78 research outputs found

    miRDriver: A Tool to Infer Copy Number Derived miRNA-Gene Networks in Cancer

    Get PDF
    Copy number aberration events such as amplifications and deletions in chromosomal regions are prevalent in cancer patients. Frequently aberrated copy number regions include regulators such as microRNAs (miRNAs), which regulate downstream target genes that involve in the important biological processes in tumorigenesis and proliferation. Many previous studies explored the miRNA-gene interaction networks but copy number-derived miRNA regulations are limited. Identifying copy number-derived miRNA-target gene regulatory interactions in cancer could shed some light on biological mechanisms in tumor initiation and progression. In the present study, we developed a computational pipeline, called miRDriver which is based on the hypothesis that copy number data from cancer patients can be utilized to discover driver miRNAs of cancer. miRDriver integrates copy number aberration, DNA methylation, gene and miRNA expression datasets to compute copy number-derived miRNA-gene interactions in cancer. We tested miRDriver on breast cancer and ovarian cancer data from the Cancer Genome Atlas (TCGA) database. miRDriver discovered some of the known miRNAs, such as miR-125b, mir-320d, let-7g, and miR-21, which are known to be in copy number aberrated regions in breast cancer. We also discovered some potentially novel miRNA-gene interactions. Also, several miRNAs such as miR-127, miR-139 and let-7b were found to be associated with tumor survival and progression based on Cox proportional hazard model. We compared the enrichment of known miRNA-gene interactions computed by miRDriver with the enrichment of interactions computed by the state-of-the-art methods and miRDriver outperformed all the other methods

    Intelligent ZHENG Classification of Hypertension Depending on ML-kNN and Information Fusion

    Get PDF
    Hypertension is one of the major causes of heart cerebrovascular diseases. With a good accumulation of hypertension clinical data on hand, research on hypertension's ZHENG differentiation is an important and attractive topic, as Traditional Chinese Medicine (TCM) lies primarily in “treatment based on ZHENG differentiation.” From the view of data mining, ZHENG differentiation is modeled as a classification problem. In this paper, ML-kNN—a multilabel learning model—is used as the classification model for hypertension. Feature-level information fusion is also used for further utilization of all information. Experiment results show that ML-kNN can model the hypertension's ZHENG differentiation well. Information fusion helps improve models' performance

    An intelligent data-centric approach toward identification of conserved motifs in protein sequences

    Get PDF
    The continued integration of the computational and biological sciences has revolutionized genomic and proteomic studies. However, efficient collaboration between these fields requires the creation of shared standards. A common problem arises when biological input does not properly fit the expectations of the algorithm, which can result in misinterpretation of the output. This potential confounding of input/output is a drawback especially when regarding motif finding software. Here we propose a method for improving output by selecting input based upon evolutionary distance, domain architecture, and known function. This method improved detection of both known and unknown motifs in two separate case studies. By standardizing input considerations, both biologists and bioinformaticians can better interpret and design the evolving sophistication of bioinformatic software

    Parallel pair-wise interaction for multi-agent immune systems modelling

    Get PDF
    Agent Based Modelling (ABM), is an approach for modelling dynamic systems and studying complex and emergent behaviour. ABM approach is a very common technique in biological domain due to high demand for a large scale analysis tool to collect and interpret information to solve biological problems. However, simulating large scale cellular level models (i.e. large number of agents/entities) require a high degree of computational power which is achievable through parallel computing methods such as Graphics Processing Units (GPUs). The use of parallel approaches in ABMs is growing rapidly specifically when modelling in continuous space system (particle based). Parallel implementation of particle based simulation within continuum space where agents contain quantities of chemicals/substances is very challenging. Pair-wise interactions are different abstraction to continuous space (particle) models which is commonly used for immune system modelling. This paper describes an approach to parallelising the key component of biological and immune system models (pair-wise interactions) within an ABM model. Our performance results demonstrate the applicability of this method to a broader class of biological systems with the same type of cell interactions and that it can be used as the basis for developing complete immune system models on parallel hardware

    Topographies of the Obsolete: Ashmolean Papers

    Get PDF

    Differential biclustering for gene expression analysis

    Full text link

    Computational Analysis of HIV-1 Resistance Based on Gene Expression Profiles and the Virus-Host Interaction Network

    Get PDF
    A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS) therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection
    corecore