262,466 research outputs found

    Separating club-guessing principles in the presence of fat forcing axioms

    Get PDF
    We separate various weak forms of Club Guessing at ω1\omega_1 in the presence of 202^{\aleph_0} large, Martin's Axiom, and related forcing axioms. We also answer a question of Abraham and Cummings concerning the consistency of the failure of a certain polychromatic Ramsey statement together with the continuum large. All these models are generic extensions via finite support iterations with symmetric systems of structures as side conditions, possibly enhanced with ω\omega-sequences of predicates, and in which the iterands are taken from a relatively small class of forcing notions. We also prove that the natural forcing for adding a large symmetric system of structures (the first member in all our iterations) adds 1\aleph_1-many reals but preserves CH

    Combinatorial Properties and Dependent choice in symmetric extensions based on L\'{e}vy Collapse

    Get PDF
    We work with symmetric extensions based on L\'{e}vy Collapse and extend a few results of Arthur Apter. We prove a conjecture of Ioanna Dimitriou from her P.h.d. thesis. We also observe that if VV is a model of ZFC, then DC<κDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system P,G,F\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is κ\kappa-distributive and F\mathcal{F} is κ\kappa-complete. Further we observe that if VV is a model of ZF + DCκDC_{\kappa}, then DC<κDC_{<\kappa} can be preserved in the symmetric extension of VV in terms of symmetric system P,G,F\langle \mathbb{P},\mathcal{G},\mathcal{F}\rangle, if P\mathbb{P} is κ\kappa-strategically closed and F\mathcal{F} is κ\kappa-complete.Comment: Revised versio

    The modal logic of forcing

    Full text link
    What are the most general principles in set theory relating forceability and truth? As with Solovay's celebrated analysis of provability, both this question and its answer are naturally formulated with modal logic. We aim to do for forceability what Solovay did for provability. A set theoretical assertion psi is forceable or possible, if psi holds in some forcing extension, and necessary, if psi holds in all forcing extensions. In this forcing interpretation of modal logic, we establish that if ZFC is consistent, then the ZFC-provable principles of forcing are exactly those in the modal theory known as S4.2.Comment: 31 page

    Iterative forcing and hyperimmunity in reverse mathematics

    Full text link
    The separation between two theorems in reverse mathematics is usually done by constructing a Turing ideal satisfying a theorem P and avoiding the solutions to a fixed instance of a theorem Q. Lerman, Solomon and Towsner introduced a forcing technique for iterating a computable non-reducibility in order to separate theorems over omega-models. In this paper, we present a modularized version of their framework in terms of preservation of hyperimmunity and show that it is powerful enough to obtain the same separations results as Wang did with his notion of preservation of definitions.Comment: 15 page

    Dominating the Erdos-Moser theorem in reverse mathematics

    Full text link
    The Erdos-Moser theorem (EM) states that every infinite tournament has an infinite transitive subtournament. This principle plays an important role in the understanding of the computational strength of Ramsey's theorem for pairs (RT^2_2) by providing an alternate proof of RT^2_2 in terms of EM and the ascending descending sequence principle (ADS). In this paper, we study the computational weakness of EM and construct a standard model (omega-model) of simultaneously EM, weak K\"onig's lemma and the cohesiveness principle, which is not a model of the atomic model theorem. This separation answers a question of Hirschfeldt, Shore and Slaman, and shows that the weakness of the Erdos-Moser theorem goes beyond the separation of EM from ADS proven by Lerman, Solomon and Towsner.Comment: 36 page
    corecore