203 research outputs found

    Response to comment on "Human-specific gain of function in a developmental enhancer"

    Get PDF
    Duret and Galtier argue that human-specific sequence divergence and gain of function in the HACNS1 enhancer result from deleterious biased gene conversion (BGC) with no contribution from positive selection. We reinforce our previous conclusion by analyzing hypothesized BGC events genomewide and assessing the effect of recombination rates on human-accelerated conserved noncoding sequence ascertainment. We also provide evidence that AT → GC substitution bias can coexist with positive selection

    Viral quasispecies inference from 454 pyrosequencing

    Get PDF
    10.1186/1471-2105-14-355BMC Bioinformatics141-BBMI

    Improved Lower Bounds for Constant GC-Content DNA Codes

    Full text link
    The design of large libraries of oligonucleotides having constant GC-content and satisfying Hamming distance constraints between oligonucleotides and their Watson-Crick complements is important in reducing hybridization errors in DNA computing, DNA microarray technologies, and molecular bar coding. Various techniques have been studied for the construction of such oligonucleotide libraries, ranging from algorithmic constructions via stochastic local search to theoretical constructions via coding theory. We introduce a new stochastic local search method which yields improvements up to more than one third of the benchmark lower bounds of Gaborit and King (2005) for n-mer oligonucleotide libraries when n <= 14. We also found several optimal libraries by computing maximum cliques on certain graphs.Comment: 4 page

    A Survey of Combinatorial Methods for Phylogenetic Networks

    Get PDF
    The evolutionary history of a set of species is usually described by a rooted phylogenetic tree. Although it is generally undisputed that bifurcating speciation events and descent with modifications are major forces of evolution, there is a growing belief that reticulate events also have a role to play. Phylogenetic networks provide an alternative to phylogenetic trees and may be more suitable for data sets where evolution involves significant amounts of reticulate events, such as hybridization, horizontal gene transfer, or recombination. In this article, we give an introduction to the topic of phylogenetic networks, very briefly describing the fundamental concepts and summarizing some of the most important combinatorial methods that are available for their computation

    Insertion Magnets

    Full text link
    Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.Comment: 19 pages, Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Repor

    Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree

    Get PDF
    Introduction: A gene tree for a gene family is often discordant with the containing species tree because of its complex evolutionary course during which gene duplication, gene loss and incomplete lineage sorting events might occur. Hence, it is of great challenge to infer the containing species tree from a set of gene trees. One common approach to this inference problem is through gene tree and species tree reconciliation. Results: In this paper, we generalize the traditional least common ancestor (LCA) reconciliation to define a reconciliation between a gene tree and species tree under the tree homomorphism framework. We then study the structural properties of the space of all reconciliations between a gene tree and a species tree in terms of the gene duplication, gene loss or deep coalescence costs. As application, we show that the LCA reconciliation is the unique one that has the minimum deep coalescence cost, provide a novel characterization of the reconciliations with the optimal duplication cost, and present efficient algorithms for enumerating (nearly-)optimal reconciliations with respect to each cost. Conclusions: This work provides a new graph-theoretic framework for studying gene tree and species tree reconciliations
    corecore