94 research outputs found

    A Future for Integrated Diagnostic Helping

    Get PDF
    International audienceMedical systems used for exploration or diagnostic helping impose high applicative constraints such as real time image acquisition and displaying. A large part of computing requirement of these systems is devoted to image processing. This chapter provides clues to transfer consumers computing architecture approaches to the benefit of medical applications. The goal is to obtain fully integrated devices from diagnostic helping to autonomous lab on chip while taking into account medical domain specific constraints.This expertise is structured as follows: the first part analyzes vision based medical applications in order to extract essentials processing blocks and to show the similarities between consumer’s and medical vision based applications. The second part is devoted to the determination of elementary operators which are mostly needed in both domains. Computing capacities that are required by these operators and applications are compared to the state-of-the-art architectures in order to define an efficient algorithm-architecture adequation. Finally this part demonstrates that it's possible to use highly constrained computing architectures designed for consumers handled devices in application to medical domain. This is based on the example of a high definition (HD) video processing architecture designed to be integrated into smart phone or highly embedded components. This expertise paves the way for the industrialisation of intergraded autonomous diagnostichelping devices, by showing the feasibility of such systems. Their future use would also free the medical staff from many logistical constraints due the deployment of today’s cumbersome systems

    Lincoln AI Computing Survey (LAICS) Update

    Full text link
    This paper is an update of the survey of AI accelerators and processors from past four years, which is now called the Lincoln AI Computing Survey - LAICS (pronounced "lace"). As in past years, this paper collects and summarizes the current commercial accelerators that have been publicly announced with peak performance and peak power consumption numbers. The performance and power values are plotted on a scatter graph, and a number of dimensions and observations from the trends on this plot are again discussed and analyzed. Market segments are highlighted on the scatter plot, and zoomed plots of each segment are also included. Finally, a brief description of each of the new accelerators that have been added in the survey this year is included.Comment: 7 pages, 6 figures, 2023 IEEE High Performance Extreme Computing (HPEC) conference, September 202

    MLPerf Inference Benchmark

    Full text link
    Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnitude in power consumption and five orders of magnitude in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. In this paper, we present our benchmarking method for evaluating ML inference systems. Driven by more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf prescribes a set of rules and best practices to ensure comparability across systems with wildly differing architectures. The first call for submissions garnered more than 600 reproducible inference-performance measurements from 14 organizations, representing over 30 systems that showcase a wide range of capabilities. The submissions attest to the benchmark's flexibility and adaptability.Comment: ISCA 202

    Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Get PDF
    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains

    A 58.6 mW 30 Frames/s Real-Time Programmable Multiobject Detection Accelerator With Deformable Parts Models on Full HD 1920×1080 Videos

    Get PDF
    This paper presents a programmable, energy-efficient, and real-time object detection hardware accelerator for low power and high throughput applications using deformable parts models, with 2x higher detection accuracy than traditional rigid body models. Three methods are used to address the high computational complexity of eight deformable parts detection: classification pruning for 33x fewer part classification, vector quantization for 15x memory size reduction, and feature basis projection for 2x reduction in the cost of each classification. The chip was fabricated in a 65 nm CMOS technology, and can process full high definition 1920 × 1080 videos at 60 frames/s without any OFF-chip storage. The chip has two programmable classification engines (CEs) for multiobject detection. At 30 frames/s, the chip consumes only 58.6 mW (0.94 nJ/pixel, 1168 GOPS/W). At a higher throughput of 60 frames/s, the CEs can be time multiplexed to detect even more than two object classes. This proposed accelerator enables object detection to be as energy-efficient as video compression, which is found in most cameras today.United States. Defense Advanced Research Projects AgencyTexas Instruments Incorporate

    Insect-vision inspired collision warning vision processor for automobiles

    Get PDF
    Vision is expected to play important roles for car safety enhancement. Imaging systems can be used to enlarging the vision field of the driver. For instance capturing and displaying views of hidden areas around the car which the driver can analyze for safer decision-making. Vision systems go a step further. They can autonomously analyze the visual information, identify dangerous situations and prompt the delivery of warning signals. For instance in case of road lane departure, if an overtaking car is in the blind spot, if an object is approaching within collision course, etc. Processing capabilities are also needed for applications viewing the car interior such as >intelligent airbag systems> that base deployment decisions on passenger features. On-line processing of visual information for car safety involves multiple sensors and views, huge amount of data per view and large frame rates. The associated computational load may be prohibitive for conventional processing architectures. Dedicated systems with embedded local processing capabilities may be needed to confront the challenges. This paper describes a dedicated sensory-processing architecture for collision warning which is inspired by insect vision. Particularly, the paper relies on the exploitation of the knowledge about the behavior of Locusta Migratoria to develop dedicated chips and systems which are integrated into model cars as well as into a commercial car (Volvo XC90) and tested to deliver collision warnings in real traffic scenarios.Gobierno de España TEC2006-15722European Community IST:2001-3809

    TinyVers: A Tiny Versatile System-on-chip with State-Retentive eMRAM for ML Inference at the Extreme Edge

    Full text link
    Extreme edge devices or Internet-of-thing nodes require both ultra-low power always-on processing as well as the ability to do on-demand sampling and processing. Moreover, support for IoT applications like voice recognition, machine monitoring, etc., requires the ability to execute a wide range of ML workloads. This brings challenges in hardware design to build flexible processors operating in ultra-low power regime. This paper presents TinyVers, a tiny versatile ultra-low power ML system-on-chip to enable enhanced intelligence at the Extreme Edge. TinyVers exploits dataflow reconfiguration to enable multi-modal support and aggressive on-chip power management for duty-cycling to enable smart sensing applications. The SoC combines a RISC-V host processor, a 17 TOPS/W dataflow reconfigurable ML accelerator, a 1.7 μ\muW deep sleep wake-up controller, and an eMRAM for boot code and ML parameter retention. The SoC can perform up to 17.6 GOPS while achieving a power consumption range from 1.7 μ\muW-20 mW. Multiple ML workloads aimed for diverse applications are mapped on the SoC to showcase its flexibility and efficiency. All the models achieve 1-2 TOPS/W of energy efficiency with power consumption below 230 μ\muW in continuous operation. In a duty-cycling use case for machine monitoring, this power is reduced to below 10 μ\muW.Comment: Accepted in IEEE Journal of Solid-State Circuit

    AI and ML Accelerator Survey and Trends

    Full text link
    This paper updates the survey of AI accelerators and processors from past three years. This paper collects and summarizes the current commercial accelerators that have been publicly announced with peak performance and power consumption numbers. The performance and power values are plotted on a scatter graph, and a number of dimensions and observations from the trends on this plot are again discussed and analyzed. Two new trends plots based on accelerator release dates are included in this year's paper, along with the additional trends of some neuromorphic, photonic, and memristor-based inference accelerators.Comment: 10 pages, 4 figures, 2022 IEEE High Performance Extreme Computing (HPEC) Conference. arXiv admin note: substantial text overlap with arXiv:2009.00993, arXiv:2109.0895
    corecore