16 research outputs found

    A Brief History of the Semantic Grid

    Get PDF
    The story of the Semantic Grid, from its originas in the UK eScience programme in 2001 through to the Dagstuhl event in 2005

    05271 Abstracts Collection -- Semantic Grid: The Convergence of Technologies

    Get PDF
    From 03.07.05 to 08.07.05, the Dagstuhl Seminar 05271 ``Semantic Grid -- The Convergence of Technologies\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    S-OGSA as a Reference Architecture for OntoGrid and for the Semantic Grid

    Get PDF
    The Grid aims to support secure, flexible and coordinated resource sharing through providing a middleware platform for advanced distributing computing. Consequently, the Grid’s infrastructural machinery aims to allow collections of any kind of resources—computing, storage, data sets, digital libraries, scientific instruments, people, etc—to easily form Virtual Organisations (VOs) that cross organisational boundaries in order to work together to solve a problem. A Grid depends on understanding the available resources, their capabilities, how to assemble them and how to best exploit them. Thus Grid middleware and the Grid applications they support thrive on the metadata that describes resources in all their forms, the VOs, the policies that drive then and so on, together with the knowledge to apply that metadata intelligently

    Dagstuhl News January - December 2005

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Engineering a semantic web trust infrastructure

    No full text
    The ability to judge the trustworthiness of information is an important and challenging problem in the field of Semantic Web research. In this thesis, we take an end-to-end look at the challenges posed by trust on the Semantic Web, and present contributions in three areas: a Semantic Web identity vocabulary, a system for bootstrapping trust environments, and a framework for trust aware information management. Typically Semantic Web agents, which consume and produce information, are not described with sufficient information to permit those interacting with them to make good judgements of trustworthiness. A descriptive vocabulary for agent identity is required to enable effective inter agent discourse, and the growth of trust and reputation within the Semantic Web; we therefore present such a foundational identity ontology for describing web-based agents.It is anticipated that the Semantic Web will suffer from a trust network bootstrapping problem. In this thesis, we propose a novel approach which harnesses open data to bootstrap trust in new trust environments. This approach brings together public records published by a range of trusted institutions in order to encourage trust in identities within new environments. Information integrity and provenance are both critical prerequisites for well-founded judgements of information trustworthiness. We propose a modification to the RDF Named Graph data model in order to address serious representational limitations with the named graph proposal, which affect the ability to cleanly represent claims and provenance records. Next, we propose a novel graph based approach for recording the provenance of derived information. This approach offers computational and memory savings while maintaining the ability to answer graph-level provenance questions. In addition, it allows new optimisations such as strategies to avoid needless repeat computation, and a delta-based storage strategy which avoids data duplication.<br/
    corecore