P&S images. We
argue that to detect textural differences between bona fide
and morphed (digital) images, the filters learned from natural
images are quite good, while in presence of P&S images

more sophisticated and face‐specific filters are necessary to
detect the fine artefacts that survive the printing and scan-
ning process.

The tests on the NIST and SOTAMD benchmarks
confirm the superiority of the proposed approach over other
existing solutions for several data subsets, but generally the
results obtained are quite modest. The complexity of those
two benchmarks is high and single‐image based morphing
attack detection approaches struggle to reach decent per-
formance. Therefore morphing attack detection from single
images has to be considered as a still open challenge and
the unsatisfactory results suggests the importance of a very
robust training, which can only be realised by increasing the
variability and representativeness of training data. Because of
this reason a direct extension of our work will be to further
increase the training set, using for instance different
morphing algorithms or different sets of parameters for the
P&S process.

The other important point to investigate in the future
works is to gain some insight about the factors influencing the
network decision. Some preliminary works [29] analysed the
importance of different face regions for morphing detection
on digital images. Further studies are necessary to better un-
derstand and explain these phenomena especially on P&S
images: we believe that existing visualisation techniques (see
[60]) can be profitably used for this purpose.

Finally, recently Generative Adversarial Networks (GAN)
[61] have been successfully used for various image generation
applications (e.g., [39, 62] ); their adoption for morphed image
generation and P&S simulation will be investigated in our
future researches.
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