6,832 research outputs found

    RetroMine, or how to provide in-depth retrospective studies from Medline in a glance: the hepcidin use-case

    No full text
    International audienceThe rapid expansion of biomedical literature has provoked an increased development of advanced text mining tools to rapidly extract relevant events from the continuously increasing amount of knowledge published periodically in PubMed. However, bioinvestigators are still reluctant to use these tools for two reasons: i) a large volume of events is often extracted upon a query, and this volume is hard to manage, and ii) background events dominate search results and overshadow more pertinent published information, especially for domain experts. In this paper, we propose an approach that incorporates the temporal dimension of published events to the process of information extraction to improve data selection and prioritize more pertinent periodically published knowledge for scientists. Indeed, instead of providing the total knowledge associated with a PubMed query, which is usually a mix of trivial background information and non-background information, we propose a method that incorporates time and selects non background and highly relevant biological entities and events published over time for bioinvestigators. Before excluding background events from the total knowledge extracted, a quantification of their amount is also provided. This work is illustrated by a case study regarding Hepcidin gene publications over a decade, a duration that is sufficiently long enough to generate alternative views on the overall data extracted

    Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences

    No full text
    Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information

    Mathematical modeling of the metastatic process

    Full text link
    Mathematical modeling in cancer has been growing in popularity and impact since its inception in 1932. The first theoretical mathematical modeling in cancer research was focused on understanding tumor growth laws and has grown to include the competition between healthy and normal tissue, carcinogenesis, therapy and metastasis. It is the latter topic, metastasis, on which we will focus this short review, specifically discussing various computational and mathematical models of different portions of the metastatic process, including: the emergence of the metastatic phenotype, the timing and size distribution of metastases, the factors that influence the dormancy of micrometastases and patterns of spread from a given primary tumor.Comment: 24 pages, 6 figures, Revie

    Systems biology approaches to a rational drug discovery paradigm

    Full text link
    The published manuscript is available at EurekaSelect via http://www.eurekaselect.com/openurl/content.php?genre=article&doi=10.2174/1568026615666150826114524.Prathipati P., Mizuguchi K.. Systems biology approaches to a rational drug discovery paradigm. Current Topics in Medicinal Chemistry, 16, 9, 1009. https://doi.org/10.2174/1568026615666150826114524

    Data-analysis strategies for image-based cell profiling

    Get PDF
    Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe

    Transcriptional responses to radiation exposure facilitate the discovery of biomarkers functioning as radiation biodosimeters

    Get PDF
    The development of new methods for a retrospective quantification of the radiation dose of exposed individuals is of widespread interest. To this end, I developed a computational framework for biomarker discovery and radiation dose prediction and successfully identified gene signatures with which low and medium to high radiation doses can be accurately quantified. To enhance our understanding of the radiation-induced transcriptional response, I additionally analyzed microarray data of human PBLs after ex vivo gamma-irradiation and characterized affected functional processes and pathways
    • …
    corecore