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ABSTRACT 
Copy number aberration events such as amplifications and 
deletions in chromosomal regions are prevalent in cancer patients. 
Frequently aberrated copy number regions include regulators such 
as microRNAs (miRNAs), which regulate downstream target genes 
that involve in the important biological processes in tumorigenesis 
and proliferation. Many previous studies explored the miRNA-
gene interaction networks but copy number-derived miRNA 
regulations are limited. Identifying copy number-derived miRNA-
target gene regulatory interactions in cancer could shed some light 
on biological mechanisms in tumor initiation and progression. In 
the present study, we developed a computational pipeline, called 
miRDriver which is based on the hypothesis that copy number data 
from cancer patients can be utilized to discover driver miRNAs of 
cancer. miRDriver integrates copy number aberration, DNA 
methylation, gene and miRNA expression datasets to compute copy 
number-derived miRNA-gene interactions in cancer. We tested 
miRDriver on breast cancer and ovarian cancer data from the 
Cancer Genome Atlas (TCGA) database. miRDriver discovered 
some of the known miRNAs, such as miR-125b, mir-320d, let-7g, 
and miR-21, which are known to be in copy number aberrated 
regions in breast cancer. We also discovered some potentially novel 
miRNA-gene interactions. Also, several miRNAs such as miR-127, 
miR-139 and let-7b were found to be associated with tumor 
survival and progression based on Cox proportional hazard model. 
We compared the enrichment of known miRNA-gene interactions 
computed by miRDriver with the enrichment of interactions 
computed by the state-of-the-art methods and miRDriver 
outperformed all the other methods. 

CCS CONCEPTS 
• Bioinformatics • Computational Genomics   • Biological 
Networks 

KEYWORDS 
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1 Introduction 
Cancers, like many other diseases, can be defined as a disease of 
altered gene expression due to dysregulation at the transcriptional 
and post-transcriptional layers [1-2]. microRNAs (miRNAs) are 
short non-coding RNAs that found to regulate gene expression 
post-transcriptionally [3]. A single miRNA can corelate hundreds 
of genes and can influence the tumor suppressor genes and 
oncogenes [4].  

miRNA dysregulation has been related to several types of cancer 
[5]. Many studies discovered the affiliation of miRNAs to the 
cancers driving genes in tumor initiation and progression. For 
example, miR.125b, miR.145, miR.21 and miR.155 are known to 
be involved in breast cancer [6] and, miR.27b and miR.181d are 
known to be involved in ovarian cancer [7-8].  

Efforts were dedicated in integrating and analyzing high-
throughput expression data to find cancer specific miRNA-gene 
interaction networks [9-10]. Mutual information-based methods 
such as AraCNe [11] and ProMISe [12] to infer gene regulatory 
networks received popularity. To explore the causal relationship 
among miRNA and gene (i.e. direct or indirect effects of miRNA 
on genes), invariant causal prediction (ICP) methods like Hidden-
ICP, ICP-PAM50 emerged [13]. Other casual inference-based 
methods such as idaFast [14] and jointIDA [15] were also 
developed. These techniques were implemented using expression 
profiles of miRNAs and genes. 

Several studies also explored the integration of multidimensional 
omics data in cancer [16] such as copy number alteration (CNA), 
and gene expression to infer gene regulatory interactions based on 
the premise that CNA regions could harbor driver regulatory genes 
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in cancer [17-18]. Akavia et al., 2010 developed a Bayesian 
network-based computational tool, CONEXIC that integrates copy 
number and gene expression data for detecting aberrations in 
cancer progression. A few studies (Setty et al., 2010; Li et al., 
2014), applied regression-based approach to integrate copy 
number, DNA methylation, and miRNA expression to predict gene 
expression changes in terms of transcription factors (TFs) and 
miRNA expression. In their efforts of integrating CNA, miRNA 
and gene expression, these studies used miRNAs from all genomic 
regions. 

CNA regions have been reported to harbor key miRNAs, too [19]. 
Calin et al. [20] found that miR.15a and miR.16a were located in 
chromosome 13q14.3, which is frequently deleted in B cell chronic 
lymphocytic leukemias. Zang et al. [21] studied 283 miRNAs 
associated with breast cancers and confirmed that 72.8 % of 
miRNAs are in CNA regions. 

Despite the existence of potential driver miRNAs in CNA regions, 
to the best of our knowledge, there is no computational method that 
mine these areas to identify key miRNAs and their potential targets. 
To address this gap, in the current study, we specifically considered 
the CNA regions to infer CNA-derived miRNA-gene interactions 
in cancer. We hypothesized that CNA regions may host driver 
miRNAs and these miRNAs could regulate key biological 
processes in cancer by targeting some downstream genes. We 
developed a computational pipeline called miRDriver, which 
integrates gene and miRNA expression, copy number alteration, 
DNA methylation and TF-gene interaction information to infer 
copy number-derived miRNA-gene networks in cancer. In 
miRDriver, we retrieved frequently aberrated copy number regions 
among cancer patients using GISTIC [22-23]. For each region, we 
computed differentially expressed genes (DE) between frequently 
aberrated patients and not-frequently aberrated patients, and 
applied a LASSO-based [24] regression model to select miRNAs 
which could potentially regulate DE genes’ expression.  

We assessed miRDriver using breast cancer and ovarian cancer 
data from TCGA [25] database. miRDriver outperformed AraCNe, 
ProMISe, Hidden-ICP, ICP-PAM50, IDAfast and jointIDA in 
retrieving significantly enriched miRNA-gene interactions with the 
known miRNA-gene interaction databases. We observed that a 
higher number of selected prognostic miRNAs in frequently 
aberrated patients than in not-frequently aberrated cancer patients. 
Furthermore, the miRNAs selected by miRDriver were found to be 
enriched in known cancer-related miRNAs and our selected genes 
were found to be enriched in many cancer-related pathways. 

2 Materials and methods 

2.1 miRDriver 

We developed miRDriver, a computational pipeline to infer copy 
number aberration-based miRNA-gene interactions in cancer. 
miRDriver integrates gene expression, copy number alteration, 
DNA methylation, transcription factor-gene interaction and 

miRNA expression data. miRDriver has four main computational 
steps (Fig.1). In the first step, we employed GISTIC tool to find 
frequently aberrated chromosomal regions among cancer patients 
and called these regions as GISTIC regions. In the second step, for 
each GISTIC region we computed differentially expressed (DE) 
genes between frequently aberrated and non-aberrated patient 
groups. In the third step, we retrieved DE genes and miRNAs that 
reside in aberrated regions (i.e. cis genes and cis miRNAs) and 
retrieved DE genes that are outside of aberrated regions (i.e. trans 
genes). In the last step, we employed a LASSO-based regression 
model to compute miRNA regulators of the trans genes. In what 
follows, we describe the four steps of miRDriver in details. The 
entire pipeline of miRDriver is illustrated in Fig.1. The source code 
for miRDriver is available at  
https://github.com/bozdaglab/miRDriver under MIT license. All the 
supplementary files referenced in this manuscript can be accessed on the 
same page. 
2.1.1 Finding GISTIC regions. Our pipeline was developed based on 
the assumption that chromosomal regions that undergo CNA events 
among cancer patients could harbor driver miRNAs and these 
miRNAs could regulate downstream target genes in cancer. We 
used GISTIC 2.0 to identify chromosomal regions that were 
frequently aberrated within the patient cohort. We used a high 
confidence interval level of 0.90 to calculate frequently aberrated 
chromosomal regions (hereafter GISTIC regions). GISTIC regions 
with a log$ ratio above 0.1 were considered amplified and GISTIC 
regions with a log$  ratio below −0.1 were considered deleted. 

2.1.2 Finding DE genes. To identify transcriptional effect that is 
potentially due to a CNA event, we computed DE genes for each 
GISTIC region. For each GISTIC region, we divided cancer 
patients into two groups, frequently aberrated group and not-
frequently aberrated group. We used edgeR [26] package in R to 
compute DE genes among these two groups (absolute log fold 
change (logFC) ≥ 1, adjusted p-value ≤ 0.05). We annotated DE 
genes that were located inside the GISTIC region as cis genes and 
DE genes outside of the GISTIC region were considered as trans 
gene.  

2.1.3 Gathering cis genes and cis miRNAs. In this step, we retrieved 
miRNAs located in each GISTIC region (i.e. cis miRNAs). The 
Cancer Genome Atlas (TCGA) [25] database for miRNA Gene 
Quantification data and Isoform data containing chromosomal 
regions were used to retrieve miRNAs reside within each GISTIC 
region using bedr package in R. Then, for each trans gene, we 
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collected all cis genes and cis miRNAs from all the GISTIC regions 
where gene was appeared as DE trans gene. At the end of this step 
we had all possible trans-cis combinations for the entire patient 
cohort. We considered only those trans genes that had at least one 
cis miRNA predictor. 

2.1.4 Selection of miRNA regulators for each trans gene. For each 
DE trans gene miRDriver predicted the associated cis miRNAs that 
influenced the trans gene’s expression variation. Because trans 
gene’s expression can be influenced by other potential regulators 
such as cis genes in the same GISTIC region(s), TFs that are known 
to target this trans gene, and CNA and DNA methylation signals of 
this trans gene, we applied a LASSO-based predictor selection 
method with all these potential predictors as independent variables 
and the trans gene’s expression as response variable. We applied 
10-fold cross validation to find the optimal regularization 
hyperparameter λ that provided the simplest model such that its 
cross-validation error was the minimum cross-validation error. For 
each trans gene, out of all its candidate predictors (independent 
variables), LASSO regression selected a set of non-zero coefficient 
predictors. We employed R package glmnet [27] to perform 
LASSO. Since the independent variables selected by LASSO have 
been shown to be inconsistent especially when sample size gets 
large [28], for each trans gene we ran LASSO 100 times. Only the 
cis miRNAs whose coefficients appeared to be non-zero at least 70 
times were selected as potential regulator miRNAs. 

2.2 Datasets 

2.2.1 Datasets to run miRDriver. We assessed miRDriver on breast 
and ovarian cancer datasets from TCGA. We used TCGABiolinks 
[29] to download the genomic data of cancer patients from TCGA. 
We retrieved gene expression quantification data for raw count 
mRNA (Illumina HiSeq), miRNA-gene quantification expression 
with file type hg19.mirbase20.mirna and miRNA isoform gene 
quantification data with file type hg19.mirbase20.isoform from the 
legacy data.  

For mRNA data (i.e. RNA sequencing data), lowly expressed genes 
were eliminated and rest of the mRNA expression were converted 
to RPKM (Reads Per Kilobase of transcript, per Million mapped 
reads) values. We used the miRNAs that have ≥ 0.01 RPM (Reads 
per million mapped reads) value across ≥ 30% of the entire cohort.  

We retrieved masked copy number variation (Affymetrix SNP 
Array 6.0) and computed the gene-centric copy number value 
compatible with hg38 using R Bioconductor package CNTools 
[30].  

We downloaded DNA methylation data from Infinium 
HumanMethylation27 Bead-Chip (27K) and Infinium 
HumanMethylation450 Bead-Chip (450K) platforms. Gene-
specific beta values were calculated separately for both platforms. 
For the 450K platform, average beta value for promoter-specific 
probes were considered due to their role in transcriptional silencing 
[31]. Given lower coverage in the 27K platform, we utilized all the 
probes. In this case, we set the DNA methylation of a gene as the 
average of beta values of all its probes. 

 
Figure 1: Flowchart of the miRDriver pipeline. 
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To incorporate TF-gene interactions in the LASSO step (Section 
2.1.3), we downloaded experimentally-validated TF-gene 
interactions from TRED [32] and TRRUST [33] databases. 

2.2.2 Datasets to evaluate miRDriver’s results. To evaluate the 
selected miRNA-gene interactions by miRDriver, we use the list of 
experimentally-verified miRNA-gene interactions used in [34] as 
our ground truth. Since miRDriver could identify indirect 
downstream targets (i.e., target of a direct target) as well as direct 
targets, we included potential indirect targets to the ground truth 
dataset. Specifically, for each miRNA-gene interaction where gene 
is a known TF, we included the experimentally-validated targets of 
this TF as the indirect target of this miRNA. We downloaded 
experimentally-validated TF-target regulatory datasets from TRED 
[32] and TRRUST [33] databases. For clinical data we used TCGA 
Clinical Data Resource [35] with clinical outcome endpoints for 
BRCA and OV. 
To evaluate if the miRNAs selected by miRDriver were enriched 
in cancer-related miRNAs, we downloaded a list of known cancer 
related miRNAs from oncomiRDB database [36]. Each miRNA 
listed in oncomiRDB is involved in at least one cancer-related 
phenotype or cellular process. We harmonized the names of 
oncomiRDB miRNAs with reference to miRBase [37] database. 

3   Results 
We developed a computational pipeline called miRDriver which 
integrates CNA, DNA methylation, TFs-gene interactions, gene 
and miRNA expression datasets to compute copy number-derived 
miRNA-gene interactions in cancer. 

We assessed miRDriver using breast and ovarian cancer datasets 
from TCGA. We downloaded RNA sequencing data of primary 
tumors in 1097 and 586, breast invasive carcinoma (BRCA) and 
ovarian serous cystadenocarcinoma (OV) patients, respectively. 
We used copy number segmentation data from TCGA to find 
frequently aberrated chromosomal regions, namely, GISTIC 
regions using GISTIC 2.0 (see Section 2.1.1). We merged 
overlapping GISTIC regions using R Bioconductor package bedr 
and considered 66 and 64 GISTIC regions for BRCA and OV, 
respectively. Among these regions, 43 and 56 GISTIC regions 
harbor miRNAs in BRCA and OV, respectively. We used R 
package edgeR to compute DE trans and cis genes for each GISTIC 
region (see Section 2.1.2). Using R package bedr, we retrieved 
miRNAs from each GISTIC region (see Section 2.1.3). Altogether, 
255 cis miRNAs for BRCA and 301 cis miRNAs for OV were used 
in miRDriver. We provided the count of DE cis genes, cis miRNAs 
and DE trans gene for GISTIC regions in each cancer type in 
Supplemental Table 1. We employed a LASSO- based regression 
with trans gene’s expression as response variable and expression 
of cis miRNAs as independent variables. In order to account for 
other potential regulators of trans gene’s expression, we also 
included expression of cis genes, copy number values of the trans 
gene, DNA methylation beta values of the trans gene and 
expression of TFs targeting that trans gene as independent 
variables in LASSO. We employed 10,494 trans genes for BRCA 
and 3,117 trans genes for OV (see Section 2.1.4). For each trans 

gene we ran LASSO 100 times. After LASSO, there were 1,858 
and 1,347 selected miRNA-gene interactions for BRCA and OV, 
respectively. Among them BRCA had 187 miRNAs and 1,114 
genes and OV had 147 miRNAs and 548 genes. The selected 
miRNA-gene interactions by miRDriver for each cancer type are 
listed in Supplemental Table 2.  

4   Evaluation of miRDriver’s results 
We performed several tests to assess the results of miRDriver. To 
test accuracy of the miRNA-gene interactions inferred by 
miRDriver, we performed a hypergeometric test between the 
computed targets of each miRNA and their known targets in our 
ground truth dataset (see Section 2.2.2). We also compared 
miRDriver with some of the existing methods and observed that 
miRDriver outperformed them in selecting significantly enriched 
mRNA-gene interactions. Also, we checked miRDriver’s 
performance in different subsets of breast cancer patients and found 
that there was significant overlap in miRDriver’s results on random 
subsets of the data. We also performed enrichment test for the 
selected miRNAs with the experimentally-validated oncogenic 
miRNA in oncomiRDB. The selected miRNAs by miRDriver were 
significantly enriched in the oncogenic miRNAs. 

In the following sections we presented the details of miRDriver 
evaluation. 

4.1 Computed miRNA-gene interactions were 
enriched in the known miRNA-target interactions   
To check if the miRNA-gene interactions computed by miRDriver 
were significantly enriched in the known miRNA-gene 
interactions, we performed a hypergeometric test (see Section 
2.2.2). We considered only those miRNAs that had at least one 
known target in the ground truth data for the hypergeometric test. 
For breast cancer 59 miRNAs and for ovarian cancer 27 miRNAs 
were used in the hypergeometric test. For breast cancer 63% 
predicted miRNAs and for ovarian cancer 89% miRNAs showed 
significant enrichment (p-value ≤ 0.05). The hypergeometric test 
result for a few miRNAs is provided in Table 1 with the count of 
computed targets and p-value for each miRNA. The entire list of 

Table 1:  Enrichment results of computed miRNA-gene 
interactions in the known miRNA-gene interaction in 

BRCA and OV. P-value column shows the hypergeometric 
p-value. 

Cancer 
type 

miRNA No. of 
computed 

targets 

p-value 

BRCA miR.582 162 9.6e-10 

miR.339 75 3.8 e-2 
miR.330 42 6.3e-6 
miR.744 41 3.1e-2 
miR.1224 24 4.7e-3 

OV let.7b 35 1.7 e-2 
miR.181c 23 1.4e-1 
miR.33a 14 3.2e-3 
miR.27a 12 3.1e-3 
miR.3619 11 3.7e-2 
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selected miRNAs with hypergeometric result is listed in 
Supplemental Table 3.  

4.2 miRDriver outperformed six existing methods 
for computing miRNA-gene interactions 
We compared the accuracy of miRNA-gene interactions computed 
by miRDriver with six other popular methods namely, AraCNe, 
hiddenICP, ProMIse, idaFast, jointIDA and icpPAM50 using 
BRCA data. For AraCNe, ProMIse and hiddenICP we used 6504 
input genes and 255 miRNAs, the same inputs we used in 
miRDriver. We applied different thresholds to select reported 
miRNA-gene interactions based on reported scores to get highly 
confident interactions for our comparison. 
We used the AraCNe implementation in the R package minet [38] 
and computed 273 miRNA-gene interactions with non-zero scores 
and used all of them. For the other methods, we used R package 
miRLAB [39]. After applying ProMIse method, we considered top 
3 percentile of miRNA-gene interactions based on ProMISe scores.  
To run hiddenICP, we divided the BRCA patients into three 
random subsets of similar size to create the “different 
environments” required by the program. hiddenICP reports scores 
for all miRNA-gene pairs and we kept the top 2000 (top 3 
percentile) of reported miRNA-gene interactions as the final 
interactions based on causal scores.  
icpPAM50 also requires “different environments” based on the 
expression of PAM50 genes [40]. To address this requirement, we 
used the expression profiles of PAM50 genes from TCGA 
icpPAM50 to cluster the patients into multiple “environments”. 
Since icpPAM50 is not computationally efficient to run with high 
dimensional data, we used top 30 miRNAs and top 800 genes as 
input selected by the Feature Selection Based on The Most Variant 
Median Absolute Deviation (FSbyMAD) [41] method as used in 
[42]. We considered the top 2000 (top 8 percentile) of miRNA-gene 
interactions based on reported scores.   
Since idaFast and jointIDA methods have high computational 
complexity and therefore are not scalable to large datasets, we run 
these two methods with top 50 miRNAs and top 1149 genes 
selected by using FSbyMAD. For idaFast, we selected top 2000 
(top 3.5 percentile) of miRNA-gene interactions based on reported 
causal effect scores. We run jointIDA using R package ParallelPC 
[43]. In this case, we considered miRNA-gene interactions based 
on top 8.7 percentile of reported causal effect scores to get high 
confidence interactions.  
We performed hypergeometric test to measure enrichment 
significance of computed miRNA targets in the known miRNA-
gene interaction data (see Section 4.1). miRDriver had more 
significant miRNAs (i.e., hypergeometric test p-value ≤ 0.05) than 
all the other six methods (Table 2). These results indicate the 
performance of miRDriver in inferring accurate miRNA-gene 
interactions. 

4.3 miRDriver produced significantly overlapping 
results on random subsets BRCA data 

We tested the consistency of miRDriver results by splitting the 
BRCA data into two random patient groups. First, we miRDriver 
run on the entire patient cohort (i.e., W) then on two randomly 
chosen subsets, 𝑆* and 𝑆$. We used the same input genes (trans 
genes) and input miRNAs (cis miRNAs) for all three sets. A few 
genes that had constant expression values among all the patients in 
a set were omitted from the LASSO step of miRDriver. We listed 
the number of input genes and miRNAs, and selected genes, 
miRNAs and miRNA-gene interactions for each dataset in Table 3. 
We found that miRDriver selected higher number of interactions 
and genes using set 𝑆* than number of genes and interactions using 
set W and 𝑆$. Despite these differences, the overlap between them 
were significant. We performed the hypergeometric test to check 
the significance of selected overlapping miRNAs, selected genes 
and selected miRNA-gene interactions between each pair of these 
three sets and found all these overlaps were significant having 
hypergeometric p value ≤ 0.05 (Table 4). These results suggest that 
miRDriver could produce consistent results in different datasets of 
the same cancer type. 
4.4 Selected miRNAs were enriched in the 
cancer-associated miRNAs 
To test if the miRNAs selected by miRDriver were enriched in the 
cancer-related miRNAs, we used a list of 351 known oncogenic 
miRNAs from oncomiRDB (see Section 2.2.2). We performed 
Fisher’s exact test to check the association between the 
oncomiRDB miRNAs and selected miRNAs by miRDriver. For 
each cancer type, the background sets in the hypergeometric test 
consisted of all 1870 TCGA miRNAs among which 344 were 
common with oncomiRDB. In BRCA, 69 of 187 selected miRNAs 
and 275 of 1683 non-selected miRNAs were in oncomiRDB (p-
value= 17.9e,**). In OV, 36 of 147 selected miRNAs were and 308 
of 1723 non-selected miRNAs were in oncomiRDB (p-value = 
0.03). The results indicate that miRDriver tends to select cancer-
related miRNAs. 
4.5 Selected miRNAs and genes were associated 
with survival of cancer patients. 
We performed multivariate survival analysis to assess the 
prognostic relevance of the selected and non-selected miRNAs by 
miRDriver. For breast cancer we considered age, race, HER2 
status, estrogen status and progesterone status with the miRNA 
expression as independent variables and for OV age and race with 
miRNA expression were considered. In order to remove the 
confounding effect of other factors, we used the Adjusted Kaplan-
Meier Estimator to compute adjusted survival curves by weighting 
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the individual contributions by the inverse probability weighting 
(IPW) [44] using the R package IPWsurvival [45]. We considered 
two end points, Overall Survival (OS) and Progression Free 
Survival (PFI). In OS, patients who were dead from any cause 
considered as dead, otherwise censored. In PFI, patient having new 
tumor event whether it was a progression of disease, local 
recurrence, distant metastasis, new primary tumor event, or died 
with the cancer without new tumor event, including cases with a 
new tumor event whose type is N/A were considered as dead and 
all other patients were censored [35]. We computed prognostic 
miRNAs and genes while considering the entire patient cohort by 

dividing them into two groups as high expression and low 
expression of miRNA group. We found that a higher proportion of 
the selected miRNAs were prognostic miRNAs (log rank test p-
value ≤ 0.05) than of the non-selected miRNAs (Table 5). To 
demonstrate the prognostic effect of the selected miRNAs in 
aberrated and non-aberrated patient groups, for each GISTIC 
region, we performed the survival analysis of the selected and non-
selected miRNAs in that region within the frequently aberrated and 
non-frequently aberrated patient groups separately. We observed 
that selected miRNAs that were prognostic were higher in 
percentage in frequently aberrated patients than in non-frequently 
aberrated patients compared to non-selected miRNAs in BRCA for 
PFI end point and in OV for both OS and PFI end points except for 
when using OS as end point for BRCA (Table 6). Two examples of 
selected miRNAs from each cancer that have significant effect in 
aberrated patient group but not in the non-aberrated patient group 
are shown in Fig. 2. For instance, the patients in the frequently 
deleted group of the GISTIC region that harbors hsa-let-7g have 
worse survival when the hsa-let-7g is expressed low.  The survival 

 
Table 2: Comparison results of miRDriver with six other methods. Eligible miRNAs are the ones that have at least one target in 

the ground truth dataset. Overlapping interactions and eligible miRNAs are computed with respect to miRDriver results. 
Method miRDriver AraCNe hiddenICP ProMIse idaFast jointIDA icpPAM50 
Input miRNAs  255 255 255 255 50 50 30 
Input Genes 6504 6504 6504 6504 1149 1149 800 
Selected miRNAs  187 151 33 39 38 49 23 
Selected Genes 776 266 6428 683 1052 1112 704 
Selected Interactions 1430 278 2000 2000 2000 5000 2000 
Overlapping Interactions N/A 1 16 26 26 55 1 
Eligible miRNAs for Enrichment Test 59 51 23 29 27 33 17 
Overlapping Eligible miRNAs N/A 35 7 25 21 27 16 
Method's Significant miRNAs in Overlap N/A 0 0 5 3 15 7 
miRDriver’s Significant miRNAs in Overlap  N/A 20 2 13 11 15 9 

 
 

Table 3: miRDriver statistics when running it on the 
entire BRCA dataset (W) and two random subsets (𝑺𝟏 

and 𝑺𝟐). 
  Entire Set 

(W) 
Subset 
(𝑆*) 

Subset (𝑆$) 

No. of input genes  10,494 10,488 10,477 
No. of input 
miRNAs 

255 255 255 

No. of selected 
interactions 

1858 6551 1666 

No. of selected 
genes 

1114 2699 1059 

No. of selected 
miRNAs 

187 222 179 

 

 
Table 4: Overlaps between selected interactions, genes 

and miRNAs when using miRDriver on the entire dataset 
(W), and random sub datasets ( 𝐒𝟏 and 𝐒𝟐) in BRCA. All 

overlaps had significant hypergeometric p-value. The 
numbers in the parentheses show the overlap percentage with 

respect to W. 
Overlaps  W∩ S* W∩ S$ S* ∩ S* 
Selected interactions 756 

(41%) 
560 

(30%) 
454 

Selected genes  603 
(54%) 

461 
(50%) 

526 

Selected miRNAs 170 
(91%) 

150 
(80%) 

166 

 

Table 5: Percentage of prognostic selected miRNAs and 
prognostic non-selected miRNAs. 

End Point
  

Prognostic miRNAs in 
selected miRNAs 

Prognostic miRNAs in 
non-selected miRNAs 

OS in BRCA 18% 13% 
PFI in BRCA  9.6%  4.4% 
OS in OV 10% 8.6% 
PFI in OV 11% 6% 

 

Table 6: Percentage of prognostic selected miRNAs vs. 
prognostic non-selected miRNAs within the frequently 
aberrated and not-frequently aberrated patient groups. 

End Point
  

Significant selected 
miRNAs in aberrated 

but not in non-
aberrated 

Significant non-
selected miRNAs in 
aberrated but not in 

non-aberrated 
OS in BRCA 8.6% 10% 

PFI in BRCA  4.3%  2.9% 
OS in OV 7.2% 6.8% 
PFI in OV 7.2% 3.7% 
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curves for all prognostic selected miRNAs in aberrated and non-
aberrated groups are in the Supplementary File 1. 
We computed the hazard ratio (HR) of higher degree selected genes 
(genes targeted by four or more miRNAs) and lower degree 
selected genes (genes targeted by three or fewer miRNAs) using 
multivariate Cox regression analysis [46]. The genes with Cox 
regression p-value ≤ 0.05 were considered as prognostic genes. A 
ln (HR) > 0 implies that an increase of expression of the gene 
increases the risk of an event, while a ln (HR) < 0 implies that an 
increase of the gene expression decreases the risk of an event.  
We compared the median of the ln (HR) of each group using the 
Wilcoxon rank-sum test. In BRCA with OS, interestingly higher 
degree genes possessed lower hazard ratios whereas in OV with 

PFI, higher degree genes possessed higher hazard ratios compared 
to lower degree genes (Fig. 3A, B). 

5   Discussion 

We developed a computational pipeline called miRDriver, which 
integrates multi omics datasets such as copy number variation, 
DNA methylation, transcription factors, gene and miRNA 
expression to infer copy number-derived miRNA-gene interactions 
in cancer. We applied miRDriver on breast and ovarian cancer 
datasets from TCGA. In each case, miRDriver was able to select 
many miRNA-gene interactions that were enriched in known 
miRNA-target databases. We observed that selected miRNAs by 
miRDriver were significantly enriched in the known cancer-related 

 
Figure 2: Adjusted Kaplan-Meier plots for selected miRNAs in aberrated and non-aberrated patient groups. A) hsa-let-7g in a 
deleted region in BRCA. B) hsa-mir-10a in an amplified region in BRCA C) hsa-mir-3193 in an amplified region in OV D) hsa-mir-443 
in a deleted region in OV. In each case, miRNAs are significant prognostic factors only within frequently aberrated patient group. 

 
Figure 3: Plots of natural logarithm of hazard ratios in high degree and low degree genes, (A) Breast cancer with PFI, 
(B) Ovarian cancer with OS. 
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miRNAs. The selected miRNAs that targeted many genes, for 
instance miR-23a, miR-27b, miR-181d in ovarian, miR-1224, miR-
31, let-7g in breast cancer and let-7b in both cancers are known to 
be involved in cancer [48-51].  Hu et al. found that miR-23a has 
role in promoting tumor growth and apoptosis via target gene 
PDCD4 in gastric cancer [54]. A recent study found association of 
miR-1224 in tumor metastasis in gastric cancer [57]. It was found 
that let-7 family is related with tumorigenesis in breast cancer [55]. 
Studies on deregulated let-7 expression and its role in 
tumorigenesis have been conducted [56].  

We evaluated the prognostic value of miRDriver’s selected 
miRNAs vs non-selected miRNA’s using Adjusted Kaplan-Myer 
survival analysis. We found that percentage of prognostic miRNAs 
was greater in selected miRNAs than in non-selected miRNAs, 
which indicates that miRDriver tends to select prognostic miRNAs. 
Also, percentage of prognostic miRNAs was higher in copy number 
aberrated patient cohort than in non-aberrated regions, which 
suggests that copy number aberration event tends to increase the 
prognostic value of miRNAs. 
In BRCA, the selected high degree genes (i.e., genes targeted by ≥4 
miRNAs) had low hazard ratios (HR) (median ln (HR) = -9.44) in 
patient’s survival with progression free interval (see Section 4.5 & 
Fig. 3A). This result suggests that these genes tend to be acting as 
tumor suppressor genes. Among these high degree genes, CLIC6 
was found to be associated in ion channels, which are implicated in 
breast cancer [58]. In a recent work [59], the mechanism of CLIC 
proteins in promoting an aggressive invasive carcinoma was 
explored. Another selected high degree gene in BRCA, PALM2 
showed differential expression in chemotherapy response in 
patients with metastatic colorectal carcinoma [60]. Conversely, in 
OV, the selected high degree genes had high hazard ratios (HR) 
(median ln (HR) = 9.77) in overall survival of cancer patients (Fig. 
3B). This result suggests that these high degree genes tend to be 
acting as oncogenes. In OV, high degree genes like MEP1B was 
reported to be associated with proliferation and invasion of 
colorectal cancer [61] and LINC00189 reported to be a possible 
biomarker of the bladder cancer [62]. These studies support the idea 
of exploring these high degree genes as tumor suppressor genes and 
oncogenes. These high degree genes can serve as potential 
biomarkers to predict prognosis in cancer patients.  

We compared miRDriver’s LASSO steps with network-based 
methods AraCNe and ProMIse, and causal inference-based 
methods such as hiddenICP, ICP-PAM50, idaFast and jointIDA. 
We showed that miRDriver substantially outperformed other tools 
in selection of significantly known miRNA-gene interactions 
(Table 2). We also checked the consistency of miRDriver results in 
different subsets of breast cancer patients and found significant 
overlaps between different results (Table 3).  

In miRDriver, we integrated high dimensional multi omics data and 
it possessed some computational challenges. To control this, we ran 
our LASSO step in parallel clusters. For breast cancer, we ran 
1,049,400 LASSO regressions using 210 cores Dual Intel 
Processors with 512 GB RAM. Despite of that, due to large number 
of patients and trans genes in breast cancer data, it took five days 
to complete the computation. Whereas, for ovarian cancer, the 

computation was finished within 2 hours due to fewer patients and 
trans genes. 

For the future versions of miRDriver, more datasets such as 
mutations, histone modification and chromatin accessibility 
datasets such as ATAC-seq could be incorporated. The current 
version of miRDriver does not incorporate the competing 
endogenous RNA (ceRNA) interactions [64]. These interactions 
could  affect how miRNAs interact with their target genes. When 
computing potential targets of miRNAs, putative ceRNA 
interactions could be computed simultaneously.  

In conclusion, we presented miRDriver, a computational method 
that integrates genomic, transcriptomic, and epigenetic datasets to 
infer copy number derived miRNAs that affect downstream target 
genes in cancer. This could help find genes which could be 
therapeutic targets of drugs and opens the opportunity to establish 
novel biomarkers.   
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