31 research outputs found

    86-GBaud subcarrier multiplexed 16QAM signal generation using an electrical 90 degree hybrid and IQ mixers

    Get PDF
    We experimentally demonstrate an aggregate 86-GBaud (over three sub-bands and one polarization) signal generation based on subcarrier multiplexing technique using IQ mixers, an electrical 90 degree hybrid, and diplexers. The electrical hybrid allows transmitter-side digital signal processing to be simplified to pulse shaping and digital pre-emphasis. We verified the configuration by testing the performance of an 86-GBaud Nyquist-shaped 16 quadrature amplitude modulation signal with differential bit encoding. The implementation penalty assuming 7% hard-decision forward error correction is reduced to 2 dB by utilizing a 31-tap decision-directed least mean square based multiple-input multiple-output equalizer for sideband crosstalk mitigation

    Multicarrier Approaches for High-Baudrate Optical-Fiber Transmission Systems with a Single Coherent Receiver

    Get PDF
    In this paper, we show the remarkable timing error (TE) and residual chromatic dispersion (CD) tolerance improvements of the filter bank multicarrier (FBMC) over orthogonal frequency division multiplexing (OFDM) for high-baudrate spectral slicing transmitter and single coherent receiver transmissions. For a 512 Gb/s 16 quadrature amplitude modulated (16QAM) spectrum slicing system at 1600 km of fiber transmission, the FBMC-based system reduces TE and residual CD penalties by more than 1.5 dB and 3 dB, in comparison to the OFDM-based system, respectively

    Subcarrier Multiplexing Based Transponder Design

    Get PDF
    This thesis presents the design and demonstration of high-speed transponders using analogue implemented subcarrier multiplexing (SCM) technique to simplify digital signal processing (DSP) for different applications. A 144-Gb/s filter bank multicarrier (FBMC) transceiver is numerically demonstrated for 2-km standard single mode fibre (SSMF) transmission. Without nonlinear or chromatic dispersion (CD) compensation nor channel equalization, the FBMC system outperforms the orthogonal frequency division multiplexing (OFDM) counterpart, and the transmission penalty for the 8-subcarrier FBMC system is 2.4 dB. For amplifier-free 80-km transmission, a 134-Gb/s coherent transceiver utilizing heterodyne detection and doubly differential (DD) quadrature phase shift keying (QPSK) is numerically demonstrated. Without CD compensation nor carrier recovery, transmission penalty and performance degradation for frequency offsets within ±2 GHz is negligible. To further improve interface rate, a 200-Gb/s DD QPSK transceiver using hybrid-assisted tandem single sideband (TSSB) modulation and digital coherent detection is numerically verified. However, guard bands and QPSK used in both transponders result in low spectral density, and conventional DD decoding degrades receiver sensitivity by 7 dB. To overcome these problems, a 209-Gb/s coherent transponder utilizing DD two amplitude/eight-phase shift keying (2ASK-8PSK) and 11-tap multi-symbol DD decoding is experimentally demonstrated, with an implementation penalty of 5.9 dB and a performance penalty of 1 dB for 100-km transmission. For long-haul application, a 62-GBaud SCM 16-ary quadrature amplitude modulation (16QAM) transceiver employing a single in-phase quadrature (IQ) mixer, simple transmitter-side DSP, and sub-band detection is demonstrated, giving spectral efficiency of ~2.7 b/s/Hz/polarization and OSNR penalty of 6.6 dB. By resorting to hybrid-assisted TSSB modulation, the aggregate symbol rate of the SCM transmitter is improved to 86 GBaud. With sub-band coherent detection and a 31-tap multi-input multi-output (MIMO) equalizer, an implementation penalty of 2 dB and spectral efficiency of ~3.6 b/s/Hz/polarization are achieved

    Coherent terabit/s communications using chip-scale optical frequency comb sources

    Get PDF
    Der Visual Networking Index (VNI) der Firma Cisco weist für den weltweiten Internetverkehr eine durchschnittlichen jährlichen Wachstumsrate von 26% aus und prognostiziert 2022 einen jährliche Datenverkehr von 4,8 Zettabyte [1]. Um diesem Anstieg des Netzwerkverkehrs zu begegnen, ist die kohärente Datenübertragung in Kombination mit sogenanntem Wellenlängenmultiplex (engl. wavelength-division multiplexing, WDM) in Langstrecken-Glasfasernetzwerken zum Standard geworden. Mit der verstärkten Nutzung von Cloud-basierten Diensten, dem wachsenden Trend, Inhalte in die Nähe der Endbenutzer zu bringen, und der steigenden Anzahl angeschlossener Geräte in sog. Internet-of-Things-(IoT-)Szenarien, wird der Datenverkehr auf allen Netzebenen voraussichtlich weiter drastisch ansteigen. Daher wird erwartet, dass die WDM-Übertragung mittelfristig auch kürzere Verbindungen verwendet werden wird, die in viel größeren Stückzahlen eingesetzt werden als Langstreckenverbindungen und bei denen die Größe und die Kosten der Transceiver-Baugruppen daher wesentlich wichtiger sind. In diesem Zusammenhang werden optische Frequenzkammgeneratoren als kompakte und robuste Mehrwellenlängen-Lichtquellen eine wichtige Rolle spielen. Sie können sowohl auf der Sender- als auch auf der Empfängerseite einer kohärenten WDM-Verbindung eine große Anzahl wohldefinierter optischer Träger oder Lokaloszillator-Signale liefern. Ein besonders wichtiger Vorteil der Frequenzkämme ist die Tatsache, dass die Spektrallinien von Natur aus äquidistant sind und durch nur zwei Parameter − die Mittenfrequenz und den freien Spektralbereich − definiert werden. Dadurch kann eine auf eine individuelle Frequenzüberwachung der einzelnen Träger verzichtet werden, und etwaige spektrale Schutzbänder zwischen benachbarten Kanälen können stark reduziert werden oder komplett wegfallen. Darüber hinaus erleichtert die inhärente Phasenbeziehung zwischen den Trägern eines Frequenzkamms die gemeinsame digitale Signalverarbeitung der WDM-Kanäle, was die Empfängerkomplexität reduzieren und darüber hinaus auch die Kompensation nichtlinearer Kanalstörungen ermöglichen kann. Unter den verschiedenen Kammgeneratoren sind Bauteile im Chip-Format der Schlüssel für künftige WDM-Transceiver, die eine kompakte Bauform aufweisen und sich kosteneffizient in großen Stückzahlen herstellen lassen sollen. Gegenstand dieser Arbeit ist daher die Untersuchung von neuartigen Frequenzkammgeneratoren im Chip-Format im Hinblick auf deren Eignung für die massiv parallele WDM-Übertragung. Diese Bauteile lassen sich nicht nur als Mehrwellenlängen-Lichtquellen auf der Senderseite einsetzen, sondern bieten sich auch als Mehrwellenlängen-Lokaloszillatoren (LO) für den parallelen kohärenten Empfang mehrerer WDM-Kanäle an. Bei den untersuchten Bauteilen handelt es sich um gütegeschaltete Laserdioden (engl. Gain-Switched Laser Diodes), modengekoppelte Laserdioden auf Basis von Quantenstrich-Strukturen (Quantum-Dash Mode-Locked Laser Diodes, QD-MLLD) und sog. Kerr-Kamm-Generatoren, die optische Nichtlinearitäten dritter Ordnung in Ringresonatoren hoher Güte ausnutzen. Der Schwerpunkt liegt dabei auf Datenübertragungsexperimenten, die die Eignung der verschiedenen Kammquellen untersuchen und die in den internationalen Fachzeitschriften Nature und Optics Express veröffentlicht wurden [J1]-[J4]. Kapitel 1 gibt eine allgemeine Einführung in das Thema der optischen Datenübertragung und der zugehörigen WDM-Verfahren. In diesem Zusammenhang werden die Vorteile optischer Frequenzkämme als Lichtquellen für die WDM-Datenübertragung und den WDM-Empfang erläutert. Die einige Inhalte dieses Kapitels sind dem Buchkapitel [B1] entnommen, wobei Änderungen zur Anpassung an die Struktur und Notation der vorliegenden Arbeit vorgenommen wurden. In Kapitel 2 wird eine grundlegende Einführung in optische Kommunikations-systeme mit Schwerpunkt auf Hochleistungsverbindungen gegeben, die auf WDM und kohärenten Übertragungsverfahren beruhen. Außerdem wird die integrierte Optik als wichtiges technologisches Element zum Bau kostengünstiger und kompakter WDM-Transceiver vorgestellt. Das Kapitel gibt ferner einen Überblick über verschiedene optische Frequenzkammgeneratoren im Chip-Format, die sich als Mehrwellenlängen-Lichtquellen für solche Transceiver anbieten, und es werden grundlegende Anforderungen an optische Frequenzkammgeneratoren formuliert, die für WDM-Anwendungen relevant sind. Das Kapitel endet mit einer vergleichenden Diskussion der verschiedenen Kammgeneratoren sowie einer Zusammenfassung ausgewählter WDM-Datenübertragungsexperimente, die mit diesen Kammgeneratoren demonstriert wurden. In Kapitel 3 wird die kohärente WDM-Sendetechnik und der kohärente WDM-Empfang mit einer gütegeschalteten Laserdiode (GSLD) diskutiert. Im Mittelpunkt der Arbeit steht ein Versuchsaufbau, in dem der empfängerseitige Kammgenerator aktiv mit dem senderseitigen Generator synchronisiert wurde. Das Experiment stellt die weltweit erste Demonstration einer kohärenten WDM-Übertragung mit Datenraten von über 1 Tbit/s dar, bei dem synchronisierte Frequenzkämme als Mehrwellenlängen-Lichtquelle am Sender und als Mehrwellenlängen-LO am Empfänger verwendet werden. Kapitel 4 untersucht das Potenzial von QD-MLLD als Mehrwellenlängen-Lichtquellen für die WDM-Datenübertragung. Diese Kammgeneratoren sind aufgrund ihrer kompakten Größe und des einfachen Betriebs besonders attraktiv. Die erzeugten Kammlinien weisen jedoch ein hohes Phasenrauschen auf, das die Modulationsformate in früheren Übertragungsexperimenten auf 16QAM begrenzte. In diesem Kapitel wird gezeigt, dass QD-MLLD die WDM-Übertragung mit Modulationsformaten jenseits von 16QAM unterstützen kann, wenn eine optische Rückkopplung durch einen externen Resonator zur Reduzierung des Phasenrauschens der Kammlinien verwendet wird. In den Experimenten wird eine Reduzierung der intrinsischen Linienbreite um etwa zwei Größenordnungen demonstriert, was eine 32QAM-WDM-Übertragung ermöglicht. Die Demonstration der Datenübertragung mit einer Rate von 12 Tbit/s über eine 75 km lange Faser mit einer spektralen Netto-Effizienz von 7,5 Bit/s/Hz stellt dabei die höchste für diese Bauteile gezeigte spektrale Effizienz dar. Gegenstand von Kapitel 5 ist die WDM-Übertragung und der kohärente Empfang mit QD-MLLD vor. Die Vorteile der Skalierbarkeit von QD-MLLD für massiv parallele WDM-Verbindungen werden also nicht nur am Sender, wie in Kapitel 4 beschrieben, sondern auch am Empfänger ausgenutzt. So konnte ein Datenstrom mit einer Rohdatenrate von 4,1 Tbit/s über eine Distanz von 75 km übertragen werden, indem ein Paar von QD-MLLD mit ähnlichen freien Spektralbereichen verwendet wurde – ein Bauteil zur Erzeugung der optischen Träger am WDM-Sender und ein weiteres Bauteil zur Bereitstellung der erforderlichen LO-Töne für den kohärenten WDM-Empfang. Kapitel 6 beschreibt WDM-Datenübertragungsexperimente mit Hilfe von Kerr-Kamm-Generatoren. Dazu werden sog. dissipative Kerr-Solitonen (engl. dissipative Kerr solitons, DKS) in integriert-optischen Mikroresonatoren genutzt, die wegen zur Erzeugung einer streng periodischen Folge ultra-kurzer optischer Impulsen im Zeitbereich und damit zu einem breitbandigen, für WDM-Systeme sehr gut geeigneten Frequenzkamm führen. Mit diesen DKS-Kämmen wird ein Datenstrom mit einer Rohdatenrate von 55,0 Tbit/s über eine 75 km lange Faser übertragen. Zum Zeitpunkt der Veröffentlichung war dies die höchste Datenrate, welche mit einer chip-basierten Frequenzkammquelle erreicht wurde. Das Ergebnis zeigt das Potenzial der Kammquellen für WDM-Übertragung. Darüber hinaus wird der kohärente Empfang von 93 WDM-Kanälen mit einer Datenrate von 37,2 Tbit/s unter Verwendung eines DKS-Kamms als Multiwellenlängen-LO demonstriert; die Übertragung erfolgt über eine 75 km lange Faser. Diese Arbeiten wurde in der international renommierten wissenschaftlichen Zeitschrift Nature publiziert. Kapitel 7 fasst die Arbeit zusammen und gibt einen Ausblick auf die Anwendung der diskutierten Kammgeneratoren in zukünftigen WDM-Systemen

    Equalização digital para sistemas de transmissão ópticos coerentes

    Get PDF
    This thesis focus on the digital equalization of fiber impairments for coherent optical transmission systems. New efficient and low-complexity equalization and mitigation techniques that counteract fiber nonlinear impairments are proposed and the tradeoff between performance and complexity is numerically assessed and experimentally demonstrated in metro and long-haul 400G superchannels-based transmission systems. Digital backpropagation (DBP) based on low-complexity split-step Fourier method and Volterra series nonlinear equalizers are experimentally assessed in an uniform superchannel system. In contrast with standard DBP methods, these techniques prove to be able to be implemented with larger step-sizes, consequently requiring a reduced number of multiplications, and still achieve a significant reach extension over linear equalization techniques. Moreover, given its structure, the complexity of the proposed Volterra-based DBP approach can be easily adjusted by changing the nonlinear filter dimension according to the system requirements, thus providing a higher flexibility to the nonlinear equalization block. A frequency-hybrid superchannel envisioning near-future flexible networks is then proposed as a way to increase the system bit-rate granularity. The problematic of the power-ratio between superchannel carriers is addressed and optimized for linear and nonlinear operation regimes using three distinct FEC paradigms. Applying a single FEC to the entire superchannel has a simpler implementation and is found to be a more robust approach, tolerating larger uncertainties on the system parameters optimization. We also investigate the performance gain provided by the application of different DBP techniques in frequency-hybrid superchannel systems, and its implications on the optimum power-ratio. It is shown that the application of DBP can be restricted to the carrier transporting the higher cardinality QAM format, since the DBP benefit on the other carriers is negligible, which might bring a substantially complexity reduction of the DBP technique applied to the superchannel.A presente tese foca-se na equalização digital das distorções da fibra para sistemas óticos de transmissão coerente. São propostas novas técnicas eficientes e de baixa complexidade para a equalização e mitigação das distorções não lineares da fibra, e o compromisso entre desempenho e complexidade é testado numericamente e demonstrado experimental em sistemas de transmissão metro e longa distância baseados em supercanais 400G. A propagação digital inversa baseada no método de split-step Fourier e equalizadores não lineares de séries de Volterra de baixa complexidade são testadas experimentalmente num sistema baseado em supercanais uniformes. Ao contrário dos métodos convencionais utilizados, estas técnicas podem ser implementadas utilizando menos interações e ainda extender o alcance do sistema face às técnicas de equalização linear. Para além disso, a complexidade do método baseado em Volterra pode ser facilmente ajustada alterando a dimensão do filtro não linear de acordo com os requisitos do sistema, concedendo assim maior flexibilidade ao bloco de equalização não linear. Tendo em vista as futuras redes flexı́veis, um supercanal hı́brido na frequência é proposto de modo a aumentar a granularidade da taxa de transmissão do sistema. A problemática da relação de potência entre as portadoras do supercanal é abordada e optimizada em regimes de operação linear e não linear utilizando paradigmas diferentes de códigos correctores de erros. A aplicação de um único código corrector de erros à totalidade do supercanal mostra ser a abordagem mais robusta, tolerando maiores incertezas na optimização dos parâmetros do sistema. O ganho de desempenho dado pela aplicação de diferentes técnicas de propagação digital inversa em sistemas de supercanais hı́bridos na frequência é tamém analizado, assim como as suas implicações na relação óptima de potência. Mostra-se que esta pode ser restringida à portadora que transporta o formato de modulação de ordem mais elevada, uma vez que o benefı́cio trazido pelas restantes portadotas é negligenciável, permitindo reduzir significativamente a complexidade do algoritmo aplicado.Programa Doutoral em Telecomunicaçõe

    Increasing the information rates of optical communications via coded modulation: a study of transceiver performance

    Get PDF
    Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver

    Optical multicarrier sources for spectrally efficient optical networks

    Get PDF
    During the last 30 years the capacity of commercial optical systems exceeded the network traffic requirements, mainly due to the extraordinary scalability of wavelength division multiplexing technology that has been successfully used to expand capacity in optical systems and meet increasing bandwidth requirements since the early 1990’s. Nevertheless, the rapid growth of network traffic inverted this situation and current trends show faster growing network traffic than system capacity. To enable further and faster growth of optical communication network capacity, several breakthroughs occurred during the last decade. First, optical coherent communications, which were the subject of intensive research in the 1980’s, were revived. This triggered the employment of advanced modulation formats. Afterwards, with the introduction of orthogonal frequency division multiplexing (OFDM) and Nyquist WDM modulation techniques in optical communication systems, very efficient utilisation of the available spectral bandwidth was enabled. In such systems the spectral guard bands between neighbouring channels are minimised, at the expense of stricter requirements on the performance of optical sources, especially the frequency (or wavelength) stability. Attractive solutions to address the frequency stability issues are optical multicarrier sources which simultaneously generate multiple phase correlated optical carriers that ensure that the frequency difference between the carriers is fixed. In this thesis, a number of optical multicarrier sources are presented and analysed, with special focus being on semiconductor mode-locked lasers and gain-switched comb sources. High capacity and spectrally efficient optical systems for short and medium reach applications (from 3 km up to 300 km), based on optical frequency combs as optical sources, advanced modulation formats (m-QAM) and modulation techniques (OFDM and Nyquist WDM) have been proposed and presented. Also, certain optoelectronic devices (i.e. semiconductor optical amplifier) and techniques (feed-forward heterodyne linewidth reduction scheme) have been utilised to enable the desired system performance

    Tecnologias coerentes para redes ópticas flexíveis

    Get PDF
    Next-generation networks enable a broad range of innovative services with the best delivery by utilizing very dense wired/wireless networks. However, the development of future networks will require several breakthroughs in optical networks such as high-performance optical transceivers to support a very-high capacity optical network as well as optimization of the network concept, ensuring a dramatic reduction of the cost per bit. At the same time, all of the optical network segments (metro, access, long-haul) need new technology options to support high capacity, spectral efficiency and data-rate flexibility. Coherent detection offers an opportunity by providing very high sensitivity and supporting high spectral efficiency. Coherent technology can still be combined with polarization multiplexing. Despite the increased cost and complexity, the migration to dual-polarization coherent transceivers must be considered, as it enables to double the spectral efficiency. These dual-polarization systems require an additional digital signal processing (DSP) subsystem for polarization demultiplexing. This work seeks to provide and characterize cost-effective novel coherent transceivers for the development of new generation practical, flexible and high capacity transceivers for optical metro-access and data center interconnects. In this regard, different polarization demultiplexing (PolDemux) algorithms, as well as adaptive Stokes will be considered. Furthermore, low complexity and modulation format-agnostic DSP techniques based on adaptive Stokes PolDemux for flexible and customizable optical coherent systems will be proposed. On this subject, the performance of the adaptive Stokes algorithm in an ultra-dense wavelength division multiplexing (U-DWDM) system will be experimentally evaluated, in offline and real-time operations over a hybrid optical-wireless link. In addition, the efficiency of this PolDemux algorithm in a flexible optical metro link based on Nyquist pulse shaping U-DWDM system and hybrid optical signals will be assessed. Moreover, it is of great importance to find a transmission technology that enables to apply the Stokes PolDemux for long-haul transmission systems and data center interconnects. In this work, it is also proposed a solution based on the use of digital multi-subcarrier multiplexing, which improve the performance of long-haul optical systems, without increasing substantially, their complexity and cost.As redes de telecomunicações futuras permitirão uma ampla gama de serviços inovadores e com melhor desempenho. No entanto, o desenvolvimento das futuras redes implicará vários avanços nas redes de fibra ótica, como transcetores óticos de alto desempenho capazes de suportar ligações de muito elevada capacidade, e a otimização da estrutura da rede, permitindo uma redução drástica do custo por bit transportado. Simultaneamente, todos os segmentos de rede ótica (metropolitanas, acesso e longo alcance) necessitam de novas opções tecnológicas para suportar uma maior capacidade, maior eficiência espetral e flexibilidade. Neste contexto, a deteção coerente surge como uma oportunidade, fornecendo alta sensibilidade e elevada eficiência espetral. A tecnologia de deteção coerente pode ainda ser associada à multiplexação na polarização. Apesar de um potencial aumento ao nível do custo e da complexidade, a migração para transcetores coerentes de dupla polarização deve ser ponderada, pois permite duplicar a eficiência espetral. Esses sistemas de dupla polarização requerem um subsistema de processamento digital de sinal (DSP) adicional para desmultiplexagem da polarização. Este trabalho procura fornecer e caracterizar novos transcetores coerentes de baixo custo para o desenvolvimento de uma nova geração de transcetores mais práticos, flexíveis e de elevada capacidade, para interconexões óticas ao nível das futuras redes de acesso e metro. Assim, serão analisados diferentes algoritmos para a desmultiplexagem da polarização, incluindo uma abordagem adaptativa baseada no espaço de Stokes. Além disso, são propostas técnicas de DSP independentes do formato de modulação e de baixa complexidade baseadas na desmultiplexagem de Stokes adaptativa para sistemas óticos coerentes flexíveis. Neste contexto, o desempenho do algoritmo adaptativo de desmultiplexagem na polarização baseado no espaço de Stokes é avaliado experimentalmente num sistema U-DWDM, tanto em análises off-line como em tempo real, considerando um percurso ótico hibrido que combina um sistema de transmissão suportado por fibra e outro em espaço livre. Foi ainda analisada a eficiência do algoritmo de desmultiplexagem na polarização numa rede ótica de acesso flexível U-DWDM com formatação de pulso do tipo Nyquist. Neste trabalho foi ainda analisada a aplicação da técnica de desmultiplexagem na polarização baseada no espaço de Stokes para sistemas de longo alcance. Assim, foi proposta uma solução de aplicação baseada no uso da multiplexagem digital de múltiplas sub-portadoras, tendo-se demonstrado uma melhoria na eficiência do desempenho dos sistemas óticos de longo alcance, sem aumentar significativamente a respetiva complexidade e custo.Programa Doutoral em Engenharia Eletrotécnic

    Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator

    Get PDF
    Quantum-dash (QD) mode-locked laser diodes (MLLD) lend themselves as chip-scale frequency comb generators for highly scalable wavelength-division multiplexing (WDM) links in future data-center, campus-area, or metropolitan networks. Driven by a simple DC current, the devices generate flat broadband frequency combs, containing tens of equidistant optical tones with line spacings of tens of GHz. Here we show that QD-MLLDs can not only be used as multi-wavelength light sources at a WDM transmitter, but also as multi-wavelength local oscillators (LO) for parallel coherent reception. In our experiments, we demonstrate transmission of an aggregate data rate of 4.1 Tbit/s (23x45 GBd PDM-QPSK) over 75 km standard single-mode fiber (SSMF). To the best of our knowledge, this represents the first demonstration of a coherent WDM link that relies on QD-MLLD both at the transmitter and the receiver
    corecore