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ber in dieser Form nicht möglich gewesen. Danke, dass Du mich bei unseren Treffen immer
freundlich empfangen und fachlich unterstützt hast.

Außerdem danke ich Prof. Mario Stanke, dass er sich bereit erklärt hat, diese Arbeit zu
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mir oft geholfen, Dinge aus einer anderen Perspektive zu betrachten. Aus unseren Gesprächen
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Außerdem danke ich Florian, Katja, Änne, Yvonne und Nina für die Korrektur meiner Arbeit.

I
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Abstract

The use of ionizing radiation is a double-edged sword. On the one hand, ionizing radiation
causes a broad scope of adverse human health effects, ranging from long-term effects like an
increased cancer risk to short-term effects like radiation sickness. On the other hand, radiation
offers many benefits to our society. Especially, the medical use of ionizing radiation for disease
diagnosis and treatment, such as radiological imaging or radiotherapy, is of vital importance
and is constantly increasing. Since accidental and occupational exposures have become more
frequent over the last decades, the development of new methods for a retrospective quantifi-
cation of the radiation dose of exposed individuals is of current widespread interest.
The primary goal of this thesis is the identification of gene expression-based signatures al-
lowing a retrospective estimation of radiation doses after a radiation accident. To this end, I
developed and implemented a bioinformatics-driven framework for biomarker discovery and
radiation dose prediction. In light of recent concerns about the non-reproducibility of putative
biomarkers, the algorithmic design of my computational framework intends to support the
identification of gene signatures having a high stability with respect to data variations.
Ionizing radiation evokes an elaborate cellular DNA damage response including a complex
transcriptional regulation. In this thesis, I first analyzed gene expression alterations in hu-
man peripheral blood lymphocytes after ex vivo γ-irradiation and characterized functional
processes and pathways affected by low, medium and high dose exposure. My statistical and
functional DNA-microarray analysis shows that (i) both the time after exposure and the ra-
diation dose substantially influence the transcription and that (ii) even low dose exposure
leads to well-defined physiological responses. By applying my computational framework to
our DNA-microarray data, I successfully identified two gene signatures with which low and
medium to high radiation doses can be accurately estimated respectively.
In conclusion, the results of the present work enhance our understanding of the transcriptional
response induced by ionizing radiation. Furthermore, this study confirms the idea that gene
expression profiles are a valuable tool for estimating even low radiation doses in a rapid and
reliable manner. The results may provide the basis for a refined biodosimetry platform which
can be utilized after radiation accidents to guide medical treatment in the future.
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Zusammenfassung

Die Verwendung ionisierender Strahlung ist ein zweischneidiges Schwert. Einerseits besitzt
ionisierende Strahlung eine umfangreiche gesundheitsschädigende Wirkung, die von Langzeit-
folgen, wie erhöhtem Krebsrisiko, bis zu Kurzzeitauswirkungen, wie der Strahlenkrankheit,
reicht. Andererseits bietet Strahlung großen gesellschaftlichen Nutzen. Insbesondere ihre medi-
zinische Anwendung in der Krankheitsdiagnostik und -behandlung, wie der radiologischen
Bildgebung oder Strahlentherapie, ist von zunehmender Bedeutung. Aufgrund vermehrter
unfall- oder berufsbedingter Expositionen ist die Entwicklung neuer Methoden für eine ret-
rospektive Quantifizierung der Strahlendosis exponierter Personen von großem Interesse.
Primäres Ziel dieser Dissertation ist die Identifikation von expressionsbasierten Gensignaturen
für eine rückwirkende Abschätzung der individuellen Strahlendosis nach Strahlenunfällen. Zu
diesem Zweck entwickelte und implementierte ich ein Framework, dessen algorithmisches De-
sign aufgrund aktueller Bedenken über die Nichtreproduzierbarkeit potentieller Biomarker
die Identifikation von Gensignaturen zur Strahlendosisvorhersage mit einer hohen Stabilität
gegenüber Datenabweichungen unterstützt.
Ionisierende Strahlung ruft eine umfangreiche zelluläre DNA Schadensantwort hervor, ein-
schließlich einer komplexen transkriptionellen Regulation. Folglich analysierte ich zunächst die
Genexpressionsänderungen in humanen peripheren Lymphozyten nach ex vivo γ-Bestrahlung
und charakterisierte die durch geringe, mittlere und hohe Strahlendosen induzierten funk-
tionalen Prozesse und Signalwege. Meine statistische und funktionale DNA-Microarray Anal-
yse zeigt, (i) dass sowohl die Zeit nach Exposition, als auch die Strahlendosis einen maßge-
blichen Einfluss auf die Transkription ausüben und (ii) dass sogar Niedrigdosisbestrahlung
zu einer klar definierten physiologischen Antwort führt. Mit Hilfe meines Frameworks iden-
tifizierte ich zwei Gensignaturen, anhand derer geringe bzw. mittlere bis hohe Strahlendosen
präzise vorhergesagt werden können.
Die hier vorliegende Arbeit trägt zu einem besseren Verständnis der durch ionisierende Strah-
lung induzierten transkriptionellen Antwort bei. Zudem bestätigt sie die Idee, dass Genex-
pressionsprofile ein wertvolles Instrument darstellen, um sogar geringe Strahlendosen, schnell
und zuverlässig abschätzen zu können. Letztendlich, legt sie den Grundstein für ein verfein-
ertes biodosimetrisches Assay, das im Falle eines Strahlenunfalls eingesetzt werden kann, um
geeignete medizinische Behandlungen einzuleiten.
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Chapter 1
Introduction

Synopsis
The introduction of this interdisciplinary dissertation sets the biological and bioinformatics
context of my work. The application of computational approaches to high-throughput exper-
imental data provides a great opportunity to discover new knowledge and to gain a better
understanding of the biological system being studied. I here frame the problem of biomarker
discovery from high-throughput gene expression data. To this end, I present a typical work-
flow for the identification of biomarker signatures and summarize common approaches for
each step. Furthermore, I show that this topic has the potential to support radiation research
and can help to overcome limitations of current techniques for radiation biodosimetry. Addi-
tionally, I outline the scientific motivation for my research and point out the major objectives
of this dissertation.
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1.1 Motivation and objectives

1.1 Motivation and objectives

Ionizing radiation induces many types of deoxyribonucleic acid (DNA)-lesions, which
trigger a highly interwoven network of intracellular and intercellular regulatory mech-
anisms. The cellular response to DNA damage orchestrates major processes, such as
apoptosis, cell cycle progression and DNA repair, and is accompanied by a complex
transcriptional regulation. My motivation to investigate these radiation-induced tran-
scriptional changes by gene expression profiling is twofold:

1. Measuring the gene expression accomplished by a statistical and bioinformatics-
driven analysis helps to understand and characterize the functional processes and
pathways involved in the DNA damage response. The molecular mechanisms trig-
gered by low radiation doses in particular are still unclear and require further
investigations.

2. Gene-based biomarkers are a promising tool for the retrospective estimation of ra-
diation doses, which allow for a fast, minimally invasive and automated screening
of a large number of exposed people. Whereas the ability to discriminate medium
to high radiation doses can guide medical decision making after a large-scale ra-
diation accident, the discrimination of low radiation doses on the basis of gene
expression changes is not essential for acute medical decision making but may
support the assessment of associated long-term health risks of exposed individu-
als. This recent branch of radiation biodosimetry is an ongoing topic of research,
and problems such as the concern about the poor reproducibility of gene-based
biomarkers have to be resolved. Whether gene expression dosimeters are an ap-
propriate tool for discriminating low radiation doses is open to analysis and awaits
further clarification.

In this thesis, I statistically investigated the transcriptional response in human periph-
eral blood lymphocytes (PBLs) to low, medium, and high dose exposure and function-
ally characterized the time-dependent and dose-dependent gene expression changes.
This comprehensive and systematic DNA-microarray analysis is the first step towards
an identification of gene expression biomarkers functioning as radiation biodosimeters.
To achieve this goal, I developed and implemented a computational framework whose
algorithmic design intends to support the discovery of stable biomarker genes. By apply-
ing this framework to our DNA-microarray data of irradiated human PBLs, I address
the question of whether gene expression-based biomarkers are applicable for a retro-
spective estimation of radiation doses, and identify candidate biomarker signatures for
the discrimination of low and medium to high radiation doses respectively. Ultimately,
my work intends to enhance our understanding of the transcriptional response induced
by ionizing radiation, especially after low dose exposure, and may provide the basis
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1 Introduction

for a refined biodosimetry platform based on gene expression alterations to estimate
radiation doses in radiation accidents in the future.

1.2 Microarray-based biomarker discovery

An major goal of biomedical research is the development of new approaches for di-
agnosis, treatment and prevention of diseases. In this context, researchers often seek
biological parameters, so called biomarkers, which are indicative for specific health or
disease characteristics (Vasan, 2006). As defined by the Biomarkers Definitions Working
Group, a biomarker is a “characteristic that is objectively measured and evaluated as
an indicator of normal biological processes, pathogenic processes, or pharmacologic re-
sponses to a therapeutic intervention” (Atkinson et al., 2001). The applications of such
indicators are manifold: they can be utilized (a) to recognize an overt disease, (b) to
screen a subclinical disease, (c) to predict the course of a disease including the patients
response to therapeutic interventions, (d) to estimate the risk of developing a disease,
or (d) to categorize a disease severity (Vasan, 2006). The discovery of prognostic or
diagnostic biomarkers are thus a major step towards personalized medicine.
Whereas many of the already well-established, clinically relevant biomarkers are single
molecular species or characteristics, modern molecular biology provides data sources
for predictive signatures combining multiple molecular constituents. The discovery of
molecular signatures from high-throughput “Omics” data is an active research topic
in the field of bioinformatics (McDermott et al., 2013). A typical workflow for high-
throughput data analysis and biomarker discovery, at which biologists and bioinformati-
cians are equally involved, is illustrated in Figure 1.1 on the following page. Ideally, the
experimentally validated results obtained within this process enhance the understand-
ing of the biological system under study and motivate the design of new experiments.
The depicted procedure is basically applicable to many types of “Omics” data, even
though single steps may vary in their implemented approaches. In what follows, each
step is discussed in more detail, whereby the description is mainly dedicated to the
analysis of gene expression data. Therefore, the next two sections offer a survey on the
basics of gene expression profiling and the fundamentals of microarray data analysis
for biomarker discovery.

1.2.1 Gene expression profiling

Gene expression is the multi-staged biological process of synthesising proteins from
genes. In the first stage, the transcription, single-stranded transcripts of genes and
other types of functional ribonucleic acid (RNA) molecules are produced. In Eukary-
otic organisms, these transcripts of genes are called precursor messenger RNA (mRNA),
which undergo post-transcriptional modifications before they are translocated from the
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1.2 Microarray-based biomarker discovery

(High-throughput) Data 
generation

Data pre-processing 

Data exploration 
and 

statistical testing

Feature selection
and

supervised classification

Performance evaluation

Experimental validation

Wet-lab

Computer-lab

Wet-lab

Prior biological
knowledge

Figure 1.1: Generic workflow for high-throughput data analysis and biomarker
discovery.

nucleus to the cytoplasm as mature mRNA molecules. The second stage of gene expres-
sion is then carried out at the ribosomes, where the mRNA molecules are translated
into their corresponding amino acid sequence, the proteins. The complete set of RNA
transcripts in a cell, including their quantity at a certain time point, is defined as the
transcriptome (Wang et al., 2009b). The composition of the transcriptome varies for
different cell types and is highly dependent on internal and external conditions of the
cell (Velculescu et al., 1997).
The major aims of transcriptomics, which is the study of the cells transcriptome, are
to characterize the constituents of the cell, to determine the cell- and condition-specific
dynamics of transcriptional activity and to investigate regulating mechanisms of mRNA
production (Jayaraman and Hahn, 2009; Wang et al., 2009b).
As recently as two decades ago, the transcriptome research was limited due to experi-
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1 Introduction

mental techniques which could only quantify the expression levels of a small number of
genes, each of them separately measured. Nowadays, various high-throughput experi-
mental techniques have been developed, which simultaneously monitor the expression
level of thousands of genes. For gene expression profiling, either hybridization-based
approaches, such as microarrays, or sequence-based approaches (Holt and Jones, 2008),
like serial analysis of gene expression (SAGE) (Harbers and Carninci, 2005) or the most
recently developed RNA sequencing (RNA-Seq) technology, exist.
Up until now, DNA-microarrays have been extensively utilized for gene expression pro-
filing in diverse biological contexts. The basic principle is that an ordered set of DNA
fragments is positioned on a solid surface. The DNA fragments serve as probes for bind-
ing specific sequences of nucleic acids (i.e. targets) corresponding to particular genes of
the genome. Dependent on the type of microarray, probes of different length are used
for target hybridization. Common types are complementary DNA (cDNA)-microarrays,
which utilize probes of hundreds or thousands of base pairs, or oligonucleotide arrays,
which use shorter probes with a length of approximately 50 base pairs. The hybridized
targets are labeled with a fluorescent tag and after washing, the array is scanned in or-
der to measure the signal emitted by the labeling dye at each sequence-specific location
(Jaluria et al., 2007). Assuming that the emitted signal is directly proportional to the
amount of mRNA present in the sample under study, microarrays do not derive abso-
lute levels of expression but provide a quantification which can be useful to compare
different samples measuring gene expression levels under different conditions.
The advent of high-throughput technologies supported a shift from the classical re-
ductionist approach of studying individual genes to a systems level approach, where
the entire system of gene expression is considered. Although a more global view on
the transcriptional states of a cell is an advantage, the wealth of expression data pro-
duced by gene expression profiling makes new demands and poses challenges for storing,
retrieving and analyzing the data.

1.2.2 Computational concepts

After high-throughput data generation, there are four main steps for computational
data analysis and biomarker discovery which have to be passed: (1) data pre-process-
ing, (2) data exploration and statistical testing, (3) feature selection and
supervised classification, and (4) performance evaluation (see Figure 1.1 on the
preceding page).

Data pre-processing: First, the experimental raw data have to be processed. Typical is-
sues of data pre-processing include quality assessment, removal of systematic sources of
variation, scaling of raw data and the detection of outliers. For microarray experiments,
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1.2 Microarray-based biomarker discovery

the pre-processing normally consists of (a) background subtraction, which is based on
the assumption that the measured signal intensity is composed of the fluorescence of the
spot and some background noise, (b) scaling of signal intensities by log-transformation,
and (c) data normalization. Whereas the need for background correction has been
controversially discussed (Zahurak et al., 2007), scaling and normalization are inher-
ent parts of each analysis. Microarray experiments are subject to multiple sources of
technical variations, including differences in mRNA preparation, cDNA labeling or hy-
bridization efficiency, which can considerably limit the biological interpretability of the
data (Quackenbush, 2002). Normalization is a mean to adjust for such effects of tech-
nical errors within and between different arrays. A variety of different techniques for
normalization has been developed, but the choice for the most appropriate method is
dependent on both the context of the performed study and the array technology used
for gene expression profiling (Smyth and Speed, 2003).

Data exploration and statistical testing: After pre-processing the raw data, the first
step of high-throughput data analysis is often to investigate the underlying structure
of the given data in an explorative way by cluster analysis. The goal of cluster anal-
ysis is to divide the measured data into groups (i.e. clusters) of similar data points,
whereby the data points within one group are more similar to each other than data
points of distinct groups. For a microarray experiment, in which genes are measured
under different conditions, either genes with similar expression patterns across various
conditions or samples with similar expression patterns across the measured transcrip-
tome are identified. A review of existing clustering methods for gene expression data is
given by Jain (2010).
The identification of differentially expressed genes, e.g. genes which show significant
changes in gene expression between different conditions, is one of the basic goals of
microarray experiments. To this end, statistical testing has to be carried out and often
the main difficulty lies in the choice of the appropriate test statistic, which is most of
all dependent on the experimental design (e.g. number of conditions and influencing
factors, repeated measurements) and the nature of the underlying data. A detailed dis-
cussion of this issue is beyond the scope of this introduction and interested readers are
referred to the review of Cui and Churchill (2003).
When testing for differentially expressed genes, two types of errors can occur: either a
gene is declared as differentially expressed when it is not (i.e. Type I error) or a truly
differentially expressed gene is not identified as such (i.e. Type II error). Since each
statistical test has a specified Type I error probability, the chance of committing some
Type I errors increases with the number of hypothesis tested (Dudoit et al., 2003).
For this reason, in the context of microarray analysis, a considerable number of genes
may be identified as differentially expressed simply by chance. For a scenario of a large
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1 Introduction

number of simultaneously tested hypothesis, the Type I error rate can be controlled
by applying multiple testing procedures. Dudoit et al. (2003) discusses different ap-
proaches for multiple hypothesis testing in the context of microarray experiments and
compares the procedures on microarray and simulated datasets.
The discovery of genes with similar expression patterns across various conditions by
clustering, or the identification of differentially expressed genes by statistical testing,
is just an intermediate step towards the in-depth understanding of biological systems
under study. The functional interpretation of the results is indispensable. The system-
atized knowledge about gene and protein function provided by the Gene Ontology (GO)
consortium (Ashburner et al., 2000) or the information of biological pathway databases,
like Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2012), both
utilized in the present thesis, are just two of a myriad of available resources to derive
biologically meaningful results from high-throughput data experiments.

Feature selection and supervised classification: Given a high-dimensional dataset rep-
resenting two or more biological conditions (such as healthy and diseased), the goal
of biomarker discovery is to find a subset of all measured features, with which the
conditions under study, also referred to as classes or class labels, can be accurately pre-
dicted. Dependent on the underlying data, the features can be, for example, proteins,
metabolites or, if gene expression profiling was performed in the first step, genes. If
more than one feature is selected for class prediction, one often speaks of a molecular
signature functioning as a biomarker. For biomarker discovery, feature selection meth-
ods in combination with supervised classification algorithms are commonly used. The
basic principle behind this is that with a feature selection method a subset of features
is extracted from data for which the classes are known. The measured values of these
features (e.g. gene expression levels) together with their class labels (i.e. the condition
under which they were measured) serve as an input for the supervised classification
algorithm in order to train a classifier. Classifier training is the process of learning a
set of rules or a mathematical model, which can then be used to predict the class labels
of new observations. The prediction of class labels of new observations, by which the
features but not the biological conditions under which they were measured are known,
is called classifier prediction.
The extraction of feature subsets for classification has several advantages: it reduces
the dimensionality of high-throughput data, limits the risk of overfitting during classi-
fication (see next section for explanation), supports a computationally faster classifier
training and may help to gain a deeper insight into the underlying processes that
generated the data (Saeys et al., 2007). The existing feature selection methods can
be categorized into three main approaches, namely the filter, wrapper and embedded
methods (John et al., 1994). Filter techniques score the relevance of individual features
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1.2 Microarray-based biomarker discovery

or feature subsets without incorporating any classification scheme. Typical scoring pro-
cedures include statistical testing or the analysis of relationships (e.g. correlations)
between feature measurements and class labels. The features are ranked according to
their relevance scores and a certain set of best-ranked features are selected for sub-
sequent classifier training. Wrapper techniques, on the other hand, traverse the space
of possible feature subsets and evaluate their prediction performance by applying a
pre-defined supervised machine learning algorithm for classifier training. The space of
possible feature subsets is often pruned by heuristic search algorithms and the sub-
set associated with the highest performance is then selected. The third category of
methods, the embedded techniques, directly integrates the search and selection of fea-
ture subsets into the process of classifier training, which means that feature selection
and classifier training cannot be separated from each other. For all categories many
approaches have been proposed, differing in their complexity and thereby in their in-
terpretability. Sometimes, additional biological information is utilized to support the
process of feature selection. The integration of prior biological knowledge from external
repositories, such as pathway information, aims at a reduction of the dimensionality by
only selecting features which are known to be relevant in the given biological context.
Once a subset of features is identified, their measurements and class labels serve as an
input for classifier training by applying supervised classification algorithms. Supervised
classification algorithms can be statistical methods like discriminant analysis or ma-
chine learning techniques. For the latter, numerous approaches have been proposed in
the last decades, which range from simple approaches like the instance-based learning
methods to more complex approaches like support vector machines and random forests.
Since instance-based learning, with the k-nearest neighbour (KNN) approach as its
main representative, is an important component of the present work, it is explained in
more detail in Section 4.1 on page 44. For a more detailed description of other machine
learning algorithms, like support vector machines, decision trees, neuronal networks or
Bayesian methods, including a discussion on their individual advantages and shortcom-
ings, the reader is referred to the reviews of Kotsiantis (2007) and Larrañaga et al.
(2006). The choice of the most appropriate learning algorithm is a critical step and
highly dependent on the underlying data and context. Systematic evaluation studies
comparing different supervised learning approaches applied to different datasets may
support this decision (Dudoit et al., 2002; Lee et al., 2005).

Performance evaluation: The fourth step of the here described biomarker discovery
pipeline is, as illustrated in Figure 1.1 on page 4, the evaluation of the classifier per-
formance. The performance is a measure to describe how well a classifier discriminates
the classes, i.e. predicts the class labels of new observations. A key concept of the
performance evaluation of supervised classifications is that the performance has to be
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Figure 1.2: Scheme of a supervised classification procedure of using biomarker
signatures for outcome prediction. A: A subset of features is selected from the given
experimental data by applying a feature selection method. This subset represents the can-
didate biomarker signature. In the here presented example, a gene expression signature is
selected from microarray samples of patients which are either healthy or diseased. The mea-
sured values of the signature (e.g. gene expression levels) together with their class labels
(i.e. the condition under which they were measured like healthy and diseased) serve as an
input for the supervised classification algorithm in order to train a classifier. B: The trained
classifier model can be utilized to predict the class labels of new observations. This process
is called classifier prediction. Here, the new observation is a microarray sample of a patient
with unknown health status. From this all features of the candidate biomarker signature are
selected. The classifier model predicts based on the measurements of the selected features the
class label of the new observation (e.g. diseased).

evaluated with data which were not used for feature selection and classifier training
before. Only when using a disjoint dataset a reliable conclusion can be drawn that
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1.3 Radiation biodosimetry

the learned characteristics of the data in the training phase can be generalized to new
observations. The use of distinct datasets for classifier training and performance eval-
uation (i.e. classifier testing) is often a concern in practical applications because the
amount of experimental data is usually limited. Especially in high-throughput experi-
ments, the number of measured samples, i.e. conditions, is far smaller than the number
of measured features. Such datasets are prone to a phenomena called overfitting, mean-
ing that the classifier appears to have a good performance on the training data but
shows only limited capabilities of generalization and is therefore unable to accurately
predict new observations. A common strategy to deal with the limited amount of data
and with the problem of overfitting is to perform cross-validation procedures (Kohavi,
1995). Here, a classifier is trained on a subset of data (called training set) and tested
on the remainder (called test set). Repeating this systematically by using different par-
titioning of the data, cross-validation has the potential of employing the entire training
set for testing, albeit not at once, and simultaneously creating the largest possible test
set for a fixed training set (Rao et al., 2008). By aggregating the classifier performances
obtained for each pair of training and test sets, an overall performance for the classi-
fier can be obtained. Depending on the way the data are partitioned into training and
test sets, various types of cross-validation procedures can be distinguished. Some of
the most common types are hold-out cross-validation, k-fold cross-validation or leave-
one-out cross-validation. This splitting approach for performance evaluation is called
internal validation.
After a potential biomarker signature (i.e. feature subset) is extracted and its ability
for class prediction was evaluated by an internal validation strategy, it is recommended
to employ an additional external validation. An external validation, comprising of a
classifier prediction with a distinct dataset of new biological samples, supports drawing
meaningful conclusions on the capability of generalization of the identified biomarker
signature.
In the next step, the potential biomarker signature should be experimentally verified.
For example, if a potential gene signature was identified based on microarray gene
expression data, it is common practice to additionally confirm the gene expression al-
terations with quantitative real-time polymerase chain reaction (qRT-PCR) using an
independent, newly generated dataset.

1.3 Radiation biodosimetry

Radiation is part of our daily life. Due to radioactive material in the Earth’s crust
and atmosphere as well as radioactive substances within our body, we are constantly
exposed to radiation. Most of the radiation we receive in our life originates from these
natural sources. Smaller but constantly increasing is the exposure to radiation from
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man-made sources. Especially in medicine, ionizing radiation has become to an es-
sential tool for therapy and diagnosis, but also numerous industrial and agricultural
applications considerably profit from its use. Since many of these man-made sources
have become an integral part of our world, the risk of radiation accidents and potential
health hazards has increased. This development raises not only the question of the un-
derlying risks and health effects of radiation exposure but also substantiates the need
to protect human beings from its harmful effects.
People working in an actual or potential radiation environment are supposed to wear
small radiation detection devices. These personal physical dosimeters accurately moni-
tor the external radiation dose and after an occupational exposure they provide valuable
information for medical management. However, in case of a radiation accident, where
a large number of persons without physical dosimeters are affected, the information of
personnel monitoring measurements are either incomplete or completely lacking. In this
case, methods for retrospective physical and biological dosimetry are a supplementary
or even an alternative means to estimate the radiation dose already received by an
individual. Hereby, biological dosimetry (i.e. biodosimetry) refers to the measurement
of biological markers that can be quantitatively related to the magnitude of the radi-
ation dose (Simon et al., 2010). Accurately estimating the received radiation dose of
accidently exposed people can assist prompt medical decision making and might help
to assess the risk of long term consequences from radiation exposure.
There is a lasting need to improve already existing techniques of radiation biodosimetry
as well as to stimulate research into the development of new techniques. In the following,
after briefly reviewing the fundamentals of ionizing radiation, already established meth-
ods for dose quantification are presented. Furthermore, a recent biodosimetric branch,
namely the development of gene expression-based dosimeters, is introduced.

1.3.1 Ionizing radiation and its health effects

Ionizing radiation is composed of particles which have enough energy for produc-
ing charged ions when passing through matter by detaching electrons from atoms or
molecules. One distinguishes between two types of ionizing radiation: the first is called
particulate radiation and involves charged or uncharged fast-moving particles that have
both energy and mass. Particulate radiation is primarily produced by disintegration of
unstable atoms. α-radiation (i.e. the emission of alpha-particles consisting of two pro-
tons and two neutrons) and β-radiation (i.e. the emission of beta-particles consisting
of either an electron or a positron) belong to this category of radiation. Whereas alpha-
particles have a very short range in matter due to their large mass and can be easily
shielded with paper-thin materials, beta-particles have a greater capability of penetra-
tion and shielding materials typically include aluminum (Woodside, 1997). The second
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type of ionizing radiation is electromagnetic radiation (photons), with energy but no
mass. γ-rays, and X-rays belong to this category (Rana et al., 2010). Gamma-ray pho-
tons have no mass or charge and can penetrate tissues easily (Woodside, 1997).
The amount of ionizing radiation is defined as the energy absorbed per unit of mass.
The absorbed dose is expressed in units of gray (Gy), where 1 Gy equals 1 joule of en-
ergy absorbed per kilogram of matter (Cameron, 1991). The biological damage caused
by a particle depends not only on the received radiation dose but also on its linear
energy transfer (LET), which is defined as the rate of energy loss per unit distance
traversed by the particle. Therefore, a commonly used measure is the equivalent dose,
which takes into account the type of radiation in terms of a radiation-weighting factor,
which is then multiplied by the absorbed dose. The unit of the equivalent dose is sievert
(Sv). Considering β-ray, X-ray, and γ-ray radiation, the equivalent dose is equal to the
absorbed dose, whereas for α-ray radiation, the equivalent dose is assumed to be twenty
times the absorbed dose (Cameron, 1991). For some applications gray and sievert are
inconveniently large and thus milligray (mGy), defined as 1/1,000 gray, and millisievert
(mSv), defined as 1/1,000 sievert, are frequently used instead.
Whole-body or significant partial-body exposure to ionizing radiation can increases the
long-term risk for cancer (Brenner et al., 2003) and can cause the acute radiation syn-
drome. The onset and type of the symptoms of the acute radiation syndrome depends
on the energy and dose of the exposure. Following radiation exposure, three distinct
syndromes may occur: the cerebrovascular syndrome occurs after extremely high whole-
body doses of radiation (> 30 Gy) as a result of hypotension and cerebral edema and
is always fatal (Koenig et al., 2005). The gastrointestinal syndrome occurs after acute
whole-body doses of approximately 6 to 20 Gy, primarily because of death of intestinal
mucosal stem cells (Koenig et al., 2005). Typical symptoms of the prodromal phase
(minutes to two days after exposure) are nausea and vomiting, headache, fatigue and
fever (see Table 1.1 on the facing page). The third syndrome is the hematopoietic syn-
drome, which occurs after acute whole-body doses of approximately 2 to 10 Gy as a
result of bone marrow depression. Lymphocyte depression can occur within 48 hour(s)
(h). In Koenig et al. (2005) all three syndromes with their clinical signs, their medical
treatment and the prognosis of exposed individuals are discussed in more detail.

1.3.2 Cytogenetic techniques for dose quantification

It has previously been shown that direct clinical signals, like the time to onset and
the severity of typical symptoms of the acute radiation syndrome (see Table 1.1), can
be correlated with the absorbed dose (Waselenko et al., 2004) and allow a rough esti-
mation of the dose after whole-body acute exposures greater than 1 Gy (Simon et al.,
2010). Based on these observations, several grading systems have been established,
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Dose range of acute whole-body exposure

Symptoms Mild Moderate Severe Very severe Lethal
and Signs (1–2 Gy) (2–4 Gy) (4–6 Gy) (6–8 Gy) (> 8 Gy)

Vomiting
- Onset 2 h 1–2 h < 1 h < 30 min < 10 min
- Incidence 10–50% 70–90% 100% 100% 100%

Diarrhea Mild Heavy Heavy
- Onset 2 h 1–2 h 3–8 h 1–3 h < 1 h
- Incidence < 10% > 10% 100%

Headache Slight Mild Moderate Severe Severe
- Onset 4–24 h 3–4 h 1–2 h
- Incidence < 10% > 10% ≈ 100%

Table 1.1: Symptoms of the prodromal phase of the acute radiation syndrome.
The table is adapted from Koenig et al. (2005).

linking clinical symptoms with radiation dose and with prognostic probabilities of the
patient’s outcome (Dainiak et al., 2003; Fliedner et al., 2001). Similarly, haematological
alterations, like the magnitude and rate of absolute lymphocyte depletion, can be used
as a prognostic marker for estimating the radiation dose (Koenig et al., 2005). Both
clinical signals and haematological alterations are useful for a fast, initial screening of
exposed individuals, which is important to support prompt medical decision making
and risk assessment, but their application is also limited for two reasons. First, they are
not specific to ionizing radiation (Dainiak et al., 2003); pathologic agents, for example,
can induce similar clinical signs and symptoms. Second, the minimum dose which can
be estimated by such clinical and laboratory assays, is many times higher than the
doses persons would be accidentally exposed to (Pinto et al., 2010). With lymphocyte
depletion kinetics, for example, one can assess doses between 1 and 10 Gy with an ex-
posure resolution of approximately 2 Gy (Waselenko et al., 2004). Thus, the sensitivity
(i.e. the minimum detectable dose) of these techniques is too low for many practical
applications.
Cytogenetic techniques allow for more accurate, precise and sensitive estimations of ra-
diation doses. Ionizing radiation causes chromosomal aberrations which can serve as bio-
markers for radiation exposure. For dose quantification, cytogenetic methods investigate
either unstable chromosomal aberrations, such as dicentrics, centric rings and acentric
fragments, whose persistence decline with the number of cell cycles, or stable chromo-
somal aberrations, such as translocations, which persist for a longer time period in the
circulating lymphocytes. Three prominent cytogenetic techniques, each with their own
strengths and weaknesses, are the dicentric chromosome assay, the cytokinesis-block
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micronucleus assay and the fluorescence in situ hybridization. These will be discussed
in turn.

Dicentric chromosome assay: The dicentric chromosome assay has become the gold
standard for dose quantification with a solid base of many years of research. The radi-
ation dose is quantified by scoring dicentric chromosomes and centric rings in cultured
lymphocytes and comparing their frequency to an in vitro dose-response (calibration)
curve. The dose-response curve is produced by exposing blood specimens to doses of
the appropriate quality and radiation rate.
The current gold standard is characterized by a high specificity and a good sensitiv-
ity to ionizing radiation. The minimal detectable dose following whole body exposure
is approximately 0.1 to 0.01 Gy from the analysis of 500 to 1000 metaphase spreads
for low and high LET radiation, respectively (Pinto et al., 2010). Radiation doses can
be estimated also for partial body exposure through the application of mathematical
procedures (Ainsbury et al., 2011). Nevertheless, this technique comes with several
drawbacks: first, it is time-consuming and requires highly skilled technicians. Whereas
the sample preparation takes at least 51 h, the subsequent data processing effort is 5
to 25 person hours per 500 cell analysis (Ainsbury et al., 2011). Second, dicentrics are
unstable aberrations which are naturally eliminated from the PBL pool by apoptosis
(Wojcik et al., 2004). This makes this technique inappropriate for the estimation of
radiation doses of distant exposures. Especially, after high dose exposure, the dicentric
frequency reduces rapidly due to lymphopenia with the consequence of a reduction
in time from exposure to blood sampling. Third, irradiated cells may fail to arrive at
metaphase for analysis due to a delayed cell cycle or cell death. Particulary in cases of
partial body exposure, this may underestimate radiation doses (Pinto et al., 2010).

Cytokinesis-block micronucleus assay: Micronuclei are small extranuclear objects with-
in the cytoplasm enclosing aberrated chromosome fragments or lacking chromosomes
that did not properly segregate during cell mitosis. Similar to the dicentric chromosome
assay, the number of micronuclei and their reference to an in vitro calibration curve
allows for an estimation of radiation doses.
Micronuclei, which also belong to the unstable chromosomal aberrations, can arise from
various clastogenic and aneugenic agents, and are thus not specific to ionizing radia-
tion (Vral et al., 2011). It is also known that age and gender are confounding factors,
inducing the frequency of micronuclei. The minimal detectable dose is approximately
0.2-0.3 Gy (Ainsbury et al., 2011). Compared to the dicentric chromosome assay, the
cytokinesis-block micronucleus assay is easier to analyze, is less expansive and has a
greater potential for an automated scoring process (Bolognesi et al., 2011). A major
drawback is that the frequency of micronuclei is significantly lower than dicentrics,
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which implies that a substantially higher number of cells has to be analyzed in order
to obtain comparable test accuracies. Further limitations are the inter-laboratory vari-
ability of dose–effect relationships for acute low LET radiation and the decrease of the
anomalies with time (Pinto et al., 2010).

Fluorescence in situ hybridization: Fluorescence in situ hybridization is a staining tech-
nique which highlights different chromosomes in different colours by hybridizing fluo-
rescent dye-labeled probes (Léonard et al., 2005). Additionally, the centromeres and
telomeres of the chromosomes can be separately highlighted (multicolour fluorescence
in situ hybridization). Hence, translocations, which are stable through mitosis, become
visible as coloured rearrangements in a fluorescence microscope for scoring. Diagnostic
systems based on stable chromosome aberrations are appropriate for retrospective bio-
dosimetry, i.e. predicting long-term exposures. Drawbacks of analyzing translocations
are that they are less specific to ionizing radiation than dicentrics and their frequency
increases with age. Additionally, other confounding factors, like alcohol or nicotine, are
known (Sigurdson et al., 2008).

1.3.3 Gene expression-based radiation dosimeters

Exposure to ionizing radiation leads to a complex genotoxic stress response, in which
regulations at the transcriptional level play a central role (see Section 3.1 on page 28).
In order to elucidate the underlying molecular mechanisms, researchers started to inves-
tigate the changes of gene expression in response to radiation exposure early. In 1992,
Fornace and colleagues published a short list of mammalian DNA damage-inducible
genes, most of them identified only a few years before (Fornace, 1992). The genes are
associated to diverse cellular processes, such as signal transduction, response to tissue
injury, DNA repair and response to oxidative stress, and thus already reflected the
complexity of the transcriptional response. While researchers like Fornace could only
investigate the expression levels of a limited number of genes, each of them separately
measured, the advent of high-throughput technologies now allow the researcher to si-
multaneously monitor the expression of thousands of genes (see Section 1.2.1 on page 3).
This technological milestone not only allows a deeper exploitation of the molecular re-
sponses following ionizing radiation, it also provides new opportunities for radiation
biodosimetry: the information gathered about radiation-responsive genes can help to
identify gene expression signatures, i.e. groups of potential biomarker genes, whose
combined expression patterns reflect a specific transcriptional state and can be used
for discriminating radiation doses. A bioinformatics-driven workflow to extract gene ex-
pression signatures from high-throughput data is presented in Section 1.2.2 on page 5.
Note that in the context of radiation biodosimetry, the usage of supervised classifica-
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tion for biomarker discovery, as illustrated in Figure 1.2 on page 9 and as applied in
this thesis, suggests to speak of radiation dose prediction, whereas biological-oriented
biodosimetric studies tend to speak of dose estimation or dose quantification instead. I
here employ both terms.
Amundson et al. (1999a,b) were among the first who investigated the correlation of
radiation-induced gene expression patterns with radiation exposure by microarray-
based gene expression profiling. With the aim of discovering new molecular biomarkers
on the transcriptional level, they identified radiation-induced genes in human PBLs
after ex vivo irradiation (Amundson et al., 2000). These initial results indicate that
gene expression signatures may serve as radiation dosimeters allowing a fast, minimally
invasive and automated screening of potentially exposed people. Brengues et al. (2010)
recently developed a molecular bioassay with which in vitro irradiated blood samples
can be distinguished from non-irradiated blood samples using an expression signature
comprising of 14 reasonably chosen genes. This molecular bioassay, for which only a
fingerstick of blood is needed, and data is delivered in less than 12 h, underpins the
great potential and importance of molecular radiation biodosimeters.
Although the application of gene expression signatures as a tool for retrospective bio-
dosimetry is promising, this recent branch will need many years of extensive research to
become a standardized, validated method for biodosimetric applications. To this end,
the knowledge of molecular biology and computational biology has to be integrated
and, as proposed in this dissertation, the complimentary and synchronized research of
both disciplines is important.

1.4 Outline of the thesis

This dissertation is structured into five chapters, including the introductory Chapter 1
and the concluding Chapter 5. The latter summarizes the major findings of this thesis
and gives a brief outlook to future research. Chapter 2 offers a description of the
experimental setup and techniques we used to monitor transcriptional changes in human
PBLs after irradiation and provides therefore the basis for the results presented in
the following chapters. In Chapter 3, I investigate the impact of radiation dose and
time after exposure on the transcriptional response and derive biological implications
by functionally characterizing the radiation-induced genes. In Chapter 4, a detailed
description of the computational framework, I established for biomarker discovery and
radiation dose prediction, is given. Its components, which I decided to incorporate, are
discussed especially in the light of supporting biomarker reproducibility. Finally, the
results obtained for the medium to high radiation doses as well as for the low radiation
doses are presented and are set in the context of previously published gene expression-
based biomarker studies. The appendix at the end of the thesis contains supplementary
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information for chapter 4. A short synapsis at the beginning of each chapter outlines the
content and sets the presented work in the overall context. It is additionally indicated
on which publication(s) the work is based on. Already published work is reproduced
with permission of the respective journals.
Figure 1.3 on the next page illustrates the outline of this work and additionally depicts
how each chapter can be mapped to the components of the typical workflow for high-
throughput data analysis and biomarker discovery presented above (see Figure 1.1 on
page 4).
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Figure 1.3: Illustrated outline of the thesis. All steps of the generic workflow for high-
throughput data analysis and biomarker discovery explained in the Introduction and captured
in Figure 1.1 can be mapped to chapters presented in this thesis. I realized most of the
steps in R, a free language and environment for statistical computing and graphics (R Core
Team, 2013), by combining own implemented functionalities with already existing functions
of available add-on packages.
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Chapter 2
Experimental setup

The experimental setup described in this chapter is based on the following publications:

• Boldt S∗, Knops K∗, Kriehuber R, Wolkenhauer O (2012) A frequency-based gene se-
lection method to identify robust biomarkers for radiation dose prediction. International
Journal of Radiation Biology 3:267–276.
∗These authors contributed equally to this work.

• Knops K∗, Boldt S∗, Wolkenhauer O, Kriehuber R (2012) Gene expression in low
and high dose-irradiated human peripheral blood lymphocytes: Possible applications
for biodosimetry. Radiation Research 178:304–312.
∗These authors contributed equally to this work.

Synopsis
Understanding the nature of experimental data is of crucial importance for establishing a rea-
sonable analysis pipeline and for drawing biologically meaningful and trustworthy conclusions
from the obtained results. In this chapter, I describe the experimental setup and experimental
techniques used for monitoring radiation-induced gene expression changes in human PBLs.
This is followed by a section explaining my strategy for quality assessment and pre-processing
of DNA-microarray samples. The microarray gene expression measurements provide the basis
for most of the results presented in this thesis.
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2.1 Microarray-based gene expression profiling after irradiation

2.1 Microarray-based gene expression profiling after irradiation

A valid statistical analysis of experimental data always requires a careful choice of ex-
perimental design. Ideally, biologists and data analysts jointly plan the experiments in
order to achieve the objectives pursued by the study. For this reason, I was involved
in devising the here described experimental setup from the outset, whereas the wet-lab
experiments were carried out by Dr. Katja Knops at the Forschungszentrum Jülich.
To gain insight into the transcriptional response mediated by ionizing radiation, we
monitored the gene expression of human PBLs after irradiation. We irradiated human
PBLs with six radiation doses, ranging from low to high radiation doses, and measured
their gene expression with DNA-microarrays at three different time points post expo-
sure. The whole process, including gene expression profiling, quality assessment, data
pre-processing and the validation of gene expression data by qRT-PCR is illustrated
in Figure 2.1 on the next page. A brief description to each of these steps will now be
given.

Irradiation of human peripheral blood lymphocytes: First, blood from a donor pool of
three males and three females was obtained by venipuncture and the whole blood from
each donor was collected in separate tubes. Afterwards, 9 millilitre (ml) aliquots of the
heparinized blood were irradiated ex vivo using a Cs-137 γ-ray source at room temper-
ature. Since we are interested in a comparative analysis of transcriptional changes after
γ-exposure over a wide dose range, we decided to investigate six radiation doses, which
can be categorized into low, medium and high radiation doses. For low radiation dose
experiments the aliquots were irradiated with either 0.02 or 0.1 Gy at a dose rate of
0.0286 Gy/minute(s) (min), and for medium and high radiation dose experiments the
aliquots were irradiated with 0.5 or 1 Gy and 2 or 4 Gy respectively at 0.7 Gy/min.
In addition, time-matched non-irradiated control probes (i.e. aliquots irradiated with
0 Gy) were prepared for the low dose experiment as well as for the medium to high
dose experiment.
Directly after irradiation, the lymphocytes were separated by density gradient centrifu-
gation, which is a commonly used method for fractionating the whole blood into its
different components through differential centrifugation and selective removal. After
centrifugation, lymphocytes were found to be concentrated in a white layer between
the plasma and the separation solution and were extracted.
To investigate not only dose-dependent but also time-dependent gene expression changes
caused by ionizing radiation, the total RNA of the extracted lymphocytes were isolated
at different time points after irradiation. For the low dose experiment, RNA was ex-
tracted at two time points, namely 24 and 48 h after irradiation, whereas for the medium
and high dose experiment the RNA was extracted at three time points, namely 6, 24
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Figure 2.1: Experimental setup for irradiating human PBLs and the subsequent
microarray experiment. Six healthy donors, three males and three females, donated blood,
which was collected in separated tubes. Using a Cs-137 γ-ray source, aliquots of each tube
were irradiated ex vivo with one of six different radiation doses: two low radiation doses (i.e.
0.02 and 0.1 Gy), two medium radiation doses (i.e. 0.5 and 1 Gy) and two high radiation
doses (i.e. 2 and 4 Gy). Afterwards, lymphocytes were separated and for low radiation doses
RNA was extracted 24 and 48 h after irradiation, whereas for medium and high radiation
doses RNA was extracted 6, 24, and 48 h after irradiation. The total RNA from all donors
isolated at the same time point and irradiated with the same radiation dose was pooled. This
procedure was repeated three times, meaning that each donor donated blood three times
on three different days, resulting in three independent experimental runs. The pooled RNA
probes provided the basis for the subsequent microarray experiment, measuring the gene
expression after irradiation. Finally, the quality of DNA-microarray samples was assessed and
time-dependent and dose-dependent expression changes, measured by DNA-microarrays, were
validated by qRT-PCR.
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2.1 Microarray-based gene expression profiling after irradiation

and 48 h after irradiation.
Finally, the total RNA from all donors isolated at the same time point and irradi-
ated with the same radiation dose was pooled. The whole procedure, including blood
collection, ex vivo irradiation, lymphocyte separation as well as RNA extraction and
pooling was repeated three times, meaning that each donor donated blood three times
on three different days. The pooled RNA probes of the three independent experimental
runs provided the basis for the subsequent microarray experiment described in the next
section.

DNA-microarray hybridization: Gene expression profiling can be used to measure the
expression level of thousands of genes in parallel (see Section 1.2.1 on page 3). With
DNA-microarrays, a common method for gene expression profiling, we studied the
transcriptional response to ionizing radiation and, more specifically, the influence of
the radiation dose and time elapsed since irradiation on the gene expression of human
PBLs. According to the experimental procedure described in the previous section, we
had the following experimental setting for the DNA-microarray experiment.
For the medium and high dose range, we had pooled RNA probes of human PBLs irra-
diated with five different radiation doses (0, 0.5, 1, 2 and 4 Gy) which were extracted
at three different time points after irradiation (6, 24 and 48 h). Thus, we obtained 15
samples, each of them reflecting a different condition. By performing three indepen-
dent experimental runs, we further obtained three biological replicates per condition,
which finally resulted in 45 RNA samples for microarray hybridization. For the low dose
range we had 18 pooled RNA probes, consisting of three biological replicates irradiated
with three different radiation doses (0, 0.02 and 0.1 Gy) and extracted at two different
time points after irradiation (24 and 48 h). For measuring the gene expression after
irradiation we used one-color whole human genome microarrays from Agilent (Agilent
Technologies, 4x44K, G4112F). These microarrays are manufactured by an in situ syn-
thesis printing process, in which 60-mer oligonucleotides are deposited onto a glass side.
They cover 41K unique human genes and transcripts.
Starting with our pooled RNA probes, each microarray experiment consisted of several
consecutive steps: first, the mRNA of the pooled RNA probes was transcribed into
cDNA, which was then further transcribed into complementary RNA (cRNA). Next,
the cRNA was fluorescently labeled with Cyanine 3-CTP, and after cRNA purification,
the dye incorporation and cRNA yields were measured. The labeled cRNA samples were
coated onto the array and hybridized. Afterwards, the DNA-microarrays were washed
and the slides were immediately scanned by which the fluorescence signal of each spot
was detected. In a final step, the raw image data were further processed by image anal-
ysis and data extraction algorithms of the Agilent’s Feature Extraction Software, which
allowed a quantification of the detected signal intensities.
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2 Experimental setup

Validation of gene expression data by qRT-PCR: qRT-PCR is considered to be the gold
standard technology for gene expression measurements because of its ability for accu-
rate, sensitive and fast quantification of gene expression (Derveaux et al., 2010). It is
common practice to validate the gene expression of a few candidate genes by qRT-PCR,
since microarray data are known to be inherently noisy.
To validate and verify transcriptional changes induced after medium and high dose
exposure, measured by DNA-microarrays, we performed qRT-PCR on (a) pooled RNA
samples from the six healthy donors of the initial donor pool and (b) on non-pooled
RNA samples of six healthy donors, of whom three donors belonged to the initial donor
pool. The blood from which the RNA was isolated was irradiated ex vivo with 0, 0.5,
1, 2, and 4 Gy and isolated lymphocytes were cultured for 6, 24, and 48 h respectively.
For the low dose range, qRT-PCR was performed only on the basis of non-pooled RNA
samples. Therefore, blood of four healthy donors was irradiated ex vivo with 0, 0.02
and 0.1 Gy and lymphocytes were isolated immediately after irradiation. Following cul-
turing, 24 and 48 h after irradiation, RNA was extracted from the lymphocytes.
The obtained fluorescence signals were normalized by the internal control dye (i.e.
5-Carboxy-X-Rhodamin) and the threshold cycle value (Ct) of the samples were nor-
malized with respect to the Ct of the endogenous control glyceraldehyde-3-phosphate
dehydrogenase 1 (GAPDH). Relative fold increase inductions were calculated by the
delta delta cycle threshold (44Ct) method. All samples were run in triplicates and
gene expression was measured in three independent experiments.

2.2 Data quality assessment and pre-processing

Quality assessment and subsequent data pre-processing are important steps of each
microarray analysis to ensure reliable and reproducible analysis results. Here, both
steps were carried out separately on the samples measured at different times after
irradiation.
I evaluated the quality of the DNA-microarray samples by comparison of intra- and
inter-array replicates. To control the intra-array quality, the Coefficient of Variation
(CV) of replicated non-control probes was calculated for each array (i.e. sample). The
CV is defined as the ratio of the standard deviation to the mean and is often expressed
as a percentage. When calculating the CV for each set of replicated probes, where
signal variations can only arise from technical variations, a lower CV indicates a better
reproducibility. Table 2.1 on the next page and Table 2.2 on page 25 report the obtained
array CVs for all DNA-microarray samples irradiated with low radiation doses and
medium to high radiation doses, respectively. The array CV is defined as the median of
all CVs, calculated for 269 probes, each of them replicated 9 times. I compared the array
CVs based on processed signal intensities (gProcessedSignal) and mean signal intensities
(gMeanSignal) provided by the Agilent Feature Extraction Software Version. Since the

23



2.2 Data quality assessment and pre-processing

array CVs obtained from the processed signal intensities were consistently lower than
the CVs computed from the mean signal intensities, the processed signal intensities
were used for all subsequent steps of our analysis. For inter-array quality assessment,

CV (%) - 24 h CV (%) - 48 h

Dose Replicate Processed Mean Processed Mean
(Gy) Signal Signal Signal Signal

0 1 0.67 1.75 0.61 1.31
0 2 0.56 1.68 0.56 1.58
0 3 0.61 1.68 0.52 1.6

0.02 1 0.55 1.64 0.58 1.51
0.02 2 0.6 1.65 0.61 1.68
0.02 3 0.62 1.71 0.58 1.68

0.1 1 0.57 1.75 0.56 1.67
0.1 2 0.6 1.75 0.58 1.55
0.1 3 0.72 1.7 0.62 1.71

Table 2.1: Assessment of the intra-array quality of DNA-microarray samples mea-
suring transcriptional changes after low dose exposure. Using both the processed sig-
nal intensities (gProcessedSignal) and the mean signal intensities (gMeanSignal), the array
Coefficients of Variation (CVs) were calculated for each sample of the low dose experiment (0,
0.02 and 0.1 Gy) by taking the median of the CVs obtained for all 269 replicated non-control
probes. The array CVs obtained from the processed signal intensities were consistently lower
than the array CVs computed from the mean signal intensities.

I compared our biological replicates with the Coefficient of Determination (r2), which
denotes the strength of a correlation between two variables and thus measures to what
portion the variation of one can be explained by, or attributed to, the other (Ding and
Wilkins, 2004). Thus, identical DNA-microarray samples would have r2 values of 1,
and for an experiment without significant technical errors one would also expect high
r2 values between replicated arrays. As displayed in Table 2.3 on the next page the mean
r2 values for all pairs of biological replicates are between 0.93 and 0.99, indicating a
high concordance for all replicated DNA-microarray samples.
To sum up, in the comparison of intra- and inter-array replicates, no outliers (i.e.
DNA-microarray samples, which are seriously affected by technical variations) could be
detected and thus no samples had to be excluded from our dataset for further analysis.
After quality assessment, I further pre-processed the processed signal intensities in the
following way: initial data filtering was carried out to remove biased signal intensities
which might hamper a valid statistical analysis and a biological interpretation of the
data. Control features and nonuniform outliers, as well as signals that were flagged
as not significantly above the background intensity in at least 25% of all samples,
were therefore excluded. Afterwards, the processed signal intensities of the remaining
probes were log2-transformed and subsequently median normalized, so that all DNA-
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CV (%) - 6 h CV (%) - 24 h CV (%) - 48 h

Dose Replicate Processed Mean Processed Mean Processed Mean
(Gy) Signal Signal Signal Signal Signal Signal

0 1 0.73 1.71 0.72 1.78 0.73 1.67
0 2 0.96 2.17 0.66 1.54 0.77 1.6
0 3 0.64 1.72 0.64 1.65 0.71 1.61

0.5 1 0.68 1.44 0.93 1.44 0.68 1.65
0.5 2 0.78 1.92 0.62 1.61 0.99 1.43
0.5 3 0.67 1.57 0.89 1.6 0.72 1.59

1 1 0.75 1.8 0.66 1.66 0.67 1.6
1 2 0.57 1.32 0.74 1.66 0.7 1.48
1 3 0.86 1.7 0.7 1.66 0.93 1.71

2 1 0.69 1.42 0.71 1.79 0.71 1.51
2 2 0.71 1.73 0.71 2.08 0.7 1.8
2 3 0.69 1.73 0.67 1.66 0.93 1.99

4 1 1.08 1.86 0.93 1.73 0.92 1.64
4 2 0.76 1.74 0.71 1.62 0.96 1.84
4 3 0.71 1.93 0.71 1.77 0.95 1.98

Table 2.2: Assessment of the intra-array quality of DNA-microarray samples mea-
suring transcriptional changes after medium and high dose exposure. Using both
the processed signal intensities and the mean signal intensities, the array Coefficients of Vari-
ation (CVs) were calculated for each sample of the medium to high dose experiment (0, 0.5,
1, 2 and 4 Gy) by taking the median of the CVs obtained for all 269 replicated non-control
probes. The array CVs obtained from the processed signal intensities were consistently lower
than the array CVs computed from the mean signal intensities.

Experiment Dose
(Gy)

Mean r2

6 h 24 h 48 h

Medium to
high dose

0 0.99 0.99 0.95
0.5 0.99 0.98 0.98
1 0.99 0.98 0.95
2 0.99 0.99 0.93
4 0.99 0.99 0.97

Low dose
0 - 0.99 0.98
0.02 - 0.99 0.93
0.1 - 0.98 0.99

Table 2.3: Assessment of the inter-array quality of all replicated DNA-microarray
samples. The mean Coefficient of Determination (r2) for all replicates of the low dose ex-
periment (0, 0.02, 0.1 Gy) and the medium to high dose experiment (0, 0.5, 1, 2, 4 Gy) range
between 0.93 and 0.99, indicating a high concordance between replicated DNA-microarray
samples.
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2.2 Data quality assessment and pre-processing

microarray samples measured at the same time point after irradiation had the same
median absolute deviation (Smyth and Speed, 2003).
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Chapter 3
Changes in gene expression reflect the
cellular response to ionizing radiation

The results presented in this chapter are published in the following publication:

Knops K∗, Boldt S∗, Wolkenhauer O, Kriehuber R (2012) Gene expression in low and high
dose-irradiated human peripheral blood lymphocytes: Possible applications for biodosimetry.
Radiation Research 178:304-312
∗These authors contributed equally to this work.

Synopsis
Radiation-induced DNA damage triggers a highly interwoven and cell-type specific network of
intracellular and intercellular regulatory processes. Measuring the accompanying modulations
at the transcriptional level allows researchers to characterize the involved functional processes
and to elucidate the underlying molecular mechanisms. In particular, the biological effects of
low radiation doses and their associated health risks in humans are as yet unclear. I therefore
performed a systematic and comparative transcriptional analysis to investigate gene expres-
sion changes after low, medium, and high dose exposure in human PBLs. My analysis shows
that both radiation dose and time after exposure have a substantial impact on the number of
radiation-induced genes as well as on the affected pathways and molecular mechanisms. We
further conclude that human PBLs show well-defined physiological responses even after acute
low dose exposure.
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3.1 The cellular effects of DNA damage

3.1 The cellular effects of DNA damage

Ionizing radiation is a genotoxic insult which induces damage to the DNA either by
direct or indirect interaction. In cases of direct interaction, the radiation particles di-
rectly collide with DNA, which can eventually cause DNA damage. If the radiation
energy reacts with other molecules and the DNA damage is mediated by free radicals
produced by that reaction one speaks of indirect interaction. Since water is a main
cellular component, the radiolysis of water, i.e. the dissociation of water molecules
by radiation, is the main reaction, contributing to the indirect interaction of ionizing
radiation with DNA. Free radicals, if produced in vicinity of DNA, may diffuse and
interact with DNA and thus cause DNA damage (Bajinskis, 2012). Whereas for high
LET radiation, such as α and β-particles, the direct interaction is the dominant cause
for harmful interaction with DNA, low LET radiation, including γ-rays, causes DNA
damage mainly due to indirect interaction processes (Podgoršak, 2005).
Ionizing radiation induces a broad spectrum of DNA-lesions, including alterations of
bases and sugars, protein-DNA and DNA-DNA cross-links, or strand breaks. The latter
can be divided into single- and double-strand breaks where either only one or both com-
plementary strands of the DNA double helix are broken. The inherent repair of a DNA
double-strand break (DSB) is more difficult than that of other types of DNA damage
and erroneous rejoining of broken DNA DSBs may lead to the loss, amplification or
translocation of chromosomal parts (Khanna and Jackson, 2001). After exposure to
ionizing radiation, the ionization events causing DNA damage are localized along the
tracks of the ionizing particles generating clusters of ionizations. These clusters can
induce multiple damages on both DNA strands in close proximity and thus generate
DSBs with increased complexity. The complexity of DNA damage can have significant
influence on the repair accuracy. However, the initiation of the multifarious DNA re-
pair, which is broadly categorized into two complementary mechanisms, namely the
error-free homologous recombination and the error-prone non-homologous end joining,
is only one of several cellular processes triggered by DNA damage in order to protect
the integrity of genetic information. The evolutionarily conserved, highly elaborate and
complex network of intracellular and intercellular regulatory processes evoked by DNA
damage is called the DNA damage response.
As described in Jackson (2002) and Khanna and Jackson (2001) the DNA damage
response can be considered as a typical signal-transduction cascade in which DNA-
lesions are physically detected by sensor proteins which then provoke the activation
of transducer proteins to amplify and diversify the DNA damage signal by targeting
a range of downstream effectors of the DNA damage response. Two proteins, namely
ATM and ATR, play a dominant role in triggering different cellular responses following
DNA damage in mammalian cells. Both kinases, stimulated in the aftermath of differ-
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3 Changes in gene expression reflect the cellular response to ionizing radiation

ent types of DNA-lesions (Lagerwerf et al., 2011), activate a set of partly overlapping
effector substrates, including p53 or CHK2, which lead to effects on cell-cycle progres-
sion, DNA repair and apoptosis (Jackson, 2002).
Since unrepaired DNA-lesions endanger the genomic integrity of dividing cells, the
control of cell cycle progression in terms of initiating cell cycle checkpoints is of vital
importance to prevent the replication of damaged DNA or segregation of damaged chro-
mosomes. A prolonged cell cycle arrest provides the cell with time for the activation of
DNA repair mechanisms (Khanna and Jackson, 2001) and thus provides an opportu-
nity to monitor the appropriateness of cell death over DNA repair (Rich et al., 2000).
Whenever DNA damage is mis- or unrepaired, cells can either enter a permanent cell
cycle arrest which limits their proliferative competence (senescence) or the apoptotic
programme which finally leads to cell death (Schmitt et al., 2007). Even when consid-
ered individually, DNA repair, cell cycle control and apoptosis, are very sophisticated
processes of immense complexity, but when acting together in order to orchestrate the
cellular response to DNA damage, they provide an immensely complicated, highly elab-
orated system, in which many aspects are still unclear. Underpinning its complexity,
the DNA damage response swiftly modifies nearly every metabolic activity of the cell,
including energy metabolism, cell−cell communication, and RNA processing (Rashi-
Elkeles et al., 2011).
Radiation-induced DNA damage leads to significant gene expression modulations. The
responses to DNA damage and therewith the changes at the transcriptional level hugely
differ with the cell type. For example, splenic lymphocytes in a fetus and an adult read-
ily initiate apoptosis after irradiation, but cardiac myocytes do not enter the apoptotic
programme after exposure at any stage of the development (Rich et al., 2000). Measur-
ing the gene expression by DNA-microarrays or next generation sequencing technologies
accomplished by a statistical and bioinformatics-driven analysis provides the opportu-
nity to investigate cell-specific responses induced by ionizing radiation. Especially, the
molecular mechanisms triggered by low radiation doses are still unclear and require
further investigations.
In this chapter, the results of a thorough statistical and functional analysis of transcrip-
tional changes in PBLs after ex vivo γ−irradiation are presented. I statistically inves-
tigated not only gene expression changes across a wide range of radiation doses (0.02-
4 Gy), but also the impact of time on the radiation response. Therefore, we monitored
and examined transcriptional modulations after low (0.02 and 0.1 Gy), medium (0.5 and
1 Gy) and high dose (0.5 and 1 Gy) exposure at three different time points post irradi-
ation (24 and 48 h after low dose exposure; 6, 24 and 48 h after medium and high dose
exposure). With my comparative statistical analysis we identified radiation-induced
genes as well as pathways and biological processes associated with dose-dependent and
time-dependent gene expression changes after irradiation.
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3.2 Methods for statistical and functional data analysis

3.2.1 Statistical testing

To identify genes with significantly altered gene expression after irradiation and thus,
to investigate the effect of different radiation doses on gene expression at a specific time
point after exposure, I conducted one-way Analysis of Variance (ANOVA). This is an
appropriate statistical method when, as in my case,

1. the dependent variable (i.e. the gene expression) is of quantitative type (i.e. mea-
sured) and

2. one independent factor of qualitative type (i.e. radiation dose) with at least three
levels is considered.

The levels of the factor radiation dose divides our microarray dataset into sample
groups, in the following also referred to as dose groups. A sample group includes all
biological replicates, irradiated with the same radiation dose and measured at a specific
time point after exposure. Thus, I considered three sample groups for the low dose
experiment (0, 0.02, 0.1 Gy) and five sample groups for the medium to high dose
experiment (0, 0.5, 1, 2, 4 Gy).
One-way ANOVA determines whether there are any significant differences between
mean expressions of all sample groups for a particular gene g. More precisely, the
following null hypothesis is tested:

H0 : µi = µl, ∀ i, l = 1, ..., k and i 6= l, (3.1)

where µi is the expectation of expression of gene g after irradiation with radiation dose
i. k represents the number of radiation doses under study. µi is estimated by xi which
is defined as the mean expression of gene g based on all replicates irradiated with ra-
diation dose i. Since the null hypothesis states that the expectations of all k sample
groups are equal, the alternative hypothesis expresses that at least one of them differs
from the others.
The rationale behind one-way ANOVA is that the total variability (SStotal) of the ex-
pression values of gene g can be partitioned into the between-group variability (SSbetween),
representing variability caused by factor radiation dose, and the within-group variability
(SSwithin), representing variability caused by chance (Ennos, 2007):

SStotal = SSwithin + SSbetween,

k∑
i=1

ni∑
j=1

(xij − x)2 =
k∑

i=1

ni∑
j=1

(xij − xi)2 +
k∑

i=1
ni(xi − x)2,
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3 Changes in gene expression reflect the cellular response to ionizing radiation

where xij is the expression value of gene g of replicate j (j = 1, ..., ni) irradiated with
radiation dose i (i = 1, ..., k) and x is the overall mean of all expression values measured
for gene g. Thus, SSbetween is defined as the sum of squared distances of dose group
mean from overall mean, weighted by sample size ni, whereas SSwithin is the sum of
squared distances of individual expression values from dose group mean. By dividing
SSbetween and SSwithin by the appropriate degrees of freedom, one obtains the mean
sum of squares for the variability of factor radiation dose (MSbetween) and the mean
sum of squares for the variability within dose groups (MSwithin), where n denotes the
total number of expression values of gene g:

MSbetween = SSbetween

k − 1 ,

MSwithin = SSwithin

n− k
.

Based on this, the F-statistic is given by:

F = MSbetween

MSwithin

. (3.2)

Note that the larger the F value - illustrating that a greater part of variability of gene
expression could be explained by the influence of factor radiation dose than by chance
- the more likely is the rejection of the null hypothesis (see Equation 3.1 on the facing
page) (Ennos, 2007).
Data to be analyzed with one-way ANOVA has to meet two main assumptions: first,
the dependent variable has to be approximately normally distributed for each sample
group. Second, the variance between all sample groups has to be the same. Whether
these assumptions hold for our gene expression data was assessed by statistical tests for
normality (i.e. Kolmogorov-Smirnov Test) and for homogeneity of variance (i.e. Levene
Test).
After applying one-way ANOVA to all genes measured at a specific time point after
exposure, I had to address the problem of multiple testing. Therefore, I adjusted the
p-values with the method of Benjamini and Hochberg (1995) to control the false dis-
covery rate (FDR) (i.e. the expected proportion of incorrectly rejected null hypotheses
among all rejected hypotheses).
By means of one-way ANOVA, I identified genes with significant gene expression
changes after irradiation at a specific time point after exposure. However, conduct-
ing one-way ANOVA does not answer the question of which particular radiation dose
causes the significant change in gene expression. It is therefore necessary to additionally
conduct a post-hoc-test for multiple comparisons of means. Thus, I finalized the sta-
tistical analysis by locating the pairwise differences in mean gene expression between
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dose groups by applying the Tukey’s Honestly Significant Difference (Tukey’s HSD)
test (Tukey, 1949).

3.2.2 Functional enrichment analysis

To extract major biological meanings and to derive functional implications of the genes
showing a significant altered gene expression after irradiation, we further performed a
functional annotation and enrichment analysis. This analysis is based on the structured
and controlled vocabulary provided by the GO Consortium for describing molecular
function, biological process and cellular component characteristics of gene products. By
using the Database for Annotation, Visualization and Integrated Discovery (DAVID)
6.7 (Huang et al., 2009a,b), we first identified over-represented GO Biological Process
terms. These terms describe biological objectives to which a gene or gene product con-
tributes (Ashburner et al., 2000). The GO-terms are structured in direct acyclic graphs,
such that the hierarchical level of each term corresponds to the level of term specificity.
In order to obtain more precise information for our functional annotation we decided
to extract terms on the fifth level of the GO tree structure (Al-Shahrour et al., 2004).
Based on the p-value of the modified Fisher’s exact test (EASE score) we examined the
significance of the GO-term enrichments within our data. The EASE score corresponds
to the probability of obtaining an equal or greater frequency of the GO-term when ran-
domly picking genes from the whole human background from Agilent. Furthermore, we
additionally assigned the radiation-induced genes to affected KEGG pathways (Kane-
hisa et al., 2012).
In summary, with my statistical analysis I identified a set of radiation-induced genes for
each radiation dose and each time point, which we then examined for over-representa-
tions of specific functions and pathways. A thorough comparative analysis of the ob-
tained results allowed us to investigate time-dependent and dose-dependent biological
effects mediated by ionizing radiation.

3.3 Comparative analysis of time- and dose-dependent gene expression changes

One aim of this thesis is to identify radiation-responsive genes and to analyze their time-
dependent and dose-dependent expression changes after ex vivo γ-irradiation by DNA-
microarray analysis. According to our experimental setting we investigated three dif-
ferent time points (6, 24, and 48 h) and seven radiation doses, including non-irradiated
control samples (0 Gy). We grouped the radiation doses into three dose ranges, namely
the low dose range (0.02 and 0.1 Gy), the medium dose range (0.5 and 1 Gy), and the
high dose range (2 and 4 Gy). With my comparative statistical analysis I identified
1709 genes with significant radiation-induced expression changes. As depicted in Fig-
ure 3.1 on the next page the number of differentially expressed genes increases with
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increasing dose and time after exposure and significantly more genes are upregulated
than downregulated.
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Figure 3.1: Results of the dose- and time-specific DNA-microarray analysis for
the low, medium and high dose ranges. In the low (0.02 and 0.1 Gy), medium (0.5 and
1 Gy) and high dose range (2 and 4 Gy), the number of radiation-induced genes increased
with increasing dose and time after exposure. At all examined radiation doses and time points
after exposure, significantly more genes are upregulated than downregulated.

After low dose exposure I identified 144 differentially expressed genes 48 h after irra-
diation and no significant gene expression changes 24 h after irradiation. However, 24
genes exhibit at least a log2 fold-change of 1 and a variance smaller than the median
variance across all low dose samples.
After medium dose exposure I observed 160 differentially expressed genes 6 h, 423
differentially expressed genes 24 h, and 935 differentially expressed genes 48 h after
irradiation. The latter is more than a six-fold increase in the number of significant gene
expression changes compared to the low dose at the same time point.
After high dose exposure I identified 193 differentially expressed genes 6 h and 596
differentially expressed genes 24 h after irradiation. With 1241 radiation-induced genes
48 h after high dose irradiation the number of significantly altered genes reaches a peak
(see Figure 3.1).
Our findings are consistent with those reported by Jen and Cheung (2003) who assessed
mRNA levels of genes in lymphoblastoid cells at various time points within 24 h follow-
ing γ-irradiation and also reported a growing number of altered genes with increasing
exposure dose. A conceivable explanation for this is that higher doses are known to
produce more severe damage per cell (Pogosova-Agadjanyan et al., 2011), resulting in
more radiation-induced expression alterations.
Next, I investigated the time-dependent overlap of genes with significant expression
changes after medium dose as well as after high dose exposure. For the medium dose
range, most of the genes show a significant expression alteration at only one of the
examined time points: 82, 184 and 702 genes at 6, 24 and 48 h after irradiation. Only
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Figure 3.2: Effects of radiation dose and time after exposure on the number of
radiation-induced genes. The first two Venn diagrams show the time-dependent overlap
of genes with significant expression changes 6, 24 and 48 h after irradiation (a) with medium
radiation doses (0.5 and 1 Gy) and (b) with high radiation doses (2 and 4 Gy). The third
Venn diagram (c) illustrates the dose-dependent overlap of all radiation-induced genes.

58 genes are differentially expressed at all time points (see Figure 3.2a). Similar re-
sults were obtained for the high dose range: half of the genes, showing an altered gene
expression 24 h after irradiation (271 genes), are shared with the 48 h post-exposure
times and only a total of 66 genes are differentially expressed at all examined times
(see Figure 3.2b).
Finally, a comparison of radiation-induced genes after low, medium and high dose expo-
sure revealed that all induced genes after medium dose exposure (1214 genes) are also
induced after high dose exposure. Only 105 genes are exclusively differentially expressed
after low dose exposure and 384 genes after high dose exposure (see Figure 3.2c).

3.4 Identification of radiation-induced processes and pathways

To examine biological processes and pathways affected by low to high radiation ex-
posure, we functionally categorized the significantly altered genes with regard to the
radiation dose and the time after exposure.
In the low dose range, the biological processes proteolysis and positive as well as neg-
ative regulation of apoptosis are significantly affected. This corresponds to the finding
that the apoptosis rate is already increased 24 h after irradiation with 0.02 Gy (Knops,
2013). In a related study, published by Fachin et al. (2007), in which human lympho-
cytes were irradiated with two low radiation doses (0.1 and 0.25 Gy) and one medium
radiation dose (0.5 Gy) and RNA was isolated for gene expression analysis at 48 h
after stimulation, the main biological processes associated with modulated genes were
metabolism, stress response/ DNA repair, cell growth/ differentiation and transcription
regulation. A subsequent study, investigating individuals exposed to radiation (radia-

34



3 Changes in gene expression reflect the cellular response to ionizing radiation

tion workers), whose low radiation doses ranged from 0.696 mSv to 39.088 mSv, showed
an enrichment of several biological processes such as the ubiquitin cycle, DNA repair,
cell cycle regulation/proliferation and stress response (Fachin et al., 2009).
After medium and high dose exposure, we observed two additional over-represented GO
biological processes in response to radiation exposure, namely the nucleosome assem-
bly and the DNA damage response (see Figure 3.3). Most altered genes are assigned to
nucleosome assembly, the proteolysis and the regulation of apoptosis, which supports
the known cell killing effect of ionizing radiation (Rich et al., 2000).
Altogether, samples exposed to low, medium and high radiation doses share 33 altered
genes (see Figure 3.2c on the facing page). These are assigned to the regulation of the
nucleobase, nucleoside, nucleotide and nucleic acid metabolic process and the cellular
biosynthetic process. With a KEGG pathway enrichment analysis we further identified
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Figure 3.3: Enriched GO Biological Processes after low, medium and high dose ex-
posure. The number of radiation-induced genes, assigned to different GO biological processes,
increase with increasing dose and time after exposure. At all examined doses, significantly
altered genes are involved in the proteolysis and in the positive and negative regulation of
apoptosis.

functional pathways which are associated with the time- and dose-dependent expres-
sion changes mediated by ionizing radiation (see Figure 3.4 on the next page). We
detected three significantly enriched pathways after medium and high dose exposure:
(i) the p53 signaling pathway (p-value 1.32 × 10−8 and 3.49 × 10−8 respectively),
(ii) the cytokine-cytokine receptor interaction pathway (p-value 4.71×10−4 and
1.21 × 10−3 respectively), and (iii) the systemic lupus erythematosus pathway
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3.4 Identification of radiation-induced processes and pathways

(p-value 1.94× 10−9 and 2.05× 10−8 respectively). Remarkably, all genes that are as-
signed to these pathways after medium dose exposure are differentially expressed also
after high dose exposure. In the following, I summarize and discuss our findings for
each affected pathway separately.
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Figure 3.4: Enriched KEGG pathways after medium and high dose exposure. The
number of radiation-induced genes involved in different pathways increase with increasing
radiation dose and time after exposure. None of the significantly altered genes after low dose
exposure (0.02 and 0.1 Gy) are assigned to a signaling pathway.

The p53 signaling pathway: p53 is a tumour suppressor protein that regulates the tran-
scription of genes which are involved in a variety of cellular processes like apoptosis,
cell cycle arrest and DNA repair. Being the major pathway activated by ionizing radi-
ation, there is extensive literature concerning the role of p53 in the cellular response
to radiation-induced DNA damage (Fei and El-Deiry, 2003; Helton and Chen, 2007;
Lindsay et al., 2007; Nelson and Kastan, 1994).
Following radiation exposure, the transcription factor p53 is phosphorylated by ATM
and DNA-PK and thereby activated. The ubiquitin E3 protein ligase MDM2, which
promotes the degradation of p53 under normal cellular conditions, cannot bind to the
phosphorylated p53 and hence the concentration of p53 increases (Campbell et al.,
2013). After further post-translational modifications of p53 it transactivates numerous
target genes and can thereby stimulate the DNA repair machinery and the activation
of temporary and permanent cell cycle arrest, followed by down-stream cellular re-
sponses such as apoptosis to remove damaged cells (Budworth et al., 2012; Campbell
et al., 2013). In line with the fact that more than 100 p53 downstream targets are
currently known (Rashi-Elkeles et al., 2011), we also identified many differentially ex-
pressed genes regulated by p53 after medium and high dose exposure (see Table 3.1 on
the facing page). These are involved in DNA repair, apoptosis and cell cycle control.
Our functional analysis revealed that already 6 h after irradiation the p53 signaling
pathway is strongly affected. At this time point 14 genes of the p53 signaling pathway
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3 Changes in gene expression reflect the cellular response to ionizing radiation

6 h 24 h 48 h

Gene Symbol Medium High Medium High Medium High

ATM ↓
BAX ↑ ↑ ↑ ↑ ↑ ↑
BBC3 ↑ ↑ ↑ ↑ ↑ ↑
CDKN1A ↑ ↑ ↑ ↑ ↑ ↑
CCND1 ↑ ↑
CCNG1 ↑ ↑ ↑ ↑ ↑ ↑
CCNG2 ↓ ↓
DDB2 ↑ ↑ ↑ ↑ ↑ ↑
EI24 ↑ ↑
FAS ↑ ↑ ↑ ↑ ↑ ↑
GADD45A ↑ ↑ ↑ ↑ ↑ ↑
IGFBP3 ↓
PIDD ↑ ↑
MDM2 ↑ ↑ ↑ ↑ ↑ ↑
PERP ↑ ↑
PPM1D ↑ ↑ ↑ ↑
SESN1 ↑ ↑ ↑ ↑ ↑ ↑
SESN2 ↑ ↑ ↑ ↑
TNFRSF10B ↑ ↑ ↑ ↑ ↑ ↑
TP53I3 ↑ ↑
ZMAT3 ↑ ↑ ↑ ↑

Table 3.1: Genes of the p53 signaling pathway with significant expression changes
after medium or high dose exposure. Up arrows indicate that a gene is significantly
upregulated after medium (0.5 and 1 Gy) or high dose (2 and 4 Gy) exposure, whereas a
down arrow indicate a significant downregualation.
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show an altered gene expression. Interestingly, the number of radiation-induced genes
associated with the p53 signaling pathway remains nearly constant with increasing dose
and time. With 16 p53 target genes, we detected the maximum number of genes linked
to this pathway 24 h after exposure. 48 h after irradiation we identified 12 and 14 p53
target genes for the medium and high dose respectively (see also Figure 3.4 on page 36).
Our results, showing that ionizing radiation has a strong effect on the transcriptional
regulation of the p53 signaling pathway, are concordant with data from previous studies.
For example, Mori et al. (2005) characterized the response of primary CD4+ T lympho-
cytes to ionizing radiation by gene expression profiling and concluded that the majority
of the strongly activated genes were p53 targets involved in DNA repair and apopto-
sis. In addition, Rashi-Elkeles et al. (2011) confirmed the central role of p53 in the
transcriptional modulation induced by ionizing radiation by comparing the responses
of cancerous and non-cancerous human cell lines with gene expression meta-analysis.
Supporting the fact that gene expression varies widely in response to ionizing radiation
in cell lines of different lineages (Meador et al., 2011), they observed a clear cell line-
specific effect of radiation exposure. However, Rashi-Elkeles et al. (2011) additionally
identified a set of genes which were common to the different cell lines, with the induced
ones consisting almost exclusively of validated p53 targets, many of them also identified
by our functional analysis (see Figure 3.1 on the preceding page).

The cytokine-cytokine receptor interaction pathway: Cytokines and their corresponding
receptors, located on the cell surface, are involved in intercellular signal transduction
and regulate biological processes like cell growth, differentiation, apoptosis or DNA
repair. Our functional analysis revealed that the number of radiation-induced genes
associated with the KEGG cytokine-cytokine receptor interaction pathway increases
with increasing radiation dose and time after exposure. After medium dose exposure,
seven genes of this pathway are differentially expressed 6 h after irradiation, 14 genes
are differentially expressed 24 h after irradiation, and 23 genes are differentially ex-
pressed 48 h after irradiation. After high dose exposure, eight genes of this pathway
are differentially expressed 6 h after irradiation, 21 genes are differentially expressed
24 h after irradiation, and 26 genes are differentially expressed 48 h after irradiation
(see Figure 3.4 on page 36 and Table 3.2 on the facing page).

The systemic lupus erythematosus pathway: Systemic lupus erythematosus is a chronic
autoimmune disease that culminates in the production of autoantibodies reactive with
intracellular particles, consisting of nucleic acids and nucleic acid binding proteins
(Kirou et al., 2005). A closer examination of the radiation-induced genes associated
with the KEGG systemic lupus erythematosus pathway reveals that (a) the number of
genes affected in this pathway increases with increasing time after exposure, whereas
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3 Changes in gene expression reflect the cellular response to ionizing radiation

6 h 24 h 48 h

Gene Symbol Medium High Medium High Medium High

CD27 ↓
CD70 ↑ ↑ ↑ ↑ ↑ ↑
CD40 ↑ ↑
CD40LG ↓
CCL5 ↓ ↓ ↓
CCL17 ↑
CCL27 ↑ ↑ ↑
CCR5 ↑ ↑
CX3CR1 ↓ ↓ ↓
CXCL2 ↑ ↑
CXCL3 ↑ ↑
CXCL16 ↑ ↑
CXCR4 ↓ ↓ ↓
EDAR ↓
FAS ↑ ↑ ↑ ↑ ↑ ↑
FASLG ↓ ↓ ↓
IFNG ↓ ↓
IFNGR2 ↓ ↓
IL21R ↑ ↑
IL18R1 ↓ ↓ ↓ ↓
IL18RAP ↓ ↓ ↓
IL2RB ↓ ↓ ↓
IL12RB2 ↓ ↓ ↓ ↓
OSM ↑ ↑ ↑ ↑
PLEKHQ1 ↑
TGFBR2 ↓
TNFSF4 ↑ ↑ ↑ ↑ ↑ ↑
TNFSF8 ↑ ↑ ↑ ↑
TNFSF9 ↑ ↑
TNFRSF17 ↓ ↓
TNFRSF10B ↑ ↑ ↑ ↑ ↑ ↑
TNFRSF10C ↑ ↑
TNFRSF10D ↑ ↑
TNFRSF13C ↓ ↓
XCL1 ↓ ↓ ↓ ↓
XCL2 ↓ ↓ ↓ ↓

Table 3.2: Genes of the cytokine-cytokine receptor interaction pathway with sig-
nificantly altered genes expression after medium or high dose exposure. Up arrows
indicate that a gene is significantly upregulated after medium (0.5 and 1 Gy) or high dose (2
and 4 Gy) exposure, whereas a down arrow indicate a significant downregualation.
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the dose range seems to have only a marginal influence on the number of affected genes
and (b) most of the affected genes are histone genes, showing an altered gene expression
24 h and 48 h after medium and high dose exposure (see Table 3.3 on the next page and
Figure 3.4 on page 36). Histone proteins help to pack the DNA into ordered structures,
called nucleosomes. In contrast to previous studies, our analysis revealed a radiation-
induced upregulation of histone genes after medium and high dose irradiation in human
PBLs. This finding differs from data published by Meador et al. (2011), reporting a
negatively regulated histone gene expression in human lymphoblastoid and colon cancer
cell lines. Additionally, the authors reported a radiation-induced cell cycle arrest in the
S-phase of dividing cells, causing a halt of DNA synthesis and triggering histone gene
downregulation, because no newly synthesized DNA had to be assembled by histones.
Likewise, Su et al. (2004) described a histone gene downregulation after ionizing radia-
tion by the dissociation of NPAT from histone gene promoters in a p53/p21-dependent
manner, which resulted in inhibition of histone gene transcription. However, we moni-
tored the gene expression of non-stimulated PBLs, which are in the G0/G1 phase and
do not divide. Hence, the expression of histone genes is generally not required in these
cells and is almost silenced. One explanation for the observed upregulation of histone
genes after irradiation in PBLs might be that repair of radiation-induced DNA dam-
age in G0/G1 requires newly synthesized histones for DNA packing, which leads to the
observed upregulation of histone genes.

3.5 Summary of results

In the present chapter, I investigated the impact of radiation dose and time post expo-
sure on gene expression modulations after ionizing radiation. To this end, I performed
a systematic and comparative transcriptional analysis based on gene expression data
of human PBLs measured 6, 24 and 48 h after medium (0.5 and 1 Gy) and high dose
exposure (2 and 4 Gy), and 24 and 48 h after low dose exposure (0.02 and 0.1 Gy).
By conducting one-way ANOVA, a great number of genes exhibits significant radiation-
induced gene expression changes. Underpinning the fact that higher radiation doses
result in more severe damage per cell and consistent with the results reported by Jen
and Cheung (2003), the number of genes increases with increasing dose and time after
exposure, reaching a peak at 48 h after high dose exposure. An investigation of the
time-dependent overlap of radiation-induced genes after medium dose as well as after
high dose exposure revealed that most of the genes show a significant change in gene
expression only at one of the examined time points. In contrast to that we observed a
high dose-dependent overlap. All induced genes after medium dose exposure are also
induced after high dose exposure. No genes show significant expression changes 24 h
after low dose exposure which indicates that the gene expression modulations following
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3 Changes in gene expression reflect the cellular response to ionizing radiation

6 h 24 h 48 h

Gene Symbol Medium High Medium High Medium High

C3 ↑
C7 ↑ ↑ ↑ ↑
CD40 ↑ ↑
CD40LG ↓
FCGR2B ↓ ↓
HIST1H2AB ↑ ↑ ↑ ↑
HIST1H2AD ↑ ↑ ↑ ↑
HIST1H2AL ↑ ↑ ↑ ↑
HIST1H2AJ ↑ ↑ ↑ ↑
HIST1H2BB ↑ ↑ ↑ ↑
HIST1H2BC ↑ ↑ ↑ ↑
HIST1H2BD ↑ ↑ ↑ ↑
HIST1H2BH ↑ ↑ ↑ ↑
HIST1H2BJ ↑ ↑ ↑ ↑
HIST1H2BL ↑ ↑ ↑ ↑
HIST1H2BM ↑ ↑ ↑
HIST1H2BN ↑ ↑ ↑
HIST1H2BO ↑ ↑ ↑ ↑
HIST1H4A ↑ ↑ ↑ ↑
HIST2H2AB ↑ ↑ ↑ ↑
HIST2H2BE ↑ ↑ ↑ ↑
HIST3H2A ↑ ↑ ↑ ↑
HIST3H2BB ↑ ↑ ↑ ↑
HLA-DQA1 ↑ ↑
HLA-DOB ↑ ↑ ↑ ↑
IFNG ↓ ↓

Table 3.3: Genes of the systemic lupus erythematosus pathway with significantly
altered genes expression after medium or high dose exposure. Up arrows indicate
that a gene is significantly upregulated after medium (0.5 and 1 Gy) or high dose (2 and
4 Gy) exposure, whereas a down arrow indicate a significant downregualation.
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low dose exposure are not as pronounced.
We further identified biological processes and functional pathways, which are associated
with the observed time-dependent and dose-dependent gene expression modulations af-
ter irradiation. The functional analysis revealed three pathways, namely the cytokine-
cytokine receptor interaction pathway, the systemic lupus erythematosus pathways, and
the p53 signaling pathway, which are significantly affected after medium and high dose
exposure. Whereas the number of genes associated with the first two pathways increases
with rising time, the number of genes associated with the p53 signaling pathway re-
mains nearly constant with radiation dose and time post exposure. Our results obtained
for the medium and high dose exposure are in line with similar studies investigating
gene expression alterations after ionizing radiation (Jen and Cheung, 2003; Mori et al.,
2005; Pogosova-Agadjanyan et al., 2011; Rashi-Elkeles et al., 2011). For the low dose
range, we could not identify enriched biological pathways. However, we observed three
enriched GO Biological Processes that are significantly over-represented already after
low dose exposure: proteolysis, negative and positive regulation of apoptosis. Together
with the finding that apoptosis is induced already 24 h after irradiation with 0.02 Gy
(Knops, 2013), we conclude that acute low dose exposure, as low as 20 mGy, leads to
well-defined physiological responses in human PBLs. With the here presented analysis
we show that both radiation dose and time after exposure have a substantial impact
on the number of radiation-induced genes, as well as on the affected pathways and
molecular mechanisms in human PBLs.
Particularly in the light of our results demonstrating that the time after exposure influ-
ences the transcriptional response to ionizing radiation, the question arises of whether
it is possible to identify a set of radiation-induced genes which allow an accurate ret-
rospective estimation of radiation doses, regardless of the time post irradiation. This
question is addressed in the next chapter in which I will introduce my computational
and bioinformatics-driven framework for biomarker discovery and radiation dose pre-
diction.
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Chapter 4
An ensemble-based approach for radiation
dose prediction

The results presented in this chapter are published in the following publications:

• Boldt S∗, Knops K∗, Kriehuber R, Wolkenhauer O (2012) A frequency-based gene se-
lection method to identify robust biomarkers for radiation dose prediction. International
Journal of Radiation Biology 3:267–276.
∗These authors contributed equally to this work.

• Knops K∗, Boldt S∗, Wolkenhauer O, Kriehuber R (2012) Gene expression in low
and high dose-irradiated human peripheral blood lymphocytes: Possible applications
for biodosimetry. Radiation Research 178:304–312.
∗These authors contributed equally to this work.

Synopsis
In the last chapter, it has been shown that radiation-induced gene expression changes are de-
pendent on the radiation dose and the time after exposure. This finding raises the question
of whether gene expression signatures allow for a, preferably time-independent, retrospec-
tive estimation of radiation doses. To address this question, I here present a computational
and bioinformatics-driven framework which I developed and implemented for the discovery
of potential biomarker signatures and the prediction of radiation doses. In the light of recent
concerns about the reproducibility of molecular signatures identified for outcome prediction,
the algorithmic design of my framework supports the identification of gene expression-based
signatures, which are stable against small variations in the data. By applying my computa-
tional framework to our microarray data of irradiated human PBLs, I successfully extracted
two candidate biomarker signatures with which low as well as medium to high radiation doses
can be accurately assessed within a time frame that would be appropriate for medical decision
making. To the best of my knowledge, the here presented work is the first gene expression
study enabling a DNA-microarray-based dose prediction in the low dose range.
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4.1 Research strategy

The lack of reproducibility of candidate biomarker signatures often impedes their trans-
fer into clinical applications. It is therefore a fundamental challenge of current biomed-
ical research to develop strategies to overcome this limitation. In this context, the
concept of stable feature selection only recently gained importance in the field of com-
putational biomarker discovery. For high-dimensional data, an important step towards
the identification of potential biomarkers is to select promising features (e.g. genes) and
to rank them according their relevance or importance. Based on such ranked lists, the
final set of candidate biomarkers, like the top-k ranked features, is often determined.
The term stability refers to the similarity of ranked lists obtained either by applying the
same feature selection method to slightly modified versions of the underlying dataset
(e.g. using different subsamples of the original dataset) or by applying different feature
selection methods on the same dataset (Boulesteix and Slawski, 2009). High stability
of features with respect to sampling variations is a good indicator for biomarker repro-
ducibility (He and Yu, 2010), since markers which are tolerant against variations within
data have a higher chance of having a high discriminatory power for experimental data
from different studies generated in different laboratories.
It has previously been shown that genes which are selected for outcome prediction, are
highly dependent on the training samples generated by a resampling strategy (Michiels
et al., 2005). Different training samples often result in dissimilar signature genes which
all allow an equally accurate outcome prediction (Ein-Dor et al., 2005). The existence
of multiple sets of true markers is one of three main causes of instability (He and Yu,
2010). A second and important cause of instability is the small number of samples
compared to the extremely high number of measured features in high-dimensional data
(Ein-Dor et al., 2006; He and Yu, 2010). As demonstrated by Kim (2009), the overlap
between independently developed gene signatures increases linearly with more samples.
Based on a newly developed mathematical model, Ein-Dor et al. (2006) concluded that
as a minimum, thousands of samples are needed to achieve a typical overlap of 50%
between two predictive lists of genes obtained from breast cancer studies. As the third
cause of low stability, He and Yu (2010) claim the application of algorithms that are
primarily designed to select feature subsets providing the best prediction accuracy and
do not explicitly attach importance to the stability.
Taking up the point of He and Yu (2010) that a reasonable algorithmic design for the
selection of biomarker signatures is of crucial importance to support their stability, I
developed an ensemble-based approach which incorporates a cross-validated univariate
feature selection for the discovery of gene expression-based radiation dosimeters. As
an integral part of my computational framework for biomarker discovery and radiation
dose prediction, I assessed the classification performance of the extracted signatures in
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terms of their suitability for discriminating radiation doses. For the remainder of this
section, the components of my computational framework, which I implemented in R,
are described and discussed in more detail.

4.1.1 Components of the biomarker discovery framework

My computational framework for biomarker discovery and radiation dose prediction
consists of four main components: 1. the validation strategy which implements a re-
peated cross-validation procedure, 2. the gene selection which incorporates a p-value-
driven and fold-change-driven feature selection, 3. the radiation dose prediction for
which a supervised classifier is trained, and finally 4. the performance evaluation of
the classification process. In what follows, each component of my framework, designed
for the identification of gene signatures to discriminate medium to high radiation doses,
is explained separately. Figure 4.1 on the next page provides a schematic representation
of my approach. To identify genes suitable for predicting low radiation doses, I estab-
lished a modified version of the illustrated framework. The modifications are described
in Section 4.1.3 on page 52.

Validation strategy:

A crucial aspect, which is often omitted in recent gene expression-based biodosimetric
studies, is the need for a proper internal validation of a supervised classification. Meth-
ods, which pre-select potential biomarker genes out of samples that are again used to
evaluate the prediction accuracy may lead to biased, overoptimistic classification re-
sults. It is therefore necessary that the samples used in the model building process are
independent of the samples utilized for performance assessment (Baek et al., 2009). A
common strategy is to construct training sets for model building and test sets for the
subsequent performance assessment.
In order to split our data into training sets and test sets, I implemented a repeated
stratified 9-fold cross-validation: the 45 pre-processed microarray samples, consisting of
three biological replicates for each radiation dose (0, 0.5, 1, 2, 4 Gy) at each time point
after irradiation (6, 24, 48 h), were randomly divided into nine parts in which each
class, namely the radiation dose, is represented in the same proportion as in the full
dataset. Each part, comprising five samples, was held out in turn as a test set in order
to assess the accuracy of the trained supervised classifier. The remaining 40 samples
built one training set. Based on these I extracted the potential biomarkers. I repeated
the cross-validation procedure 100 times, meaning that the model building process of
my computational framework, including the gene selection and classifier training, de-
scribed below, operated on 900 training sets, whereas the 900 corresponding test sets
remained unaffected until model validation, i.e. performance evaluation.
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Figure 4.1: Schematic representation of my computational framework for biomar-
ker discovery and radiation dose prediction. The main components of the framework
for the identification of gene signatures for predicting medium to high radiation doses (0,
0.5, 1, 2, 4 Gy) are illustrated. The pre-processed dataset was randomly divided into nine
parts, in which each class (i.e. radiation dose) is represented by the same proportion as in
the full dataset. In turn, each part was held out once, functioning as a test set, whereas
the remaining parts compose the corresponding training set. For each training set radiation-
responsive genes were identified with one-way ANOVA. The expression patterns of each set
of radiation-responsive genes were used to build k-nearest neighbour classifiers (KNN classi-
fier), which were evaluated with the corresponding test sets. To obtain a final measure, the
single performance results were averaged over all classifier predictions. Finally, ten genes with
highest maximal fold-change between the measured radiation doses were selected from each
set of radiation-responsive genes (FC-ranking). Again, these genes were used to build KNN
classifiers, which were evaluated afterwards. The described procedure was repeated a hundred
times and the obtained prediction performances of the two approaches were compared.
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Gene selection:

In high-dimensional data the number of observations exceeds the number of samples by
an order of magnitude. A selection of the most promising features is an indispensable
step towards the identification of candidate biomarker signatures. Feature selection is of
major importance because it usually enhances the prediction performance and reduces
the risk of overfitting in the following classification process with supervised machine
learning techniques. Assuming that the features selected for outcome prediction are also
key-drivers of the biological system being studied, feature selection can also help to gain
biological insights. Finally, the identification of a small signature of predictive features
allow an inexpensive mass usage of custom-designed prognostic chips (Ein-Dor et al.,
2006; Saeys et al., 2007). This issue is of particular importance in the work presented
here. As I will discuss in Chapter 5 in more detail, a small set of expression-based
radiation biodosimeters provide the basis for future biodosimetry devices applicable in
cases of radiation accidents involving a large number of exposed individuals.
As already mentioned in the introduction (see Section 1.2 on page 3) one distinguishes
between three categories of feature selection techniques with increasing degree of com-
plexity (Saeys et al., 2007):

1. filter techniques select and rank features or feature subsets based on inherent char-
acteristics of the underlying data. The most relevant or highest ranked features
are subsequently used for classifier training.

2. wrapper techniques search for the best discriminating subsets of features by first
selecting numerous subsets and then comparing them in terms of their predic-
tion performance using supervised classification. Often the whole space of feature
subsets is traversed using greedy search algorithms.

3. embedded techniques incorporate the feature selection process into the process of
classifier training. Feature selection and classification are not separable.

Interestingly, there are very few studies investigating the impact of different feature
selection methods on the performance and stability of biomarker signatures. Haury
et al. (2011) empirically compared a panel of feature selection techniques from all three
categories in terms of accuracy and stability. They demonstrated that filter methods,
like a t-test-based feature selection, outperform more complex methods belonging to the
category of wrapper and embedded techniques in terms of accuracy and stability. With
the intention to assess the impact of different filter methods on prediction accuracy
and signature stability, Fan et al. (2010) re-analyzed seven microarray cancer prognosis
studies and performed a systematic parameter study. The authors showed that many
more genes selected from repeated samplings were in common when a fold-change-based
rule was used to select genes than when Pearson’s correlation coefficient or a simple
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t-test was applied. They concluded that the magnitude of differential expression with
a loose p-value cut-off should be the preferred metric for gene selection, if stability and
prediction accuracy is important. Drawing upon these findings, I decided to integrate
a univariate filter technique into my computational framework for biomarker discovery
and radiation dose prediction realized by a p-value-driven and fold-change-driven gene
selection procedure.

p-value-driven gene selection method: For a gene expression-based discrimination of
radiation doses it is a prerequisite that the utilized genes show an altered expression
after irradiation. As already discussed in Section 3.2 on page 30 one-way ANOVA is
an appropriate statistical method to identify genes with significant dose-dependent
expression changes after radiation exposure. I here conducted one-way ANOVA for
each training set constructed by the cross-validation procedure described above. By
using radiation dose as the independent factor, the training set was partitioned into
five sample groups, one for each radiation dose (i.e. 0, 0.5, 1, 2, 4 Gy). Herby, each dose
group was composed of eight samples, including biological replicates for 6, 24, and 48 h
after irradiation. Note that one of the actual nine samples of each dose group was used
to construct the test set and was therefore not part of the training set.
The results of my comparative transcriptional analysis presented in Chapter 3 indicate
that not only the radiation dose but also the time after exposure influences the gene
expression after ionizing radiation (see Section 3.3 on page 32). Thus, it might seem
questionable to include samples of different time points after exposure to the same
sample group. In accordance with our experimental design (see Chapter 2), time after
exposure could have been treated as a second independent factor for ANOVA. In light
of having two factors potentially influencing gene expression, two-way ANOVA would
have been the method of choice. But in terms of small sample sizes to be expected
for two-way ANOVA (i.e. three samples per sample group in the whole dataset and
only two samples per sample group in each training set) and good prospects to identify
genes with a dose-dependent response even with an one-way approach (see Section 3.3
on page 32), it seemed reasonable to apply one-way ANOVA which is accompanied by
an acceptable sample size for training sets. Coming back to Equation 3.2 on page 31,
I expected to obtain large F-values for genes, whose gene expression are significantly
affected by the factor radiation dose. Note that a large F-value results from a high
proportion of MSbetween, representing high variability in gene expression, and a small
proportion of MSwithin, indicating a marginal unexplained variability, and thus reflects
the envisaged result of identifying genes with dose-dependent responses to radiation.

Fold-change-driven gene selection method: With the second gene selection method
I further reduced the size of each list of radiation-responsive genes obtained by the
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p-value-driven gene selection. Assuming that genes with high expression changes after
ionizing radiation are particularly useful for radiation dose prediction, I selected a small
number of differentially expressed genes displaying high fold-changes.
In the following, I refer to the expression value of gene g of the replicated sample j,
irradiated with radiation dose i, and measured at time point t, as xij,t. Due to the given
experimental design, I consider t = 3 time points, j = 3 replicates and i = 5 radiation
doses. The first step of my fold-change-driven gene selection was to calculate the mean
expression xi for each gene g based on all replicates irradiated with radiation dose i:

xi = 1
9

3∑
j=1

3∑
t=1

(xij,t) ∀ i = 1, ..., 5.

Please note that here xi is the mean expression based on all replicated samples measured
at all three time points t after irradiation with radiation dose i, whereas in Section 3.2
on page 30 xi refers to the mean expression based on all replicated samples irradiated
with radiation dose i and measured at one specific time point t.
In the second step, I calculated the maximal fold-change MaxFC for each gene g.
MaxFC is defined as the difference of the maximal log2 mean expression xi to the
minimal log2 mean expression xi. Thus, I obtained for each gene g the maximal loga-
rithmic fold-change after irradiation as follows:

MaxFC = log2(max
i

(xi))− log2(min
i

(xi)),

= log2
maxi(xi)
mini(xi)

.

(4.1)

In the last step of my fold-change-driven gene selection, I selected from each list of
radiation-responsive genes obtained by the p-value-driven gene selection the ten genes
with highest MaxFC.
To sum up, after repeating the procedure described above for all lists of radiation-
responsive genes, the fold-change-driven gene selection resulted in 900 new lists, each
containing ten radiation-responsive genes with highest maximal fold-change MaxFC.

Radiation dose prediction:

For radiation dose prediction, I performed KNN classification. This method belongs to
the category of instance-based learning algorithms, which classify new observations by
simply comparing them to a training set of already known instances (Aha et al., 1991).
The only effort made in the training phase is to store all known instances in memory.
No decision rules are inferred by generalizing the training dataset. Therefore, the KNN
classifier is also called a lazy classifier. For classifier prediction, the class label of a new
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instance is predicted based on a majority vote among the class labels of its k closest
training instances (i.e. nearest neighbours). The nearest neighbours are determined by
a similarity measure, like the commonly used Euclidean distance function, which is
defined as:

D(a, b) =
n∑

i=1
(ai − bi)2, (4.2)

where a and b are two instances and n is the number of numerical attributes each
instance consists of. In addition to the choice of a similarity measure, the number of
nearest neighbors k considered for majority voting can influence the prediction. When
choosing a small number of nearest neighbours the classification is prone to inherent
noise within the data, whereas a larger number of neighbours may lead to a less strict
discrimination of class boundaries.
Since KNN classification is an intuitive method which can be also applied to small train-
ing datasets, I decided to integrate this obviously simple and intuitive instance-based
learning method into my computational framework for biomarker and radiation dose
prediction. More sophisticated methods like decision trees or support vector machines
need a larger number of training instances to infer rules for classification and often
additional parameters have to be determined or even optimized during the training
phase.
How much the choice of classification method influences the prediction accuracy is a
controversial issue. Whereas the study of Fan et al. (2010) demonstrated that the choice
of classification methods minimally affect the prediction accuracy of microarray-based
classifiers in cancer prognosis, Haury et al. (2011) observed that the best accuracy was
achieved by the nearest centroids classifier, which is a method closely related to the
KNN classifier. Besides the good performance results, these simple methods do not re-
quire an optimization of many classification parameters, making the computations fast
and less prone to overfitting.
In the present scenario, each instance is represented by an expression profile, consist-
ing of genes selected by one of my filter methods. In the training sets, the expression
profiles are associated with their respective radiation doses, functioning as class labels,
whereas in the test sets, the radiation dose is assumed to be unknown. For predict-
ing the radiation dose, the k nearest neighbours were determined by the Euclidean
distance measuring (see Equation 4.2), whereas the number of k, leading to an ideal
classification result, was calculated by a nested cross-validation. Following this strategy,
I performed radiation dose prediction by using (a) the 900 lists of radiation-responsive
genes selected by the p-value-driven gene selection and (b) the 900 lists of ten genes
with highest maximal fold-change identified by the p-value-driven and consecutively
applied fold-change-driven gene selection.
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Performance evaluation:

Only gene signatures which accurately predict the radiation doses under study are
potential candidates for future radiation biodosimeters. Therefore, it is essential to
systematically evaluate their performance in terms of dose prediction.
I calculated the average repeated 9-fold cross-validation performances for the p-value-
driven and fold-change-driven gene selection method. The performance is expressed by
three common performance measurements, namely the sensitivity, the specificity, and
the overall success, which are defined as follows:

Sensitivity = TP

TP + FN
,

Specificity = TN

TN + FP
,

Overall success = TP + TN

TP + TN + FP + FN
.

(4.3)

The true positives (TP ) are the number of correctly predicted samples irradiated with
class d (i.e. radiation dose i) and the true negatives (TN) are the number of correctly
predicted non-d samples. The false negatives (FN) are defined as the number of in-
correctly predicted samples of class d and the false positives (FP ) are defined as the
number of incorrectly predicted non-d samples.

4.1.2 Ensemble-based consensus signatures

In the beginning of this section, I introduced the term stability as a preferable character-
istic of biomarker signatures, which is closely related to biomarker reproducibility. With
my gene selection strategy, embedded in a cross-validation procedure, I established the
basis for an approach referred to as ensemble-based feature selection. First, for each
sample subset of the whole dataset (i.e. training set), potential biomarker signatures
are selected. Second, the obtained candidate signatures, which are likely to differ from
each other because they originate from slightly varying sample subsets, are aggregated
to one ensemble-based consensus output. It has previously been demonstrated that en-
semble feature selection can support the stability of biomarker signatures (Meinshausen
and Bühlmann, 2010). Recently, Piao et al. (2012) and Abeel et al. (2010) successfully
applied this approach to cancer classification.
A very intuitive way to aggregate sets of potential biomarker signatures is to choose
only those genes for the ensemble-based consensus output that are most frequently part
of the different signatures obtained by data perturbation (e.g. cross-validation). Since
the most frequently chosen genes across all training sets are presumed to be highly
robust against data variations and most relevant to sample prediction (Baek et al.,
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2009; Chen et al., 2007), I followed this strategy to support the reproducibility of genes
chosen for radiation dose prediction. The potential sets of biomarkers are significant
radiation-responsive genes with high expression modulations after irradiation. With the
two consecutively applied gene selection methods, I obtained for each training set a lists
of ten genes with highest maximal fold-change. The ensemble-based consensus signa-
ture contains only genes that are part of all these 900 lists and is thus defined as the
intersection of all lists with ten genes. The advantage of this approach is that effects of
noise within data are eliminated because only those genes which are consistently found
to respond with significant transcriptional changes to ionizing radiation are selected
(Davis et al., 2006). Figure 4.2 on the facing page schematically illustrates the general
procedure to construct ensemble-based consensus signatures.

4.1.3 Framework modifications for predicting low radiation doses

In the case of a large-scale nuclear accident with a widespread release of radioactiv-
ity, national health authorities may be requested to determine the individual radiation
dose and the associated long-term health risks of a large number of exposed individuals.
Since the in vivo radiation dose detection limit of cytogenetic methods is rather high,
a biodosimetry method based on gene expression profiles to estimate even the smallest
radiation doses would be beneficial.
Since my computational framework for biomarker discovery and radiation dose predic-
tion was initially designed for the identification of gene signatures allowing a discrim-
ination of medium to high radiation doses, I adapted the framework to the structure
and characteristics of the microarray dataset measuring the gene expression alterations
induced by low dose exposure (0, 0.02, and 0.1 Gy). In the following, the general proce-
dure with its incorporated modifications for the low dose measurements is summarized.
As described above, the initial step of my computational framework was to partition
our microarray dataset into training and test sets, whereas the samples of the test sets
were solely used for performance evaluation and not integrated into the model build-
ing process. In contrast to the former version of my framework, where partitioning
was realized by a 9-fold cross-validation, I here implemented a 6-fold cross-validation
because the present microarray data consists of fewer samples. Again, the stratified
cross-validation procedure, ensuring that each test set contains one sample from each
radiation dose, was repeated 100 times. The previously explained p-value-driven gene
selection was used to identify genes displaying dose-dependent expression patterns af-
ter low dose exposure in each training set by applying one-way ANOVA. Here, the
adjustment of the p-values for multiple comparison correction was modified. Instead of
the Bonferroni adjustment, the less conservative method of Benjamini and Hochberg
(1995) for controlling the FDR was used. This modification accounted for the more
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Figure 4.2: Schematic representation of the construction of an ensemble-based
consensus signature. First, for each training set obtained by resampling, potential biomar-
ker signatures are selected by applying a feature selection method. The selected signatures are
likely to differ from each other because they originate from slightly varying sample subsets.
Second, the signatures are aggregated to one ensemble-based consensus output. In the present
work, I aggregated the expression-based signatures by determining their intersection.
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subtle expression changes in the low dose range. Genes with an adjusted p-value < 0.05
were considered as significant radiation-responsive genes. With the consecutively ap-
plied fold-change-driven gene selection, I identified 20 genes displaying the highest
fold-change after irradiation in each of the lists of radiation-responsive genes obtained
by p-value-driven gene selection before. In this context, I slightly changed the compu-
tation of the fold-change (see Equation 4.1 on page 49) for the following reason: most
genes show only subtle expression changes between 0.02 Gy and 0.1 Gy exposure which
might impede a successful prediction. In order to support an accurate discrimination
of both doses, I selected those genes which exhibit the greatest expression changes be-
tween 0.02 Gy and 0.1 Gy. Thus, the fold-change was defined as the difference of the
mean log2 expression values of the samples irradiated with 0.02 Gy and 0.1 Gy, and
not as the maximal difference between the mean log2 expression values of all radiation
doses under study. Finally, all ranked genes lists, identified by the p-value-driven and
consecutively applied fold-change-driven gene selection, were aggregated to construct
an ensemble-based consensus signature. I selected all genes which are present in at least
500 of the 600 lists to build a consensus signature for low radiation doses. In the last
step, I compared the consecutively applied gene selection methods with the consensus
signature regarding their ability of radiation dose prediction. To this end, I calculated
the average performances as already described in Section 4.1.1 (see Equation 4.3 on
page 51).

4.2 Predicting medium to high radiation doses

In case of a radiation accident with a large number of affected persons without phys-
ical dosimeters, a quick and reliable method for dose determination is required. One
goal of this thesis is the identification of stable biomarker signatures allowing an ac-
curate prediction of radiation doses. For this purpose, I developed the computational
framework for biomarker discovery and radiation dose prediction described above. In
the following, I present the results obtained by applying my framework to gene expres-
sion data of human PBLs irradiated with medium to high radiation doses (0, 0.5, 1, 2,
4 Gy). In particular, the candidate biomarker signatures identified and their respective
performances in terms of radiation dose prediction are discussed.

4.2.1 Outcome of the p-value-driven and fold-change-driven gene selection

Biomarker signatures applicable to radiation biodosimetry consist of radiation-induced
genes, which show a dose-specific response post irradiation. The first step towards
the detection of such genes is my p-value-driven gene selection. By applying one-way
ANOVA with factor radiation dose to our DNA-microarray data, I identified genes
with significant gene expression changes between at least two radiation doses under
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study. Based on the 900 lists of significant radiation-responsive genes, I assessed the
performances of the cross-validated KNN classification for predicting medium to high
radiation doses.
Averaged over all radiation doses, the p-value-driven gene selection procedure for ra-
diation dose prediction yielded a sensitivity of 73%, an overall success of 89.2% and
a specificity of 93.3%. It is noteworthy that 100% of all non-irradiated samples and
91.3% of the samples irradiated with 4 Gy are correctly classified. The majority of
misclassifications occurs when predicting the radiation doses 0.5 Gy, 1 Gy and 2 Gy.
The worst classification performance is obtained by predicting the samples irradiated
with 1 Gy. Only 29.3% of them are assigned to the correct radiation dose. Coherent
with these results is the specificity of the classification. The prediction specificities of
the non-irradiated and 4 Gy irradiated samples are 100% and 99.9% respectively. The
lowest specificity with 86.3% is measured by predicting the samples irradiated with
1 Gy.
As stated above, the p-value-driven gene selection exhibits flaws in predicting samples
irradiated with 0.5, 1, and 2 Gy. Whereas 0.5 Gy exposure causes no acute medical
deficits, a 2 Gy exposure is both immunosuppressive and myelosuppressive and could
cause important clinical sequelae requiring medical intervention (Dressman et al., 2007).
This is why 2 Gy may considered to be an important radiation dose for medical de-
cision making. In this regard, a sensitivity of 65.3% for the identification of samples
irradiated with 2 Gy, as obtained by the p-value-driven gene selection method, may be
unsatisfactory for practical biodosimetry. This lack of performance is eliminated by the
second, fold-change-driven gene selection method.
With the objective to further reduce the number of radiation-responsive genes used for
radiation dose prediction, I subsequently applied the fold-change-driven gene selection.
Hereby, ten genes with highest maximal fold-change (see Equation 4.1 on page 49)
from each of the 900 lists of radiation-responsive genes obtained by the p-value-driven
gene selection were extracted. Using the fold-change-driven gene selection, 95.7% of all
test samples are correctly predicted. This implies that my consecutively applied fea-
ture selection enhances the sensitivity of the prediction by 22.6% in comparison to the
p-value-driven gene selection. In particular, the number of correctly predicted samples
irradiated with 1 Gy significantly increases to 90.3%, which is an explicit performance
enhancement of 61%.
In summary, the consecutively applied fold-change-driven gene selection yielded an
averaged overall success of 98.3% (+9.1% compared to the performance of the p-value-
driven selection method), and a specificity of 98.9% (+5.6%). The differences of the
measured prediction performances of the classification based on the p-value-driven and
fold-change-driven selection of potential biomarker genes are shown in Table 4.1 on the
following page. It additionally depicts that the selection of genes with the highest max-
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imal fold-change leads to a significant improvement in the predictive power of radiation
dose classification, particularly with regard to the samples irradiated with 0.5, 1, and
2 Gy.

Method Dose Sensitivity Specificity Overall
(Gy) Success

p-value-driven
0 100 100 100
0.5 79.2 88.7 86.8
1 29.3 86.3 74.9
2 65.3 91.4 86.2
4 91.3 99.9 98.2
Avg 73 93.3 89.2

Fold-change-driven
0 100 100 100
0.5 100 98.1 98.5
1 90.3 97.5 96.1
2 90.1 99.8 97.8
4 97.9 99.2 98.9
Avg 95.7 98.9 98.3

Consensus signature
0 100 100 100
0.5 100 97.2 97.8
1 68 99.6 93.3
2 89 91.9 91.3
4 88.4 97.6 95.8
Avg 89.1 97.3 95.6

Table 4.1: Prediction performances obtained for the medium to high radiation
doses. Compared are the performances yielded by the p-value-driven gene selection, the
consecutively applied fold-change-driven gene selection and the ensemble-based consensus
signature when predicting the radiation dose of samples after medium to high dose exposure
(0, 0.5, 1, 2, 4 Gy). The sensitivities, specificities and overall successes obtained for each
radiation dose and averaged over the complete dose range (Avg) are given in percent. This
table is adapted from Boldt et al. (2012).

4.2.2 The consensus signature and its prediction performance

Across all 900 lists obtained by the p-value-driven and consecutively applied fold-
change-driven gene selection 16 different genes were identified (i.e. union of all 900
lists). Consequently, all lists of radiation-responsive genes with the highest maximal
fold-change consist of a varying composition of these 16 genes (see Table 4.2 on the
next page).
Using the ensemble-based consensus signature, 89.1% of the test samples are correctly
assigned to their radiation dose. Similar to the classification results obtained with the
p-value-driven gene selection, the performance evaluation revealed that the prediction
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of samples irradiated with 1 Gy leads to the highest misclassification rate; 32% of all
samples irradiated with 1 Gy are incorrectly predicted. In contrast, 100% of all test
samples irradiated with 0 Gy and 0.5 Gy are correctly assigned to their radiation dose.
Averaged over all radiation doses, the dose prediction with the ensemble-based con-
sensus signature yielded an average specificity of 97.3% and average overall success of
95.6%. The detailed performance results obtained by all gene selection strategies are
compared in Table 4.1 on the facing page. It additionally highlights that the consensus
signature yielded a significantly increased predictive power in comparison to the p-value-
driven gene selection, as well as a slightly decreased performance in comparison to the
fold-change-driven gene selection. The genes of the ensemble-based consensus signature

Agilent ID Gene Symbol Frequency of
Selection

A 23 P126836 TNFSF4 900
A 23 P38154 FDXR 900
A 23 P398854 DOK7 900
A 23 P407112 SPATA18 900
A 23 P62959 PHLDA3 900
A 24 P773539 LGR6 900
A 23 P52986 VWCE 900
A 23 P408285 PRICKLE1 674
A 32 P347617 RP4-742C19.3 599
A 32 P85230 ISG20L1 565
A 32 P170454 LOC283454 371
A 23 P357717 TCL1A 238
A 32 P156786 THC2651023 168
A 23 P84399 CNTNAP2 41
A 23 P31681 C8orf38 26
A 32 P210202 E2F7 18

Table 4.2: List of all radiation-responsive genes identified by the fold-change-
driven gene selection for the medium to high dose range. For the medium to high
dose range (0, 0.5, 1, 2, 4 Gy), 16 genes were selected by the p-value-driven and consecutively
applied fold-change-driven gene selection. The frequency of selection indicates how often a
gene is among the ten selected genes with maximal fold-change within 100 repeated 9-fold-
cross-validations. Seven of the 16 genes are part of all 900 lists.

are assumed to have a high stability with respect to sample variations. Seven of the 16
genes, are part of all lists which I obtained by the p-value-driven and fold-change-driven
gene selection and are thus part of the consensus signature. Namely these genes are:
TNFSF4, FDXR, DOK7, SPATA18, PHLDA3, LGR6, and VWCE. The detailed func-
tion of the herein most frequently detected signature genes as well as their implication
in radiation response is still not fully resolved. FDXR is a target gene of the p53 family
that can be induced by DNA damage in cells in a p53-dependent manner (Liu and
Chen, 2002). Kawase et al. (2009) recently reported that PHLDA3 is a p53 target gene
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that has been implicated in apoptosis, but its definite role in radiation response remains
yet to be determined (Amundson et al., 2008). As recently published by Bornstein et al.
(2011), SPATA18 is also a transcriptional target of p53. Ionizing radiation induces a
large variety of DNA-lesions, including single-strand breaks and double-strand breaks,
as well as base and sugar damage (Fei and El-Deiry, 2003). If DNA damage repair
fails, it is very likely that FDXR, PHLDA3 and SPATA18 as p53 target genes are
upregulated after irradiation, probably in the context of radiation-induced apoptosis.
TNFSF4 is the ligand for tumor necrosis factor receptor superfamily, member 4 and
plays a role as an essential late co-stimulatory signal that is required to maintain long-
term cluster of differentiation CD4+ T-cell survival by suppression of apoptosis (Wang
et al., 2009a). Therefore, TNFSF4 might be upregulated after irradiation in order to
prevent or counteract radiation-induced apoptosis in irradiated lymphocytes. Up until
now, the function of VWCE and DOK7 after irradiation is not be understood. VWCE
is considered to be a regulatory element of the β-catenin signaling pathway and has
been recently shown to activate β-catenin in tumor cells (Du et al., 2010). DOK7 is
essential for neuromuscular synaptogenesis and induces the tyrosine phosphorylation of
muscle, skeletal, receptor tyrosine kinase (MuSK), resulting in numerous differentiated
acetylcholine receptor (AChR) clusters (Vogt et al., 2009).

4.2.3 Successful experimental validation of microarray data

As previously described, I performed DNA-microarray gene expression analysis of irra-
diated PBLs to construct an ensemble-based consensus signature. This signature con-
sists of seven genes, which were selected by the criteria of being among the genes with
maximal fold-change in each of the 900 obtained lists of radiation-responsive genes (see
Table 4.2 on the previous page). Based on the assumption that the seven genes are stable
against slight variations in our gene expression data, we selected them for validating the
radiation-induced gene expression alterations by qRT-PCR analysis. Therefore, pooled
RNA samples of six healthy donors we previously used for DNA-microarrays and non-
pooled RNA samples of six healthy donors, three of them belonging to the initial donor
pool in combination with three additional donors, were applied for qRT-PCR analy-
sis. Thereby, we detected very similar gene expression profiles for TNFSF4, SPATA18
and VWCE at all examined time points and radiation doses in DNA-microarray and
qRT-PCR measurements. FDXR and PHLDA3 feature approximately the same gene
expression profiles 6 h after irradiation, whereas 24 h and 48 h post exposure the gene
expression changes measured by DNA-microarrays are slightly higher than the alter-
ations detected by qRT-PCR in the pooled as well as in the non-pooled samples (see
Figure 4.3 on the facing page and Figure 4.4 on page 60). For DOK7 the qRT-PCR
measurements show a stronger upregulation after irradiation in the non-pooled sam-
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ples when compared with the pooled samples. LGR6 exhibits only a low upregulation
in the qRT-PCR measurements in comparison to the DNA-microarray data (data not
shown).
As already described by Pogosova-Agadjanyan et al. (2011) and Kang et al. (2003)
microarray and RT-PCR or qRT-PCR measurements can yield different expression re-
sults. In this study, qRT-PCR measurements of the low expressed gene LGR6 do not
show strong expression alterations after irradiation when compared to the microarray
measurements. One reason for this could be that alternative splicing forms, as observed
for 40-60% of human genes, hybridized to that particular probe on the microarrays
(Rockett and Hellmann, 2004). Furthermore, genes with very high or low levels of ex-
pression showed reduced agreement between RT-PCR and microarray results, whereby
the expressions were undetectable by RT-PCR but appreciable by microarrays (Etienne
et al., 2004).
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Figure 4.3: Heatmaps comparing radiation-induced expression changes of poten-
tial biomarkers obtained by DNA-microarray and qRT-PCR analysis. The log2
fold-changes of TNFSF4, FDXR, SPATA18, PHLDA3, and VWCE (rows) are selected to com-
pare the expression changes obtained by DNA-microarray and qRT-PCR analysis of pooled
and non-pooled samples (columns). Illustrated are the expression alterations after medium
to high dose exposure (0.5, 1, 2, and 4 Gy) measured 6, 24, and 48 h after irradiation. High
log2 fold-changes are depicted as red.
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Figure 4.4: Illustration of the mean value of relative expression of six radiation-
responsive genes in non-pooled, individual RNA samples based on qRT-PCR
after medium and high dose exposure. The relative expressions 6 h (white bars; n = 6),
24 h (light grey bars; n = 6) and 48 h (dark grey bars; n = 6) post-irradiation measured by
qRT-PCR based on the expression of the non-irradiated control (dashed line) are shown. A
significant rise in the gene expression from one dose to the next higher dose is marked by an
asterisk (p-value < 0.05). All of the displayed genes reveal a dose-dependent increase of the
gene expression. All given data points are significantly different to the non-irradiated control
(p < 0.05). A: FDXR exhibits a very strong (9- to 20-fold) upregulation 6 h post exposure. B
and C: PHLDA3 and TNFSF4 show a similar gene expression profile at all examined time
points post irradiation with a less pronounced increase at later time points. D and E: The
expression of VWCE and SPATA18 increases with increasing dose and seems to be virtually
irrespective to the time post irradiation (with the exception at 4 Gy). F: DOK7 shows the
strongest upregulation 24 h after irradiation and is rather indicative in the lower dose range.
Error bars indicate the standard error of the mean (SEM) for n = 6 independent experiments.
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4.3 Predicting low radiation doses

A gene expression-based estimation of low radiation doses would be beneficial to assess
long-term health risks associated with low dose exposure. In the present section, I dis-
cuss (1) whether samples irradiated with low radiation doses can be discriminated based
on gene expression levels, and (2) whether my ensemble-based approach is a valid tool
for identifying promising biomarker candidates for the low dose range (0, 0.02, 0.1 Gy).
First, I identified two gene expression profiles showing specific patterns for low radiation
doses 24 and 48 h after exposure. Since one-way ANOVA did not identify significantly
regulated genes 24 h after low dose exposure, the first expression profile was constructed
based on 24 genes that have at least a log2 fold-change of 1 and a variance smaller than
the median variance across all low dose samples measured 24 h after exposure. The sec-
ond profile consists of 144 genes significantly regulated 48 h after exposure, as detected
by one-way ANOVA. As shown in Figure 4.5 on the following page hierarchical cluster-
ing of both profiles show that at 24 and 48 h after exposure, all non-irradiated samples
can be clearly discriminated from the irradiated samples. At 48 h after irradiation, the
two radiation doses, 0.02 and 0.1 Gy, are correctly separated from each other as well.
Twenty-four hours after irradiation, both radiation doses lead to very similar expres-
sion patterns such that one sample irradiated with 0.02 Gy is wrongly associated with
the 0.1 Gy samples. Nevertheless, both heatmaps indicate that expression signatures
appropriate for predicting low radiation doses might exist.

4.3.1 Biomarker signatures and prediction performances

One aim of this thesis is the identification of expression signatures for discriminating
low radiation doses and to evaluate their prediction performance. To this end, I first
identified 600 lists of significant radiation-responsive genes with the p-value-driven gene
selection. Since the results for the medium and high dose ranges clearly show, that the
consecutively applied fold-change-driven gene selection significantly improves the ac-
curacy of radiation dose prediction (see Table 4.1 on page 56), I subsequently selected
genes that display the highest fold-change between 0.02 and 0.1 Gy. Across all 600
lists obtained by the p-value-driven and consecutively applied fold-change-driven gene
selection, 101 different genes were identified (i.e. union of all 600 lists, each comprising
20 genes with highest fold-change). Thus, the lists of radiation-responsive genes with
highest fold-change consist of a varying composition of the 101 genes (see Supplemen-
tary Table A.1 on page 92).
The cross-validated performance evaluation revealed that the prediction of low radia-
tion doses yielded an average sensitivity of 85.9%, an average specificity of 92.9% and an
average overall success of 90.6%. A closer look at the prediction performances obtained
for the single radiation doses indicates that the classification of samples irradiated with
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Figure 4.5: Heatmaps illustrating expression levels of radiation-induced of genes
after low dose exposure. Genes (rows) showing an expression change after low dose expo-
sure were selected to cluster samples (columns) irradiated with low radiation doses (0, 0.02,
0.1 Gy). High expression is depicted as red and low expression is depicted as green. Both
heatmaps illustrate that all three radiation doses can be discriminated at both investigated
time points after irradiation. A: Hierarchical clustering of DNA-microarray samples based
on the expression levels of 24 genes with a log2 fold-change > 1 and a variance smaller than
the median variance across all samples 24 h after low dose exposure (see also Supplemen-
tary Table A.2 on page 93). B: Hierarchical clustering of the DNA-microarray samples based
on the expression levels of 144 significantly altered genes 48 h after low dose exposure (see
Supplementary Table A.3 on page 99).
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0.02 Gy is most problematic. Whereas 98.7% of all non-irradiated samples and 92.3%
of all samples irradiated with 0.1 Gy are correctly predicted, only 66.7% of samples
irradiated with 0.02 Gy are correctly assigned to their radiation dose (see Table 4.3).
By constructing the ensemble-based consensus signature I solved the difficulty of pre-
dicting the 0.02 Gy samples. An increased sensitivity of 95.6% (+ 9.7% compared to
the performance of the p-value-driven and consecutively applied fold-change-driven gene
selection), an increased specificity of 97.8% (+ 4.9%) and an increased overall success
of 97% (+ 6.4%) was obtained. Remarkably, 100% of the non-irradiated and 0.1 Gy
irradiated samples and as many as 86.7% of the 0.02 Gy irradiated samples are cor-
rectly predicted. The differences between the measured prediction performances based
on the p-value-driven and consecutively applied fold-change-driven gene selection and
the ensemble-based consensus signature are depicted in Table 4.3 on the next page.
Moreover Table 4.3 demonstrates that the consensus signature leads to a significant
improvement of the predictive power of low dose classification.
The consensus signature contains nine genes that are present in at least 500 of the
600 lists, each comprising 20 genes with highest fold-change between 0.02 and 0.1 Gy.
Four of the nine genes are part of all 600 lists (see Table 4.4 on the following page).
Interestingly, the well-known radiation-responsive gene FDXR is among these. As al-
ready mentioned before (see Section 4.2.2 on page 56), the function of FDXR protein
is electron transfer from NADPH to cytochrome P450 via ferredoxin in mitochondria,
and FDXR can be induced by DNA damage in a p53-dependent manner that sensi-
tizes cells to ROS-mediated apoptosis (Liu and Chen, 2002). The genes PFKFB3 and
LY6GG5C are also included in the low dose consensus signature. PFKFB3 is a key
regulator of glycolysis (Okar and Lange, 1999), and LY6G5C belongs to a cluster of
leukocyte antigen-6 (LY6) genes that are located in the major histocompatibility com-
plex (MHC) class III region on chromosome 6 (Mallya et al., 2002). The function of the
other genes identified is as yet unknown.

4.3.2 Confirming our results by qRT-PCR analysis

With my DNA-microarray analysis, I identified nine genes that are suitable for radiation
dose prediction 24 and 48 h after low dose exposure with DNA-microarray analysis (see
Table 4.4 on the following page). To validate the gene expression alterations, we selected
three of the nine candidate biomarker genes, namely FDXR, PFKFB3 and LY6G5C,
for qRT-PCR analysis. The qRT-PCR analysis was based on non-pooled RNA samples
of four healthy donors.
As shown in Figure 4.6 on page 65 an increasing gene expression was measured for
FDXR 24 h after irradiation with 0.02 and 0.1 Gy, and 48 h after irradiation with
0.1 Gy in comparison to the non-irradiated control. In contrast, a downregulation of
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Method Dose Sensitivity Specificity Overall
(Gy) Success

Fold-change-driven
0 98.7 97 97.6
0.02 66.7 95.5 85.9
0.1 92.3 86.3 88.3
Avg 85.9 92.2 90.6

Consensus signature
0 100 100 100
0.02 86.7 100 95.6
0.1 100 93.3 95.6
Avg 95.6 97.8 97.0

Table 4.3: Prediction performances obtained for the low radiation doses. The per-
formances yielded by the p-value-driven and consecutively applied fold-change-driven gene
selection and the ensemble-based consensus signature are compared. The sensitivities, speci-
ficities and overall successes obtained for each radiation dose (0, 0.02, 0.1 Gy) and averaged
over the complete dose range (Avg) are given in percent.

Agilent ID Gene Symbol Frequency of
Selection

A 24 P506680 N/A 600
A 24 P375205 MKL2 600
A 23 P38154 FDXR 600
A 24 P332081 JAKMIP3 600
A 24 P111096 PFKFB3 599
A 32 P138939 N/A 581
A 23 P419868 FLJ35379 544
A 32 P20997 N/A 541
A 24 P7584 LY6G5C 532

Table 4.4: Ensemble-based consensus signature for predicting low radiation doses.
All genes included in the ensemble-based consensus signature constructed for the low dose
range (0, 0.02, 0.1 Gy) are listed. The frequency of selection indicates how often a gene was
among the 20 selected genes with highest fold-change between 0.02 and 0.1 Gy within 100
repeated 6-fold-cross-validations. This Table is adapted from Knops et al. (2012).
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FDXR is induced 48 h after irradiation with 0.02 Gy. PFKFB3 reveals a downregu-
lation at all examined time points and radiation doses that continued to decline with
increasing radiation doses 24 h after exposure. Very similar gene expression values were
detected 24 h after irradiation with 0.1 Gy and 48 h after irradiation with 0.02 and
0.1 Gy. However, LY6G5C exhibits a detectable (but not statistically significant) up-
regulation 24 h after irradiation with 0.02 Gy.
In summary, we successfully validated the gene expression alterations detected by mi-
croarray analysis with our qRT-PCR analysis based on non-pooled RNA samples from
four healthy donors. Moreover, the qRT-PCR analysis revealed relatively low inter-
individual gene expression variations in examined genes among the four donors, espe-
cially for FDXR 24 h and for PFKFB3 48 h after irradiation with 0.1 Gy.
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Figure 4.6: Illustration of the mean value of relative expression of six radiation-
responsive genes in non-pooled, individual RNA samples based on qRT-PCR after
low dose exposure. The relative expressions 24 h (light grey bars; n = 4) and 48 h (dark
grey bars; n = 4) after low dose exposure (0.02, 0.1 Gy) measured by qRT-PCR based on the
expression of the non-irradiated control (dashed line) are shown. A significant rise of the gene
expression from one dose to the next higher dose is marked by an asterisk (p-value < 0.05). A:
FDXR reveals the strongest upregulation 24 h after irradiation that increases with increasing
dose. B: For PFKFB3 at all examined time points and radiation doses a downregulation is
detected. C: LY6G5C shows a detectable upregulation 24 h after irradiation with 0.02 Gy.
Error bars indicate the standard error of the mean for n = 4 independent experiments.
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4.4 Comparison to other gene expression-based biodosimetric studies

In recent years, many studies investigated radiation-induced expression changes as a
tool for biodosimetric applications (Brengues et al., 2010; Dressman et al., 2007; Gruel
et al., 2006; Meadows et al., 2008; Paul and Amundson, 2008). However, a direct com-
parison to the results of my work is intricate due to varying experimental settings such
as different cell types, radiation doses or time points post irradiation. Additionally,
the technology used for transcriptional profiling (e.g. microarrays or qRT-PCR) or the
utilized microarray platform (e.g. Agilent or Affymetrix) differs across the studies. Dif-
ferent statistical and bioinformatics-driven analysis have been pursued depending on
the purpose and the main focus of the studies. In the following, I consider our candidate
gene signatures for radiation dose prediction in the context of the results presented by
similar gene expression-based biodosimetric studies. I separately discuss the here iden-
tified signatures (1) for the medium to high radiation doses (0.5-4 Gy) and (2) for the
low radiation doses (0.02-0.1 Gy).

1. Medium to high radiation doses: A very similar study with respect to the experi-
mental setting and statistical analysis was conducted by Paul and Amundson (2008).
The authors profiled the gene expression of γ-irradiated human PBLs from ten healthy
donors using Agilent Whole Human Genome Oligo Microarrays (G4112A). They mon-
itored the transcriptional level of genes at both 6 and 24 h after exposure to doses of 0,
0.5, 2, 5, and 8 Gy. Based on the experimental data they extracted a set of 74 radiation-
induced genes with which four dose ranges (i.e. non-irradiated, 0.5, 2 and 5–8 Gy) could
be predicted with a sensitivity of 98%. With my computational framework for biomar-
ker discovery and radiation dose prediction, I extracted 16 potential biomarker genes
(see Table 4.2 on page 57), with which five radiation doses (i.e. non-irradiated, 0.5, 1, 2
and 4 Gy) can be predicted at three time points (i.e. 12, 24 and 48 h) with a sensitivity
of 95.7% (see Table 4.1 on page 56). Five of the 16 genes, namely VWCE, TNFSF4
FDXR, ISGL20L1 and C8orf38, are also part of the 74 gene signature identified by
Paul and Amundson (2008). Three additional genes of our 16 biomarker candidates
were reported to be differentially expressed by Paul and Amundson (2008), but were
not included in their 74-gene signature: PHLDA3 and RP4-742C19.3 showed signifi-
cant gene expression changes 6 h and TCL1A 6 h and 24 h after irradiation. Note, that
therewith also three genes from our consensus signature, identified for the medium to
high dose range (see Section 4.2.2 on page 56), are part of their 74-gene signature (i.e.
VWCE, TNFSF4 and FDXR).
Several of our candidate biomarker genes are also reported by other biodosimetric stud-
ies, even though not all explicitly utilized them for estimating the radiation dose. For
example, FDXR was shown to be radiation-induced after exposure to low LET radia-
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tion in CD4+ T-lymphocytes (Mori et al., 2005), peripheral blood samples (Budworth
et al., 2012; Manning et al., 2013), primary human fibroblast cell lines (Kis et al.,
2006), non-immortalized human T cells (Pogosova-Agadjanyan et al., 2011) and divid-
ing lymphocytes as well as peripheral blood leukocytes (Kabacik et al., 2011). Besides
an upregulation of FDXR, TNFSF4, PHLDA3 and ISGL201 were also shown to be re-
sponsive to radiation in previous publications (Mori et al., 2005; Pogosova-Agadjanyan
et al., 2011). In summary, our results show an evident overlap with existing investiga-
tions. However, we also extracted genes, such as SPATA18, which have not previously
been used for estimating medium to high radiation doses.

2. Low radiation doses: In recent years, the interest in elucidating the effects of low
dose exposure on the cellular transcription has considerably grown (Fachin et al., 2007,
2009; Jin et al., 2008; Pogosova-Agadjanyan et al., 2011; Wyrobek et al., 2011). As
described in Section 4.3 on page 61, I identified potential biomarker signatures with
which low radiation doses (0, 0.02, 0.1 Gy) can be accurately predicted.
For the low dose range, FDXR is the only gene of our signature that was also de-
tected by other researchers analyzing gene expression changes after irradiation. FDXR
is part of (i) the gene signature, which I extracted for the medium to high dose range
(see also previous paragraph) and additionally of (ii) the 74-gene signature identified
by Paul and Amundson (2008). Interestingly, FDXR is also one of nine biomarkers
which were proposed only recently by Manning et al. (2013) for estimating low radia-
tion doses (0.05–1 Gy). The authors investigated the response of mostly p53-regulated
genes to X-ray exposure. They measured their gene expression in ex vivo irradiated
blood from healthy donors by Multiplex qRT-PCR and established and characterized
their exposure-response relationships. By using different combinations of nine biomar-
ker candidates they showed that the gene set of FDXR, DDB2 and CCNG1 gave the
best estimate for low radiation doses.
Except FDXR, none of our signature genes was previously reported in the context of
radiation. Nevertheless, many studies provided evidence that ionizing radiation leads
to significant transcriptional changes even after low dose exposure. It is for this reason
that gene expression signatures, such as the one proposed in the present work, are a
promising tool also for predicting low radiation doses.

4.5 Summary and conclusion

In this chapter, an ensemble-based strategy for the identification of stable gene expres-
sion signatures functioning as radiation biodosimeters is described. The development
and implementation of a computational framework for biomarker discovery and radia-
tion dose prediction has led me to more carefully consider the problem of reproducibility
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of gene expression-based biomarkers. For many years a good prediction accuracy was
the most important decision criterion in selecting promising biomarker candidates. Only
the last few years, researcher stressed that the ascertainment of a true prediction out-
come is no less important than the reproducibility of the results (Taylor et al., 2008).
To this end, I proposed a principle approach for selecting biomarker candidates from
high-throughput gene expression data, whose algorithmic design is intended to support
reproducibility in terms of selecting genes which are stable with respect to variations
within experimental data. A fundamental component of my approach is the repeated
cross-validation procedure which generates different sample subsets of the underlying
data, functioning as training sets and test sets in the subsequent procedure. First, I
selected for each training set a subset of radiation-induced genes with high changes in
gene expression after radiation exposure. It has been previously shown by Fan et al.
(2010) that this type of feature selection, which I here refer to as p-value-driven and
fold-change-driven gene selection, is known to support the stability of selected genes.
Second, I aggregated all sets of biomarker candidates selected in the first step, which
are likely to differ from each other because they originate from slightly varying sam-
ple subsets, to one ensemble output. The ensemble-based consensus signature contains
genes which were most frequently selected by the p-value-driven and fold-change-driven
gene selection across all training sets. The advantage of this approach is that noise is
eliminated because only genes are selected which are consistently found to be significant
(Davis et al., 2006). Furthermore, they are presumed to be highly stable in terms of
data variations by subsampling (Abeel et al., 2010; He and Yu, 2010) and most relevant
to sample prediction (Baek et al., 2009; Chen et al., 2007).
An important aspect of our microarray experiment with regard to its application to
radiation biodosimetry is our approach of pooling the blood samples from six donors.
Pooling mRNA of a group of donors is one option to control the costs of a DNA-
microarray experiment and can be useful or even necessary when there is not enough
isolated mRNA from each donor to hybridize individual DNA-microarrays (Peng et al.,
2003). For us the most important reason was a different one. We deliberately opted
for pooling the blood samples in order to identify radiation-induced expression profiles
which are independent from individual patterns and outliers. This strategy of reducing
the effect of biological variation (Kendziorski et al., 2003) and thus to identify gene
patterns generalizable to estimate the radiation dose of individuals was also applied in
previously published biodosimetric studies (Kis et al., 2006; Port et al., 2007).
My study aims at the identification of preferably small and stable gene signatures allow-
ing an accurate prediction of low (0, 0.02, 0.1 Gy) and medium to high radiation doses
(0, 0.5, 1, 2, 4 Gy). To this end, I applied my computational framework I developed for
biomarker discovery and radiation dose prediction to our microarray gene expression
data.
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For the medium to high radiation doses, my bioinformatics-driven analysis revealed the
following key findings: with the above mentioned p-value-driven and fold-change-driven
gene selection, I identified 16 biomarker candidates covering the presumed dose range
(0.5–4 Gy) and time frame (6–48 h) of large scale radiation accidents. Using the 16
genes for radiation dose prediction, an averaged sensitivity of 95.7% was reached. With
the consecutively built ensemble-based consensus signature, containing seven of the 16
biomarker candidates, a decreased averaged sensitivity of 89.1% was obtained. Since
stability of biomarkers is an important issue, as it may improve the success of subse-
quent validations on external datasets (Abeel et al., 2010), one may have to accept a
trade-off between improved reproducibility against a decreased prediction accuracy.
One of the seven genes included in the consensus signature, namely FDXR, is amongst
the most commonly identified radiation-responsive genes in the literature (Oh et al.,
2012); the six remaining genes were less frequently (TNFSF4, PHLDA3, VWCE) or not
reported before in the context of radiation biodosimetry (DOK7, SPATA18, LGR6 ).
The detailed function of these genes as well as their implication in radiation response
is still not fully resolved.
Another objective of my analysis is to investigate whether my computational frame-
work for biomarker discovery and radiation dose prediction is a valid tool for identifying
promising biomarker candidates also for the low dose range (0, 0.02, 0.1 Gy). Several
studies previously reported that low dose exposure leads to significant changes in gene
expression, but whether gene signatures can be utilized for predicting low radiation
doses is an open question and not sufficiently investigated so far.
The results of my analysis support the idea that samples irradiated with low radiation
doses can be discriminated based on gene expression levels. Using radiation-responsive
genes which display high gene expression changes between 0.02 and 0.1 Gy for radiation
dose prediction I obtained an averaged sensitivity of 85.9%. In contrast to the results
obtained for the medium to high dose range, the ensemble-based consensus signature
yielded an improved prediction performance for the low dose range. The consensus sig-
nature, consisting of nine genes, enabled a radiation dose prediction with an averaged
sensitivity of 95.6% and revealed that low dose irradiation already leads to clear gene
expression alterations compared to the non-irradiated control samples. FDXR was the
only gene of the ensemble-based consensus signature for radiation dose prediction after
low dose exposure that was also detected in several other studies. The function of the
remaining is as yet unknown.
As already mentioned above, I identified gene signatures for radiation dose predic-
tion based on microarray data of pooled and irradiated blood samples. Of course, it is
indispensable for future biodosimetric applications that the discovered gene expression-
based radiation biodosimeters allow an estimation of individual radiation doses. Thus,
we additionally analyzed the gene expression changes with qRT-PCR analysis based on
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non-pooled blood samples and successfully validated most of our discussed genes.
A comparison of the potential biomarker signatures identified for the low dose range
and for the medium to high dose range revealed the following interesting finding: for
the medium to high dose range, a higher percentage of genes are present in all lists
of radiation-responsive genes with highest maximal fold-change than for the low dose
range. Seven of the 16 genes identified by the p-value-driven and consecutively applied
fold-change-driven gene selection are part of all lists identified for the medium to high
radiation doses, whereas only four of the 101 genes are part of all lists for the low radi-
ation doses. Since the ratio of the intersection of gene lists to their union is a common
similarity measure to assess the stability of feature selection results (He and Yu, 2010),
it can be concluded that the potential biomarker signature for the medium to high dose
range is characterized by a higher stability with respect to sampling variations. The
lower stability observed for the results for low radiation doses could have two causes:
first, we used a smaller number of DNA-microarray samples for the classification of
low radiation doses than for classification of the medium and high radiation doses. As
stated by He and Yu (2010) the relatively small number of samples in high-dimensional
data is one of the main sources of the instability problem in feature selection and it
has been previously verified that the overlap between independently developed gene
signatures was increased linearly with more samples (Kim, 2009). Second, as shown in
Chapter 3 on page 27, low radiation doses result in less pronounced gene expression
changes. This is why there is a higher chance that noise or natural variations in gene ex-
pression superimpose transcriptional modulations induced by ionizing radiation. Hence,
my gene selection procedure based on the statistical analysis of expression levels may
not observe all changes in the sample subsets.
My computational framework for biomarker discovery and radiation dose prediction
incorporates a frequency-based selection of the top-ranked genes over different lists ob-
tained by cross-validation. As already described by Boulesteix and Slawski (2009) this
approach heavily depends on the arbitrarily fixed threshold k, defining the number of
genes at the top of each list used to construct the ensemble-based consensus signa-
tures. To overcome the problem of setting a fixed threshold, one could successively try
several thresholds and choose one cutoff resulting in both a high prediction accuracy
and a high gene signature stability. Note that the optimization of model parameters
in classification processes, like choosing the best threshold k, necessitates the imple-
mentation of a nested cross-validation scheme (Varma and Simon, 2006). The inner
loop of a nested cross-validation is used to perform the parameter tuning while the
outer loop is used to evaluate the performance of the classification. Since our ensemble-
based consensus signatures meet the requirements of an accurate dose prediction and a
preferably high stability, I decided not to optimize the threshold k by incorporating a
nested cross-validation, which would have significantly increased the complexity of my
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computational framework for biomarker discovery and radiation dose prediction.
In summary, the genes identified for the medium to high dose range are potential bio-
markers, which are particularly suitable for dose level discrimination in a time frame
that would be appropriate for life-saving medical triage. Even though the discrimination
of low radiation doses is not essential for acute medical decision-making, a biodosimetry
method based on gene expression profiles to determine even low radiation doses would
be beneficial to assess the long-term health risks for a large number of exposed individ-
uals. By applying my framework for biomarker discovery and radiation dose prediction
to our DNA-microarray samples, measuring the gene expression in human PBLs after
low dose exposure, I identified a potential biomarker signature with which low radiation
doses could be accurately assessed.
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Chapter 5
Major insights and future directions

Synopsis
In this chapter, the major findings of this thesis are summarized with respect to the workflow
I passed through in the course of my dissertation (see below). Furthermore, directions for
improvements of the here presented work and implications for future research are discussed.
In particular, inspired by the obtained results, new wet-lab experiments are proposed and their
impact for future biodosimetry studies are considered.

(High-throughput) Data 
generation

Data pre-processing 

Data exploration 
and 

statistical testing

Feature selection
and

supervised classification

Performance evaluation

Experimental validation

Prior biological
knowledge

Chapter 2:
Experimental setup

Chapter 3:
Changes in gene expression 
reflect the cellular response 
to ionizing radiation

Chapter 4:
An ensemble-based approach 
for radiation dose prediction

Chapter 5:
Major insights and future 
directions

a

b

c

d

e

Wet-lab

Computer-lab

Wet-lab

73



In the introduction of this thesis I presented a general workflow for high-throughput
data analysis and biomarker discovery (see Figure 1.1 on page 4). With the aim to
identify gene signatures functioning as radiation biodosimeters, I passed through all
steps of this workflow by combining the skills and resources of different disciplines,
including molecular biology, computer science and bioinformatics. The individual steps,
their corresponding objectives and major biological findings, which were discussed in
detail in the course of this thesis, can be summarized as follows:

1. High-throughput data generation: With whole genome DNA-microarrays we
monitored gene expression levels in human PBLs after ex vivo γ-irradiation. This
data provide the basis for my bioinformatics-driven analysis pipeline and thus for
the biological findings presented in this thesis.

2. Statistical and functional data analysis: With my systematic and compar-
ative DNA-microarray analysis, I investigated radiation-induced transcriptional
changes in order to characterize the DNA damage response to low, medium and
high dose exposure. From the analysis, we can see that radiation dose and time
after exposure substantially influence the number of radiation-induced genes as
well as the affected pathways and molecular mechanisms. Furthermore, the results
indicate that even acute low dose exposure causes a well-defined physiological re-
sponses in human PBLs.

3. Bioinformatics-driven discovery of biomarker signatures: I developed a
combined statistical and bioinformatics-driven framework in order to identify
radiation-responsive genes in human lymphocytes as a tool for radiation bio-
dosimetry. By implementing a cross-validation- and frequency-based gene selection
procedure, I constructed two ensemble-based consensus signatures for radiation
dose prediction. The genes of both signatures show a high stability against small
variations in our data. From the performance evaluation of my supervised clas-
sification, I conclude that the two consensus signatures allow an accurate retro-
spective estimation of low and medium to high radiation doses up to 48 h after
exposure.

The results of my thesis clearly show that the dose-response relationship of selected
genes allow a precise in vitro estimation of radiation doses. But what impact or rele-
vance do our findings have for practical radiation biodosimetry?
In the present work, it has been demonstrated that gene expression signatures allow
a discrimination of radiation doses as low as 0.02 Gy. Being able to determine the
radiation dose after low dose exposure is an important task for public health science
(Jin et al., 2008). While the annual dose limit for persons occupationally exposed to
ionizing radiation is 20 mSv (Sudprasert et al., 2006), one single computer tomography
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scan results in radiation absorbed doses of 12 mGy (body) to 20 mGy (head) (Huda
and Ogden, 2008). Additionally, the majority of affected individuals in a large-scale nu-
clear accident will probably receive total-body doses significantly smaller than 100 mSv.
In both cases, determining the radiation dose is critical for epidemiological surveys of
health effects. Together with the results we derived for the medium to high radiation
doses we showed that gene expression-based biodosimetry has the potential to cover
a large range of radiation doses (0.02-4 Gy) at a window of time essential for medical
decision making after a radiation accident.
Besides a well-defined dose-response relationship, a low minimal detectable dose and
the coverage of a large dose range, a radiation biodosimeter should be specific to ion-
izing radiation and not be affected by confounding factors (Romm et al., 2009; Simon
et al., 2010; Voisin et al., 2004). Both issues were not addressed in the present thesis,
but only recently discussed in related studies:
Knops (2013) compared the effects on gene expression caused by two DNA damage-
inducing agents, namely 4-Acetamidophenol and Mitomycin C, with the effects caused
by ionizing radiation. Although the treatment with 4-Acetamidophenol and Mito-
mycin C led to an increased expression of three genes contained in the here presented
ensemble-based consensus signature for predicting medium to high radiation doses
(i.e. FDXR, PHLDA3 and TNFSF4 ), the comparison revealed that ionizing radia-
tion causes specific expression patterns which can be distinguished from those induced
by 4-Acetamidophenol or Mitomycin C. Knops (2013) therefore concluded that the cel-
lular mechanisms induced by chemotherapeutic agents and those induced by radiation
exposure are independent from each other.
In a recent study, Paul and Amundson (2011) investigated the potential impact of
smoking on the gene expression response to radiation exposure. The authors evaluated
the ability of a previously identified 74-gene expression signature (Paul and Amund-
son, 2008) to predict the radiation exposure level of ex vivo irradiated blood samples
of smokers and non-smokers of both genders. Their results showed that the accuracy of
their previously defined 74-gene signature in radiation dose prediction was unaffected
by differences in smoking status or gender. Please note that five of the nine genes con-
tained in our ensemble-based consensus signature are also included in their expression
signature.
The translation of the in vitro results presented in this dissertation to in vivo is an
indispensable step to transfer our findings into a clinical application like a diagnos-
tic devise for biodosimetry. Most of the published gene expression-based biodosimetry
studies refer to ex vivo results and did not investigate their comparability to in vivo.
However, Paul et al. (2011) tested the ability of gene expression signatures to predict
radiation doses received in vivo in a population of patients undergoing total body irra-
diation. Since their previously identified ex vivo signature (Paul and Amundson, 2008)
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predicted in vivo exposure with 100% accuracy and dose level with up to 98% accuracy,
the authors concluded that using ex vivo studies, like the one presented in this thesis,
are a promising and suitable approach for the discovery of gene signatures applicable
in future biodosimetry applications.
At this point my work inspires new wet-lab experiments, illustrated by the iterative
cycle integrated in the workflow for data-driven biomarker discovery presented in Fig-
ure 1.1 on page 4. Customized DNA-microarrays, measuring the expression levels of
those genes which are part of our two ensemble-based consensus signatures, could be
used to perform an in vivo confirmation of our results. Hereby, the peripheral blood of
patients having a computer tomography scan or undergoing total body irradiation in
preparation for stem cell transplantations would provide suitable experimental data for
an in vivo validation of our gene signatures for the low and medium to high radiation
doses respectively (Amundson et al., 2004).
Once the in vivo applicability of a gene signature is successfully confirmed, the genes
could be utilized for a biodosimetry device, like the one proposed by Brengues et al.
(2010), which measures the expression levels of 14 pre-selected genes. The authors state
that only a fingerstick of blood is needed for screening and the data can be delivered in
less than 12 h. Hence, such a gene expression-based biodosimetry device combines sev-
eral characteristics, like minimally invasive sampling, low sample costs and a standard-
ized, automated data processing, which are favorable or even required for an effective
and fast screening of potentially exposed individuals after a large radiation accident.
The applicability of gene expression-based radiation dose prediction to practical bio-
dosimetry largely depends on the reproducibility of the utilized gene signatures. The
design of my computational framework for biomarker discovery and radiation dose pre-
diction intends to support biomarker stability and therewith reproducibility. At this
point, I would like to emphasize that the here presented strategy is considered to be
one possibility to enhance biomarker stability (Boulesteix and Slawski, 2009; He and Yu,
2010), though not of course the only one. For example, one promising idea to improve
the stability of biomarker signatures is to incorporate prior biological knowledge (e.g.
functional annotations, protein-protein interactions and expression correlation among
genes) into the process of feature selection (Haury et al., 2010; Sanavia et al., 2012).
As we have seen in the course of this thesis, the process for the identification of po-
tential biomarkers comprises several steps (see Figure 1.1 on page 4), whereas each
step can influence the stability of the signatures identified. Studies which investigated
the impact of different approaches on the stability, often focussed on only one of these
steps (like feature selection, classification or the integration of prior knowledge) and
did not consider possible dependencies between them (Davis et al., 2006; Fan et al.,
2010; Haury et al., 2011; Sanavia et al., 2012). To provide a more complete picture
of this issue, more research is needed to identify and systematically evaluate factors
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5 Major insights and future directions

influencing biomarker stability.
In conclusion, although the gene expression-based prediction of radiation doses is a
young branch of radiation biodosimetry, it holds great promise for future applications.
With my combined statistical and bioinformatics-driven framework for biomarker dis-
covery and radiation dose prediction, I identified candidate biomarker signatures, which
lay the foundation for the development of advanced biodosimetry devices. The latter
combines characteristics which are of particular value in situations where a large num-
ber of exposed people have to be screened in order to guide prompt medical decision-
making or to assess long-term health risks of radiation exposure. The present work
demonstrates that radiation-responsive genes in human lymphocytes are a promising
biodosimetric tool, even though it will need many years of joint research before gene
expression-based biodosimetry becomes a standardized, validated method.
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Supporting information for chapter 4

Table A.1: List of all radiation-responsive genes identified by the fold-change-
driven gene selection for the low dose range. With the p-value-driven and consecutively
applied fold-change-driven gene selection 101 genes were selected for the low dose range (0,
0.02, 0.1 Gy). The frequency of selection indicates how often a gene is among the 20 selected
genes with maximal fold-change within 100 repeated 6-fold cross-validations.

Agilent ID Gene Name Frequency of Agilent ID Gene Name Frequency of
Selections Selections

A 24 P506680 THC2535753 600 A 23 P104594 SCT 21
A 24 P375205 MKL2 600 A 23 P52610 DDB2 21
A 24 P332081 JAKMIP3 600 A 23 P356041 SPAG9 19
A 23 P38154 FDXR 600 A 24 P310256 LGI4 19
A 24 P111096 PFKFB3 599 A 23 P38757 SLC14A1 19
A 32 P138939 N/A 581 A 23 P129695 VASN 18
A 24 P341000 FLJ35379 544 A 23 P4212 HOXB13 18
A 32 P20997 N/A 541 A 23 P110624 CTNND2 17
A 24 P7584 LY6G5C 532 A 32 P179199 BE181768 16
A 24 P392723 CROCCL2 481 A 32 P221799 HIST1H2AM 16
A 24 P923510 N/A 479 A 24 P838797 BC042064 15
A 32 P43914 N/A 430 A 24 P936470 AF007193 14
A 32 P185741 N/A 411 A 24 P678056 N/A 14
A 24 P101651 N/A 367 A 24 P452024 N/A 13
A 24 P42308 FLJ31887 366 A 24 P361480 TANC2 13
A 24 P928031 N/A 345 A 32 P79313 BC040596 11
A 23 P102071 FLJ14409 341 A 32 P60632 BE175081 11
A 32 P85230 ISG20L1 281 A 23 P6481 TNRC6B 10
A 24 P557019 BF476310 263 A 24 P120537 SH3RF2 10
A 24 P253454 RGMA 243 A 24 P749374 BF983943 8
A 32 P7974 TDRD10 190 A 23 P217178 MAGEC1 7
A 23 P162449 SRGAP1 166 A 23 P115652 SFTPA1 7
A 24 P499481 N/A 161 A 24 P10731 MADCAM1 7
A 24 P348594 N/A 149 A 23 P143673 RASD2 6
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A 24 P147242 A2BP1 132 A 24˙P281514 LOC730589 6
A 23 P356646 TEKT4P2 112 A 32 P99804 N/A 6
A 32 P133840 TMCC2 103 A 24 P10751 HNF4A 5
A 24 P490704 N/A 100 A 23 P72411 CYP4X1 5
A 24 P85258 KIAA1751 100 A 23 P301971 MASP2 5
A 24 P943922 CACHD1 95 A 23 P59691 PAX4 5
A 23 P421526 ODF4 94 A 32 P459423 FUNDC2 4
A 23 P54736 GNG13 83 A 24 P373877 SYT5 4
A 32 P151152 N/A 79 A 23 P5995 ARFGEF2 3
A 23 P382775 BBC3 77 A 23 P501713 IL1F10 3
A 23 P113777 ITGBL1 76 A 23 P108534 N/A 3
A 24 P409182 N/A 75 A 24 P289665 LOC389332 3
A 32 P3914 N/A 74 A 24 P99679 POLR2A 3
A 32 P36767 N/A 59 A 23 P169007 NPM2 3
A 24 P238819 N/A 57 A 24 P195272 NP450512 3
A 23 P10640 ENPP7 53 A 32 P60707 N/A 2
A 24 P237936 TCF23 52 A 23 P12128 TSHB 2
A 23 P148852 AD7C-NTP 45 A 32 P157775 THC2564488 2
A 23 P35055 NPHS2 38 A 24 P281403 OR4C46 2
A 24 P901778 BM926140 36 A 23 P70733 TAAR2 2
A 23 P31858 ST18 34 A 32 P405703 KIAA116 1 2
A 24 P102650 MUC5B 34 A 24 P809964 AA465699 2
A 32 P116538 N/A 32 A 24 P388593 MAP6D1 2
A 23 P58642 PITX1 28 A 23 P217704 GYG2 1
A 32 P208599 AB074268 26 A 23 P131289 CHPF 1
A 32 P149404 LOC728371 24 A 24 P552677 N/A 1

A 24 P187218 PCDH9 1
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Theses

1. Transcriptional changes in ex vivo γ-irradiated human peripheral blood lymphocytes
can be analyzed by gene expression profiling. (Chapter 2)

2. The statistical and functional analysis of DNA-microarray data enables the investigation
of the cellular DNA damage response to ionizing radiation. (Chapter 3)

3. Both the radiation dose and the time after irradiation have a substantial impact on
the number of radiation-induced genes as well as on the cell signaling pathways and
biological processes activated after exposure to ionizing radiation. (Chapter 3)

4. The DNA-microarray analysis led to the hypothesis that acute low dose exposure causes
DNA-lesions which are sufficient to induce apoptosis. (Chapter 3)

5. A combined statistical and bioinformatics approach allows the identification of gene
expression signatures from high-throughput data functioning as candidate radiation
biodosimeters. (Chapter 4)

6. Based on a potential biomarker signature, comprising seven radiation-induced genes,
medium to high radiation doses can be accurately predicted within a time frame essential
for medical decisions in a radiologic emergency. (Chapter 4)

7. The ability to estimate low radiation doses with an expression signature of nine genes
could be used to assess the long-term health risks associated with low dose exposure.
(Chapter 4)

8. A translation of the presented in vitro results to in vivo remains a challenge, but is
necessary for the development of a refined and customized biodosimetry platform allow-
ing a fast and minimally-invasive retrospective estimation of radiation doses of exposed
individuals in the future. (Chapter 5)
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