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COMBINATORIAL PROPERTIES AND DEPENDENT CHOICE IN

SYMMETRIC EXTENSIONS BASED ON LÉVY COLLAPSE

AMITAYU BANERJEE

Abstract. We work with symmetric extensions based on Lévy Collapse and extend a few
results of Arthur Apter. We prove a conjecture of Ioanna Dimitriou from her P.h.d. thesis.
We also observe that if V is a model of ZFC, then DC<κ can be preserved in the symmetric
extension of V in terms of symmetric system 〈P,G,F〉, if P is κ-distributive and F is κ-
complete. Further we observe that if V is a model of ZF + DCκ, then DC<κ can be preserved
in the symmetric extension of V in terms of symmetric system 〈P,G,F〉, if P is κ-strategically
closed and F is κ-complete.

1. introduction

Serge Grigorieff proved in [Gri75] that symmetric extensions in terms of symmetric system
〈P,G,F〉1 are intermediate models of the form HOD(V [a])V [G] as a varies over V [G]. Arthur
Apter constructed several symmetric inner models based on Lévy Collapse in terms of heredi-
tarily definable sets. The purpose of this note is to translate the arguments of a few of those
symmetric inner model constructions to symmetric extensions in terms of symmetric system
〈P,G,F〉 and extend a few published results. In particular, we prove the following.

• We observe an infinitary Change conjecture in the model constructed in Theorem 11
of [AK06]. Moreover, we prove that ℵω1

is an almost Ramsey cardinal in the model.
• We reduce the large cardinal assumption of Theorem 2 and Theorem 3 of [AC13].
• We prove the failure of ACκ in the symmetric extension of subsection 4.1 of [Kar19].
Moreover, we study a different argument to preserve the supercompactness of κ in the
symmetric model.

• We observe the mutually stationarity property of a sequence of stationary sets in the
symmetric model constructed in [Apt83a]. We also observe an alternating sequence of
measurable and non-measurable cardinals in the model. Moreover, we observe that ℵω

is an almost Ramsey cardinal in the model.

Secondly, we prove a conjecture of Dimitriou related to the failure of Dependent choice–or DC–in
a symmetric extension based on finite support products of collapsing functions, from [Dim11].
We also study new lemmas related to preserving DC in symmetric extensions inspired by Lemma
1 of [Kar14]. In particular, we observe the following.

• Let V be a model of ZFC. If P is κ-distributive and F is κ-complete, then DC<κ is
preserved in the symmetric extension of V with respect to the symmetric system 〈P,G,F〉.

• Let V be a model of ZF + DCκ where AC can consistently fail. If P is κ-strategically
closed and F is κ-complete, then DC<κ is preserved in the symmetric extension of V
with respect to the symmetric system 〈P,G,F〉.

1.1. Preserving Dependent choice. Woodin asked in the context of ZFC, that if κ is strongly
compact and GCH holds below κ, then must GCH hold everywhere? The problem is still open
in the context of ZFC. One variant of this question is if GCH can fail at every limit cardinal less
than or equal to a strongly compact cardinal κ where as GCH holds above κ+. Apter answered

Key words and phrases. Dependent choice, Infinitary Chang Conjecture, symmetric extensions.
1P is a forcing notion, G an automorphism group of P, and F is a normal filter of subgroups over G.
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this in the context of ZF. In Theorem 3 of [Apt12], Apter constructed a symmetric inner model
based on Lévy collapse where κ is a regular limit cardinal and a supercompact cardinal, and
GCH holds for a limit δ if and only if δ > κ. In that model the Countable choice–or ACω– fails.
At the end of [Apt12], Apter asked the following question.

Question 1.1. Is it possible to construct analogous of Theorem 3 in which some weak version
of AC holds ?

In Lemma 1 of [Kar14], Asaf Karagila proved that if P is κ-closed and F is κ-complete then
DC<κ is preserved in the symmetric extension in terms of symmetric system 〈P,G,F〉. The
author and Karagila both observe that “P is κ-closed” can be replaced by “P has κ-c.c.” in
Lemma 1 of [Kar14].2 We note that the natural assumption that 〈P,G,F〉 is a tenacious
system3 is required in the proof as written by Karagila in Lemma 3.3 of [Kar19].

Observation 1.2. (Lemma 3.3 of [Kar19]). Let V be a model of ZFC. If P has κ-c.c. and
F is κ-complete, then DC<κ is preserved in the symmetric extension of V with respect to the
symmetric system 〈P,G,F〉.

Applying Observation 1.2, we construct a symmetric extension to answer Question 1.1.4

Theorem 1.3. Let V be a model of ZFC + GCH with a supercompact cardinal κ. Then there is
a symmetric extension with respect to a symmetric system 〈P,G,F〉 where DC<κ holds and ACκ

fails. Moreover, κ is a regular limit cardinal and a supercompact cardinal, and GCH holds for a
limit δ if and only if δ > κ.

We observe that ‘P is κ-closed’ can be replaced by ‘P is κ-distributive’ in Lemma 1 of [Kar14].
This slightly generalize Lemma 1 of [Kar14], since there are κ-strategically closed forcing notions
which are not κ-closed5 and κ-distributivity is weaker than < κ-strategic closure.6

Observation 1.4. (Lemma 3.2). Let V be a model of ZFC. If P is κ-distributive and F is κ-
complete, then DC<κ is preserved in the symmetric extension of V with respect to the symmetric
system 〈P,G,F〉.

We also observe that even if we start with a model V , which is a model of ZF + DCκ where AC
can consistently fail, we can still preserve DC<κ in a symmetric extension of V in certain cases.
In particular, we observe the following.

Observation 1.5. (Lemma 3.3). Let V be a model of ZF +DCκ. If P is κ-strategically closed
and F is κ-complete, then DC<κ is preserved in the symmetric extension of V with respect to
the symmetric system 〈P,G,F〉.

1.2. Proving Dimitriou’s conjecture. In section 1.4 of [Dim11], Ioanna Dimitriou con-
structed a symmetric extension based on finite support products of collapsing functions. At
the end of the section, Dimitriou conjectured that DC would fail in the symmetric extension
(see Question 1 of Chapter 4 in [Dim11]). We prove the conjecture. In particular, we prove
that ACω fails in the symmetric extension. For the sake of convenience, we call this model as
Dimitriou’s model and prove the following in section 5.

Theorem 1.6. In Dimitriou’s model ACω fails.

2The author noticed this observation combining the role of κ-c.c. forcing notions from Lemma 2.2 of [Apt01]
and the role of κ-completeness of F from Lemma 1 of [Kar14].

3Definition 4.6 of [Kar19a].
4The author would like to thank Asaf Karagila for helping to translate the arguments of Arthur Apter from

Theorem 1 of [Apt01] in terms of symmetric extension by a symmetric system 〈P,G,F〉. We construct a similar
symmetric extension to prove Theorem 1.3.

5As for an example, the forcing notion P(κ) which adds a non-reflecting stationary set of cofinality ω ordinals
in κ is κ-strategically closed but not even ω2-closed.

6As for an example, the forcing notion for ‘killing a stationary subset of ω1’ is ω1-distributive, but not even
< ω1-strategically closed.
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1.3. Reducing the assumption of supercompactness by strong compactness. In The-
orem 2 of [AC13], Apter and Cody obtained a symmetric extension where ℵ1 and ℵ2 are both
singular of cofinality ω, and there is a sequence of distinct subsets of ℵ1 of length equal to any
predefined ordinal, assuming a supercompact cardinal κ. In section 6, we observe that applying
a recent result of Toshimichi Usuba, which is Theorem 3.1 of [ADU19], followed by working
on symmetric extensions based on strongly compact Prikry forcing7, it is possible to reduce the
assumption of a supercompact cardinal κ to a strongly compact cardinal κ.

Observation 1.7. Suppose κ is a strongly compact cardinal, GCH holds, θ is an ordinal in a
ground model V of ZFC. Then there is a symmetric inner model M in which cf(ℵ1) = cf(ℵ2) =
ω, and there is a sequence of distinct subsets of ℵ1 of length θ. Consequently, ACω fails in M.

Similarly, we reduce the large cardinal assumption of Theorem 3 of [AC13] from a supercompact
cardinal to a strongly compact cardinal. In Theorem 3 of [AC13], Apter and Cody obtained a
symmetric extension where ℵω and ℵω+1 are both singular with ω ≤ cf(ℵω+1) < ℵω, and there
is a sequence of distinct subsets of ℵω of length equal to any predefined ordinal, assuming a
supercompact cardinal κ. We prove the following.

Observation 1.8. Suppose κ is a strongly compact cardinal, GCH holds, θ is an ordinal in a
ground model V of ZFC. Then there is a symmetric inner model M in which ℵω and ℵω+1 are
both singular with ω ≤ cf(ℵω+1) < ℵω, and there is a sequence of distinct subsets of ℵω of length
θ. Consequently, ACω fails in M.

1.4. Infinitary Chang conjecture from a measurable cardinal. Assuming a measurable
cardinal, Apter and Koepke constructed a symmetric model N based on Lévy collapse in Theo-
rem 11 of [AK06]. In N , ω1 is singular, and ℵω1

is a Rowbottom cardinal carrying a Rowbottom
filter. They mentioned that in N , ACω fails because of the singularity of ω1. We first observe
an infinitary Chang conjecture in a symmetric extension, which is very similar to N , except we
consider a finite support product construction. We use the observation that it is possible to force
a coherent sequence of Ramsey cardinals after performing Prikry forcing on a normal measure
over a measurable cardinal κ (see Theorem 3, [AK06]). We also use the observation that an
infinitary Chang conjecture can be established in a symmetric model, assuming a coherent se-
quence of Ramsey cardinals. In the symmetric model, ACω fails because of the singularity of
ω1.

Theorem 1.9. Let V be a model of ZFC where there is a measurable cardinal. Then there is a
symmetric extension with respect to a symmetric system 〈P,G,F〉 where ω1 is singular and thus
ACω fails. Moreover in the symmetric extension, an infinitary Chang conjecture holds.

Similarly, we also observe an infinitary Chang conjecture in the symmetric inner model N . For
the sake of convenience, we call the model N as Apter and Koepke’s model and prove the
following.

Theorem 1.10. An infinite Chang conjecture holds in Apter and Koepke’s model. Moreover,
ℵω1

is an almost Ramsey cardinal in the model.

1.5. Mutually stationary property from a sequence of measurable cardinals. Foreman
and Magidor asked whether it is consistent that 〈Sn : n < ω〉 such that each Sn is stationary on
ℵn is mutually stationary in ZFC. In [Apt04], Apter answered the question in ZF assuming the
consistency of ω-sequence of supercompact cardinals. In Theorem 1 of [Apt83a], Apter further
obtained a similar symmetric inner model based on Lévy collapse as constructed in [Apt04], where
ℵω carries a Rowbottom filter and DCℵn0

holds for any arbitrary n0 ∈ ω, from a ω-sequence of
measurable cardinals. We observe that in the symmetric model from Theorem 1 of [Apt83a], if
〈Sk : 1 ≤ k < ω〉 is a sequence of stationary sets such that Sk ⊆ ℵn0+2(k+1) for every 1 ≤ k < ω,
then 〈Sk : 1 ≤ k < ω〉 is mutually stationary. We also observe that in the symmetric model each

7An exhibition of symmetric extension on strongly compact Prikry forcing can be found in [AH91].
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ℵn0+2(k+1) is a measurable cardinal. For the sake of convenience, we fix an arbitrary n0 ∈ ω in
the ground model V , call the symmetric model from [Apt83a] as Nn0

, and prove the following.

Observation 1.11. The following holds in the symmetric inner model Nn0
.

(1) For each 1 ≤ k < ω, ℵn0+2(k+1) is a measurable cardinal and ℵn0+2k is not a measurable
cardinal. In particular, for each 1 ≤ k < ω, there are no unifrom ultrafilters on ℵn0+2k.

(2) If 〈Sk : 1 ≤ k < ω〉 is a sequence of stationary sets such that Sk ⊆ ℵn0+2(k+1) for every
1 ≤ k < ω, then 〈Sk : 1 ≤ k < ω〉 is mutually stationary.

(3) ℵω is an almost Ramsey cardinal in the model.

Structure of the paper.

• In section 2, we cover the basics.
• In section 3, we prove Observation 1.4, Observation 1.5 and study a few lemmas
related to preserving Dependent choice in symmetric extensions inspired by Lemma 1
of [Kar14].

• In section 4, we prove Theorem 1.3 applying Observation 1.2. In particular, we prove
the failure of ACκ in the symmetric extension of subsection 4.1 of [Kar19]. Moreover,
we study a different argument to preserve the supercompactness of κ in the symmetric
model.

• In section 5, we prove Theorem 1.6. This answers the question of Dimitriou from her
thesis.

• In section 6, we prove Observation 1.7 and Observation 1.8. Consequently, we
reduce the large cardinal assumption of Theorem 2 and Theorem 3 of [AC13], from
a supercompact cardinal to a strongly compact cardinal.

• In section 7, we prove Theorem 1.9 and Theorem 1.10 and study an infinite Chang
conjecture in Apter and Koepke’s model from Theorem 11 of [AK06].

• In section 8, we prove Observation 1.11 and study the mutually stationary property
of a sequence of stationary sets in Apter’s model from Theorem 1 of [Apt83a].

2. Basics

2.1. Large Cardinals. In this section, we recall the definition of inaccessible cardinals in the
context of ZFC and other large cardinals in the context of ZF. In ZFC, we say κ is a strongly
inaccessible cardinal if it is a regular strong limit cardinal where the definition of “strong limit” is
that for all α < κ, we have 2α < κ. In the context of ZF, the above definition doesn’t make sense,
as 2α may not be well-ordered. We refer the reader to [BDL07] for details concerning inaccessible
cardinals in the context of ZF. We recall the other necessary large cardinal definitions in the
context of ZF from ‘The Higher Infinite’ [Kan03] of Akihiro Kanamori.

Definition 2.1. Given an uncountable cardinal κ, we recall the following definitions.

(1) κ is weakly compact if for all f : [κ]2 → 2, there is a homogeneous set X ⊆ κ for f of
order type κ.

(2) κ is Ramsey if for all f : [κ]<ω → 2, there is a homogeneous set X ⊆ κ for f of order
type κ.

(3) κ is almost Ramsey if for all α < κ and f : [κ]<ω → 2, there is a homogeneous set X ⊆ κ

for f having order type α.
(4) κ is µ-Rowbottom if for all α < κ and f : [κ]<ω → α, there is a homogeneous set X ⊆ κ

for f of order type κ such that |f
′′

[X ]<ω| < µ. κ is Rowbottom if it is ω1-Rowbottom.
A filter F on κ is a Rowbottom filter on κ if for any f : [κ]<ω → λ, where λ < κ there

is a set X ∈ F such that |f
′′

[X ]<ω| ≤ ω.
(5) κ is measurable if there is a κ-complete free ultrafilter on κ. A filter F on a cardinal κ

is normal if it is closed under diagonal intersections:

If Xα ∈ F for all α < κ, then ∆α<κXα ∈ F .
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In ZF we have the following lemma.

Lemma 2.2. (Lemma 0.8 of [Dim11]). An ultrafilter U over κ is normal if and only if
for every regressive f : κ→ κ there is an X ∈ U such that f is constant on X.

Thus, we say an ultrafilter U over κ is normal if for every regressive f : κ → κ there
is an X ∈ U such that f is constant on X .

(6) For a set A we say U a fine measure on Pκ(A) if U is a κ-complete ultrafilter and for any
i ∈ A, {x ∈ Pκ(A) : i ∈ x} ∈ U . We say U is a normal measure on Pκ(A), if U is a fine
measure and if f : Pκ(A) → A is such that f(X) ∈ X for a set in U , then f is constant
on a set in U . κ is λ-strongly compact if there is a fine measure on Pκ(λ), it is strongly
compact if it is λ-strongly compact for all κ ≤ λ.

(7) κ is λ-supercompact if there is a normal measure on Pκ(λ), it is supercompact if it is
λ-supercompact for all κ ≤ λ.

Remark 1. We note that the definition of supercompact (similarly strongly compact) is meant
in the terms of ultrafilters, which is weaker than the definition of supercompact in terms of
elementary embedding due to Woodin [Definition 220, [Wood10]] (e.g. ℵ1 can be supercompact
or strongly compact if we consider the definition of supercompact or strongly compact in terms
of ultrafilters [Ina13], but ℵ1 can not be the critical point of an elementary embedding).

Remark 2. In section 2 of [IT19], Ikegami and Trang defined that an ultrafilter U on PκX

is normal if for any set A ∈ U and f : A → PκX with ∅ 6= f(σ) ⊆ σ for all σ ∈ A, there is an
x0 ∈ X such that for U-measure one many σ in A, x0 ∈ f(σ). They note that their definition
of normality is equivalent to the closure under diagonal intersections in ZF, while it may not be
equivalent to the definition of normality in our sense without AC.

From now on, all our inaccessible cardinals are strongly inaccessible. We recall that a limit of
Ramsey cardinals is an almost Ramsey cardinal in ZF (Proposition 1 of [AK08]).

2.2. Lévy–Solovay Theorem. We state a part of Lévy–Solovay Theorem (Theorem 21.2 of
[Jec03]) in ZFC. By a small forcing extension with respect to κ we mean a forcing extension V [G]
obtained from V after forcing with a partially ordered set of size less than κ.

Theorem 2.3. Let κ be an infinite cardinal, and let P be a partially ordered set of size less than
κ. Let G be a P-generic filter over V.

• If κ is Ramsey in V, then κ is Ramsey in V [G].
• If κ is measurable with a κ-complete ultrafilter U in V then κ is measurable with a κ-
complete ultrafilter U1 = {X ⊆ κ : X ∈ V [G], ∃Y ∈ U [Y ⊆ X ]} defined in V [G] generated
by U in V [G].

Proof. Proof of preserving Ramseyness follows from Theorem 21.2 of [Jec03] and proof of
preserving measurability and the fact that κ-complete ultrafilters in the ground model generate
κ-complete ultrafilters in the small forcing extensions with respect to κ follows from the Lévy–
Solovay Theorem in [LS67]. �

2.3. Symmetric extension. Symmetric extensions are submodels of the generic extension con-
taining the ground model, where the axiom of choice can consistently fail. Let P be a forcing
notion, G be a group of automorphisms of P and F be a normal filter of subgroups over G. We
recall the following Symmetry Lemma from [Jec03].

Theorem 2.4. (Symmetry Lemma, Lemma 14.37 of [Jec03]). Let P be a forcing notion,
ϕ be a formula of the forcing language with n variables and let σ1, σ2, ...σn ∈ V P be P-names. If
a ∈ Aut(P), then p  ϕ(σ1, σ2, ...σn) ⇔ a(p)  ϕ(a(σ1), a(σ2), ...a(σn)).

For τ ∈ V P, we denote the symmetric group with respect to G by symGτ = {g ∈ G : gτ = τ}
and say τ is symmetric with respect to F if symGτ ∈ F . Let HSF be the class of all hereditary
symmetric names. That is, recursively for τ ∈ V P,
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τ ∈ HSF iff τ is symmetric with respect to F , and for each σ ∈ dom(τ), σ ∈ HSF .

We define symmetric extension of V with respect to F as V (G)F = {τG : τ ∈ HSF}. For the
sake of our convenience we omit the subscript F sometimes and call V (G)F as V (G).

Definition 2.5. (Symmetric System, Definition 2.1 of [KH19]). We say 〈P,G,F〉 is a
symmetric system if P is a forcing notion, G the automorphism group of P and F a normal filter
of subgroups over G.

Definition 2.6. (F-Tenacious system, Definition 4.6 of [Kar19a]). Let 〈P,G,F〉 be a
symmetric system. A condition p ∈ P is F-tenacious if {π ∈ G : π(p) = p} ∈ F . We say P is
F-tenacious if there is a dense subset of F-tenacious conditions. We say 〈P,G,F〉 is a tenacious
system if P is F-tenacious.

Karagila and Hayut proved in Appendix A of [Kar19a] that every symmetric system is equivalent
to a tenacious system. Thus, it is natural to assume tenacity and work with tenacious system.
We recall the following theorem which states that the symmetric extension V (G) is a transitive
model of ZF.

Theorem 2.7. (Lemma 15.51 of [Jec03]). If 〈P,G,F〉 is a symmetric system and G is a
V-generic filter, then V (G) is a transitive model of ZF and V ⊆ V (G) ⊆ V [G].

2.4. Terminologies from Dimitriou’s thesis. We recall the terminologies like Approximation
Lemma, Approximation property and (G, I)-homogeneous forcing notion, from [Dim11]. For
E ⊆ P, let us define the pointwise stabilizer group to be fixGE = {g ∈ G : ∀p ∈ E, g(p) = p}
i.e. it is the set of automorphisms which fix E pointwise. We denote fixGE by fix E for the sake
of convenience. A subset I ⊆ P(P) is called G-symmetry generator if it is closed under unions
and if for all g ∈ G and E ∈ I, there is an E′ ∈ I s.t. g(fixE)g−1 ⊇ fixE′. It is possible to see
that if I is a G-symmetry generator, then the set {fixE : E ∈ I} generates a normal filter over
G (Proposition 1.23 of Chapter 1 in [Dim11]). Let I be the G-symmetry generator generating a
normal filter F over G, we say E ∈ I supports a name σ ∈ HS if fixE ⊆ sym(σ). Since P,G and
I are enough to define a symmetric extension, we define a symmetric triple 〈P,G, I〉 and work
with it.

Definition 2.8. (Symmetric Triple 〈P,G, I〉). We say 〈P,G, I〉 is a symmetric triple if P is
a forcing notion, G an automorphism group and I a G-symmetry generator.

Let 〈P,G, I〉 be a symmetric triple, then I is projectable for the pair (P,G) if for every p ∈ P

and every E ∈ I, there is a p∗ ∈ E that is minimal in the partial order and unique such that
p∗ ≥ p. We call p ↾ E = p∗ the projection of p to E. We say that P is (G, I)-homogeneous
if for every E ∈ I, every p ∈ P and every q ≤ p ↾ E there is an automorphism a ∈ fixE s.t.
a(p) ‖ q. 〈P,G, I〉 has the approximation property if for all formula ϕ with n free variables,
names σ1, σ2, ...σn ∈ HS all with support E ∈ I and for every p ∈ P, p  ϕ(σ1, σ2, ...σn) implies
that p ↾ E  ϕ(σ1, σ2, ...σn).

Lemma 2.9. (Lemma 1.27 of [Dim11]). Let 〈P,G, I〉 be a symmetric triple. If P is (G, I)-
homogeneous, then (P,G, I) has the approximation property.

Lemma 2.10. (Approximation Lemma, Lemma 1.29 of [Dim11]). Let 〈P,G, I〉 be a
symmetric triple. If 〈P,G, I〉 has the approximation property then for all set of ordinals X ∈
V (G), there exists an E ∈ I and an E name for X. Thus, X ∈ V [G ∩E].

2.5. Homogeneity of forcing notions. We recall the definition of weakly homogeneous and
cone homogeneous forcing notions from [DF08].

Definition 2.11. (Definition 2 of [DF08]). Let P be a set forcing notion.

• We say P is weakly homogeneous if for any p, q ∈ P, there is an automorphism a : P → P

such that a(p) and q are compatible.8

8The Levy collapse Col(λ,< κ) is weakly homogeneous, given an infinite cardinal κ and a regular cardinal λ.
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• For p ∈ P, let Cone(p) denote {r ∈ P : r ≤ p}. We say P is cone homogeneous if and
only if for any p, q ∈ P, there exist p′ ≤ p, q′ ≤ q, and an isomorphism π : Cone(p′) →
Cone(q′).

Following Fact 1 of [DF08], if P is a weakly homogeneous forcing notion, then it is cone homo-
geneous too. Also, the finite support products of weakly (cone) homogeneous forcing notions are
weakly (cone) homogeneous. A crucial feature of symmetric extensions using weakly (cone) ho-
mogeneous forcings are that they can be approximated by certain intermediate submodel where
AC holds.

2.6. Failure of a weaker form of the axiom of choice. A weaker version of the axiom of
choice is ACκ for a cardinal κ. We use ACκ to denote the statement “Every family of κ non-
empty sets admits a choice function”. We note that if κ+ is singular, then ACκ fails. This is
due to the following well known fact.

Fact 2.12. ACκ =⇒ cf(λ) > κ for all successor cardinal λ.

We sketch another way of refuting ACκ. One of the weaker forms of AC is ACA(B) which states
that for each set X of non-empty subsets of B, if there is an injection from X to A then there is
a choice function for X . We recall Lemma 0.2, Lemma 0.3 and Lemma 0.12 from [Dim11].
Under ACA(B), if there is a surjection from B to A, then there is an injection from A to B. We
recall that in ZF if κ is measurable with a normal measure or weakly compact and α < κ then
there is no injection f : κ → P(α) (This is Proposition 0.1 of [Bul78]) and in ZF for every
infinite cardinal κ, there is a surjection from P(κ) onto κ+. The following lemma states that if
a successor cardinal κ is either measurable with normal measure or weakly compact then ACκ

fails, which is Corollary 0.3 from [Bul78].

Lemma 2.13. Let κ = α+ be a successor cardinal. If κ is measurable with normal measure or
weakly compact then ACα+(P(α)) fails.

Proof. Let ACα+(P(α)) holds. We show κ = α+ is neither measurable with normal measure
nor weakly compact. In ZF, there is a surjection from P(α) onto α+. Now ACα+(P(α)) implies

there is an injection f
′

from α+ to P(α) which states that κ = α+ is neither measurable with
normal measure nor weakly compact. �

3. Preserving Dependent choice in symmetric extensions

Dependent Choice, denoted by DC or DCω, is a weaker version of the Axiom of choice (AC)
which is strictly stronger9 than the countable choice, denoted by ACω . This principle is strong
enough to give the basis of analysis as it is equivalent to the Baire Category Theorem which
is a fundamental theorem in functional analysis. Further, DC is equivalent to other important
theorems like the countable version of the Downward Löweinheim–Skolem theorem and every
tree of height ω without a maximum node has an infinite branch etc. On the other hand, AC
has several controversial applications like the existence of a non-Lebesgue measurable set of real
numbers, Banach–Tarski Paradox and the existence of a well-ordering of real numbers whereas
DC does not have such counter-intuitive consequences. Thus it is desirable to preserve dependent
choice in symmetric extensions.

We denote the principle of Dependent Choice for κ by DCκ for a cardinal κ. This principle states
that for every non-empty set X , if R is a binary relation such that for each ordinal α < κ, and
each f : α→ X there is some y ∈ X such that f R y, then there is f : κ→ X such that for each
α < κ, f ↾ α R f(α). We denote the assertion (∀λ < κ)DCλ by DC<κ. The axiom of choice is
equivalent to ∀κ(DCκ) and DCκ implies ACκ.

9In Howard–Rubin’s first model (N38 in [HR98]), ACω holds but DCω fails.
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We recall the definition of a κ-c.c. forcing notion, κ-closed forcing notion, and a κ-distributive
forcing notion from Definition 5.8 of [Cum10] and the definition of a κ-strategically closed
forcing notion from Definition 5.14 and Definition 5.15 of [Cum10].

Asaf Karagila proved in Lemma 1 of [Kar14], that DC<κ can be preserved in the symmetric
extension in terms of the symmetric system 〈P,G,F〉, if P is κ-closed and F is κ-complete. In
Lemma 3.3 of [Kar19], Karagila and the author both observed independently that ‘P is κ-closed’
can be replaced by ‘P has κ-c.c.’ in Lemma 1 of [Kar14]. The author independently observed
this by combining the role of κ-c.c. forcing notions from Lemma 2.2 of [Apt01], and the role of
κ-completeness of F from Lemma 1 of [Kar14].

The idea was the following. If P has κ-c.c., then any antichain is of size less than κ. So by Zorn’s
Lemma in the ground model, there is a maximal antichain of conditions A = {pα : α < γ < κ}
extending p such that for all α < γ, pα  ḟ(α̂) = ṫα where ṫα ∈ HS. Then we can follow Lemma
1 of [Kar14] to finish the proof.

In a private conversation with Karagila, the author came to know that they independently
observed the same fact. We note that there was a gap in the above observation. Specifically,
the author was not aware of the fact that every symmetric system is equivalent to a tenacious
system. Karagila fixed this gap. In particular, in Lemma 3.3 of [Kar19], Karagila wrote that
the natural assumption that 〈P,G,F〉 is a tenacious system is also required in the proof.

Lemma 3.1. (Lemma 3.3 of [Kar19]). Let V be a model of ZFC. If P has κ-c.c. and F is κ-
complete, then DC<κ is preserved in the symmetric extension of V with respect to the symmetric
system 〈P,G,F〉.

We can slightly generalize Lemma 1 of [Kar14] and observe that ‘P is κ-closed’ can be replaced
by ‘P is κ-distributive’.

Lemma 3.2. (Observation 1.4). Let V be a model of ZFC. If P is κ-distributive and F is κ-
complete, then DC<κ is preserved in the symmetric extension of V with respect to the symmetric
system 〈P,G,F〉.

Proof. Let G be a P-generic filter over V . Let δ < κ, we show DCδ holds in V (G). Let X and
R are elements of V (G) as in the assumptions of DCδ. Since AC is equivalent to ∀κ(DCκ) and
V [G] a model of AC, using ∀κ(DCκ) in V [G], we can find a f : δ → X in V [G]. We show this

f : δ → X is in V (G). Let p0  ḟ is a function whose domain is δ and range is X which is a

subset of V (G). For each α < δ, Dα = {p ≤ p0 : (∃x ∈ X)p  ḟ(α̌) = ẋ where ẋ ∈ HS} is
open dense below p0. Consequently by δ-distributivity of P, D = ∩α<δDα is dense below p0. So,
there is some p ∈ D ∩G. We can see that for each α < δ, there is a xα such that p  ḟ(α̌) = ẋα
where ẋα ∈ HS. Define ġ = {〈α̌, ẋα〉 : α < δ}. Now, since each ẋα ∈ HS, sym(ẋα) ∈ F .
By κ-completeness of F , H = ∩α<κsym(ẋα) ∈ F . Next, since H ⊆ sym(ġ) and F is a filter,

ġ ∈ HS. We can see that p  ġ = ḟ . Thus, there is a dense open set of conditions q ≤ p, such
that for some ġ ∈ HS, q  ġ = ḟ . By genericity, ḟG = f ∈ V (G). �

Remark. If κ is either a supercompact cardinal or a strongly compact cardinal and λ > κ is a
regular cardinal, there are certain forcing notions like supercompact Prikry forcing [Apt85] and
strongly compact Prikry forcing [AH91] which are known to be non-κ-closed, but still can preserve
DCκ in the symmetric extension based on such forcings. In particular, Apter communicated
to us that, assuming the consistency of a 2λ-supercompact cardinal κ and a regular cardinal
λ > κ, Kofkoulis proved in [Kof90], that in a symmetric extension based on supercompact Prikry
forcing, DCκ was preserved. In particular, DCκ holds in the symmetric inner model constructed
in Theorem 1 of [Apt85]. Further applying the methods of Kofkoulis, assuming the consistency
of a λ-strongly compact cardinal κ and a measurable cardinal λ > κ, a symmetric extension
based on strongly compact Prikry forcing was constructed in [AH91] where κ became a singular
cardinal of cofinality ω, κ+ remained a measurable cardinal and DCκ was preserved. We can
also find another exhibition of Kofkoulis’s method with certain modifications in [AM95].
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We may observe that even if we start with a model V , which is a model of ZF + DCκ where AC
can consistently fail, we can still preserve DC<κ in a symmetric extension of V in certain cases.
Specifically, we observe the following lemma.

Lemma 3.3. (Observation 1.5). Let V be a model of ZF +DCκ. If P is κ-strategically closed
and F is κ-complete, then DC<κ is preserved in the symmetric extension of V with respect to
the symmetric system 〈P,G,F〉.

Proof. Let G be a P-generic filter over V . By Theorem 2.2 of [GJ14], DCκ is preserved in
V [G]. Let δ < κ, we show DCδ holds in V (G). Let X and R are elements of V (G) as in the
assumptions of DCδ. Since DCκ is preserved in V [G], we can find a f : δ → X in V [G]. We

show this f : δ → X is in V (G). Let p  ḟ is a function whose domain is δ and range a subset
of V (G). Consider a game of length κ, between two players I and II who play at odd stages and
even stages respectively such that initially II chooses a trivial condition and I chooses a condition
extending p and at non-limit even stages 2α > 0, II chooses a condition extending the condition
of the previous stage deciding ḟ(α̌) = ṫα where ṫα is in HS. By κ-strategic closure of P, II has
winning strategy. Thus, we can assume the existence of an increasing sequence of conditions
〈pα : α < δ〉 extending p such that pα  ḟ(α̌) = ṫα where ṫα is in HS for each α < δ. It is

enough to show that ḟ = {ṫβ : β < δ} is in HS which follows using κ-completeness of F as done
in Lemma 1 of [Kar14]. �

Remark. Let V be a model of ZF +DCκ. We can also observe that if P is well-orderable of
order type at most κ and κ-c.c. at the same time and F is κ-complete, then DC<κ is preserved in
the symmetric extension of V in terms of the symmetric system 〈P,G,F〉. Let G be a P-generic
filter over V . By Theorem 2.1 of [GJ14], DCκ is preserved in V [G]. Rest follows from the
proof of Lemma 3.3 of [Kar19].

Question 3.4. Suppose V be a model of ZF + DCκ and P is κ-distributive. Can we preserve
DCκ in every forcing extension V [G] by P?

If the answer is in the affirmative, we can say that if V is a model of ZF + DCκ, P is κ-
distributive and F is κ-complete, then DC<κ is preserved in the symmetric extension in terms
of the symmetric system 〈P,G,F〉 following Lemma 3.2.

3.1. Number of normal measures a successor cardinal can carry and DC. Takeuti
[Tak70] and Jech [Jec68] independently proved that if we assume the consistency of “ZFC +
there is a measurable cardinal” then the theory “ZF + DC + ℵ1 is a measurable cardinal” is
consistent. In section 1.33 of [Dim11], Dimitriou modified Jech’s construction and proved that
if we assume the consistency of “ZFC + there is a measurable cardinal κ and γ < κ is a regular
cardinal” then the theory “ZF + the cardinality of γ is preserved + γ+ is a measurable cardinal”
is consistent. Apter, Dimitriou, and Koepke [ADK14] constructed symmetric models in which for
an arbitrary ordinal ρ, ℵρ+1 can be the least measurable as well as the least regular uncountable
cardinal. Bilinsky and Gitik [BG12] proved that if we assume the consistency of “ZFC + GCH
+ there is a measurable cardinal κ” then we can obtain a symmetric extension where κ is a
measurable cardinal without a normal measure. Assuming the consistency of “ZFC + GCH +
there is a measurable cardinal”, we observe that a successor of regular cardinals like ℵ1, ℵ2,
ℵω+2, as well as ℵω1+2, can carry an arbitrary (non-zero) number of normal measures in ZF +
DC.

In Theorem 1 of [MF09], Friedman and Magidor proved that a measurable cardinal can be
forced to carry arbitrary number of normal measures in ZFC.

Lemma 3.5. (Theorem 1 of [MF09]). Assume GCH. Suppose that κ is a measurable cardinal
and let α be a cardinal at most κ++. In a cofinality preserving forcing extension, then κ carries
exactly α normal measures.

We recall the definition of a symmetric collapse from [KH19].
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Definition 3.6. (Symmetric Collapse, Definition 4.1 of [KH19]). Let κ ≤ λ be two infinite
cardinals. The symmetric collapse is the symmetric system 〈P,G,F〉 defined as follows.

• P = Col(κ,< λ).
• G is the group of automorphisms π such that there is a sequence of permutations −→π =
〈πα : κ < α < λ〉 such that πα is a permutation of α satisfying πp(α, β) = παp(α, β).

• F is the normal filter of subgroups generated by fix(E) for bounded E ⊆ λ, where fix(E)
is the group {π : ∀α ∈ E, πp(α, β) = p(α, β)}.

Lemma 3.7. Let κ ≤ λ be two infinite cardinals such that cf(λ) ≥ κ and 〈P,G,F〉 is the
symmetric collapse where P = Col(κ,< λ). Then, F is κ-complete.

Proof. Fix γ < κ and let, for each β < γ, Kβ ∈ F . There must be bounded Eβ ⊆ λ for each
β < γ such that fixEβ ⊆ Kβ. Next, fix(∪β<γEβ) ⊆ ∩β<γ fixEβ ⊆ ∩β<γKβ. Since cf(λ) ≥ κ,
∪β<γEβ is a bounded subset of λ. Consequently, ∩β<γKβ ∈ F . �

We observe that after a symmetric collapse, the successor of a regular cardinal can be a measur-
able cardinal carrying an arbitrary (non-zero) number of normal measures assuming the consis-
tency of a measurable cardinal. Further we can preserve Dependent choice in certain cases.

Theorem 3.8. Let V be a model of ZFC + GCH with a measurable cardinal κ. Let λ be any
non-zero cardinal at most κ++ and let η ≤ κ be regular. Then, there is a symmetric extension
where κ = η+ is a measurable cardinal carrying λ normal measures. Moreover, ACκ fails and
DC<η holds10 in the symmetric model.

Proof. Applying Lemma 3.5, we obtain a cofinality preserving forcing extension V ′ of V where
κ is a measurable cardinal with λ many normal measures. Let V ′(G) be the symmetric extension
of V ′ obtained by the symmetric collapse 〈P,G,F〉 where P = Col(η,< κ) and G a P-generic
filter over V ′. In V ′(G), κ = η+. We can also have the following in V ′(G).

• By Lemma 2.4 and Lemma 2.5 of [Apt01], κ remains a measurable cardinal with λ

many normal measures.
• Since κ is a successor as well as a measurable cardinal, ACκ fails using Lemma 2.13.
• Since P is η-closed and the filter F is η-complete by Lemma 3.7, DC<η holds using
Lemma 1 of [Kar14].

�

Remark. The referee pointed out that DC<κ is preserved in V ′(G). Assuming that λ is regular,
the proof of Lemma 3.7 gives that F is λ-complete. Consequently, since κ is a regular cardinal
in V ′, F is κ-complete. Since P is κ-c.c., by Lemma 3.1, DC<κ is preserved in V ′(G).

Question 3.9. Can ℵω+1, ℵω1+1 carry any number of normal measures in ZF?

In [Apt06] and [Apt10], Apter proved that ℵω+1 can carry ≥ ℵω+2 number of normal measures
and ℵω1+1 can carry ≥ ℵω1+2 number of normal measures respectively. If it is consistent that κ
is supercompact and λ > κ carry arbitrary number of normal measures then we can prove the
consistency of successor of singular cardinals like ℵω+1 and ℵω1+1 being measurable cardinals
with arbitrary normal measures by methods of [Apt06] and [Apt10].

4. Failure of GCH at limit cardinals below a supercompact cardinal

In this section we prove Theorem 1.3 applying Lemma 3.1. Consequently, we answer Ques-
tion 1.1 asked by Apter. We note that Theorem 1.3 was already observed by the author and
written by Karagila in subsection 4.1 of [Kar19]. In this section we write the proof in more
details. We further observe the failure of ACκ in the symmetric model and provide a different
argument to prove that the supercompactness of κ is preserved in V (G) from [Ina13].

10If we assume η > ω.
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Proof. (Theorem 1.3).

(1) Defining ground model (V ): At the beginning of the proof of Theorem 3 of [Apt12],
from the given requirements, Apter constructed a model V where there is an enumeration
〈κi : i < κ〉 of C ∪ {ω} where C ⊆ κ is a club of inaccessible and limit cardinals below
a supercompact cardinal κ such that 2κi = κ++

i holds. We consider V to be our ground
model. For reader’s convenience we recall the steps from the proof of Theorem 3 of
[Apt12] as follows.

• Let V be a model of ZFC + GCH with a supercompact cardinal κ.
• Let Q1 be Lavers partial ordering which makes κs supercompactness indestructible
under κ-directed closed forcing. Since Q1 may be defined so that |Q1| = κ, we have

V Q1∗ ˙Add(κ,κ++)= V2 is a model of ‘ZFC + κ is supercompact + 2κ = κ++ + 2δ = δ+

for every cardinal δ ≥ κ+’.
• Let Q3 be the Radin forcing defined over κ. Taking a suitable measure sequence
will enable one to preserve the supercompactness of κ (c.f. [Git10]). Consequently,

V Q3

2 = V̄ is a model of ‘ZFC + κ is supercompact + 2κ = κ++ + 2δ = δ+ for every
cardinal δ ≥ κ + There is a club C ⊆ κ composed of inaccessible cardinals and their

limits with 2δ = 2δ
+

= δ++ for every δ ∈ C’.
• With an abuse the notion for the sake of convenience we consider the ground model
to be V̄ = V . Let 〈κi : i < κ〉 ∈ V be the continuous, increasing enumeration of
C ∪ {ω}.

(2) Defining symmetric system 〈P,G,F〉:
• Let P be the Easton support product of Pα = Col(κ++

α , < κα+1) where α < κ.
• Let G be the Easton support product of the automorphism groups of each Pα.
• Let F be the filter generated by fix(α) groups for α < κ, where
fix(α) = {π ∈ Πα<κAut(Pα) : π ↾ α = id}.

(3) Defining symmetric extension of V : Let G be a P-generic filter. We construct a
model V (G)F by the symmetric system 〈P,G,F〉 defined above in (2) and call it as V (G)
for the sake of our convenience.

Since each Pα is weakly homogeneous, the following holds.

Lemma 4.1. If A ∈ V (G) is a set of ordinals, then A ∈ V [G ↾ α] for some α < κ.

Proof. Without loss of generality we may assume that Ȧ = {〈p, ǫ̌〉 : p  ǫ̌ ∈ Ȧ} ∈ HS is a

name for A. Let q  ǫ̌ ∈ Ȧ and let β support ǫ̌ and Ȧ. Let, for the sake of contradiction
q ↾ β 6 ǫ̌ ∈ Ȧ. Then, there is a q′ such that q′ ≤ q ↾ β where q′  ¬(ǫ̌ ∈ Ȧ). Since each Pα

is weakly homogeneous, the Easton support product is weakly homogeneous too. Thus there is
a a ∈ fixβ such that a(q) || q′. By Lemma 2.4, a(q)  a(ǫ̌) ∈ a(Ȧ). Since β supports ǫ̌ and

Ȧ, and a ∈ fixβ we get a(q)  ǫ̌ ∈ Ȧ which is a contradiction to the fact that a(q) || q′ and
q′  ¬(ǫ̌ ∈ Ȧ). Thus, q ↾ β  ǫ̌ ∈ Ȧ. If α = supβ then we get that {〈〈q ↾ α〉, ǫ̌〉 : q  ǫ̌ ∈ Ȧ} is a
name for A. �

We apply Lemma 4.1 to prove that κ remains supercompact in our symmetric extension V (G).
Inamder [Ina13] proved that if we assume the consistency of “ZFC + there is a supercompact
cardinal κ, and γ < κ is a regular cardinal” then the theory “ZF + the cardinality of γ is
preserved + γ+ is a supercompact cardinal” is consistent. We incorporate the arguments from
[Ina13] in order to show that κ remains supercompact in our symmetric extension V (G). We
recall Lemma 26 of [Ina13], Lévy–Solovay Lemma (Lemma 27 of [Ina13]) and Theorem
29 of [Ina13].

Lemma 4.2. (Lemma 26 of [Ina13]). Let κ be a regular cardinal, γ ≥ κ and P be a partial order
of size less than κ. Then for every C ∈ Pκ(γ)

V [G], there is a D ∈ Pκ(γ)
V such that in V [G],

C ⊆ D.

Lemma 4.3. (Lévy–Solovay Lemma, Lemma 27 of [Ina13]). In V , let κ be a regular cardinal,
D be a set and U a κ-complete ultrafilter on D. Let P be a poset of size less than κ and G a V -
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generic filter on P. Suppose V [G] |= f : D → V . Then there is S ∈ U and g : S → V in V s.t.
V [G] |= f ↾ S = g.

Applying Lemma 4.1 and Lemma 4.3 we obtain the following lemma, which is analogous to
Lemma 33 of [Ina13].

Lemma 4.4. Let D be a set and U a κ-complete ultrafilter on D in V . Suppose V (G) |= f :
D → V . Then there is S ∈ U and g : S → V in V s.t. V (G) |= f ↾ S = g.

Proof. By Lemma 4.1, for some α < κ we get f ∈ V [G ↾ α]. Now we can say G ↾ α is P′-
generic over V where |P′| < κ. By Lemma 4.3 we get a S ∈ U and g : S → V in V such that
V [G ↾ α] |= f ↾ S = g. So, V (G) |= f ↾ S = g. �

Similarly Lemma 34 of [Ina13], we obtain the following lemma by applying Lemma 4.4.

Lemma 4.5. In V , let D be a set and U a κ-complete ultrafilter on D. Let W be the filter on
D generated by U in V (G). Then W is a κ-complete ultrafilter.

We follow the proof of Theorem 35 from [Ina13] and refer the reader to [Ina13] for further
details.

Lemma 4.6. In V (G), κ is supercompact.

Proof. Let γ ≥ κ be arbitrary. Since κ is supercompact in V , there is a normal measure U on
Pκ(γ) in V . Let V be the κ-complete measure it generates on Pκ(γ)

V in V (G). Let W be the
filter generated by V on Pκ(γ) in V (G). Since W is generated by a κ-complete ultrafilter on
Pκ(γ)

V ⊆ Pκ(γ), W is a κ-complete ultrafilter by Lemma 4.5.

Fineness: Let X ∈ Pκ(γ)
V (G). By Lemma 4.1, for some α < κ we have X ∈ V [G ↾ α]. Since κ

is not collapsed while going from V to V [G ↾ α], X ∈ Pκ(γ)
V [G↾α]. By Lemma 4.2 and following

the arguments in the last three lines from (ii) of Theorem 35, [Ina13], X̂ ∈ V ′, where V ′ is the
fine measure that U generates on Pκ(γ)

V [G↾α]. Now U ⊆ V ′ ⊆ W since Pκ(γ)
V [G↾α] ⊆ Pκ(γ)

V (G).
Consequently W is fine.

Choice function: Let V (G) |= f : Pκ(γ) → γ and V (G) |= ∀X ∈ Pκ(γ)(f(X) ∈ X). By
Lemma 4.1, for some α < κ we get h = f ↾ Pκ(γ)

V ∈ V [G ↾ α]. By Lemma 4.3, we get Y ∈ U
and (g : Y → γ)V such that V [G ↾ α] |= h ↾ Y = g. Now by normality of U in V we get a set x
in U such that g is constant on x, and so h is constant on a set in U . Hence, we will get a set y
in W such that f is constant on y. �

Lemma 4.7. In V (G), DC<κ holds.

Proof. We see that F is κ-complete. Fix γ < κ and let, for each β < γ, Kβ ∈ F . There must
be fixβ for each β < γ such that fixβ ⊆ Kβ . Next, fix(max{β : β < γ}) ⊆ ∩β<γ fixβ ⊆ ∩β<γKβ

implies ∩β<γKβ ∈ F . Since P is the Easton-support product of the appropriate Lévy collapse, P
has κ-c.c. Since F is κ-complete and P has κ-c.c., we obtain DC<κ in V (G) by Lemma 3.1. �

Lemma 4.8. In V (G), ACκ fails.

Proof. Since the cardinality of κ++
α is preserved in V (G) for α < κ, we can define in V (G) the

set Xα = {x ⊆ κ++
α : x codes a well ordering of (κ+++

α )V of order type κ++
α }. We claim that

〈Xα : α < κ〉 ∈ V (G). Let β be a support of Xα for each α < κ. Since Xα ∈ V (G), let Ẋα ∈ HS

be a name for Xα. We define the collection {Ẋα : α < κ} in V and let Ẋ = {Ẋα : α < κ}.
Since β is a support of Xα for each α < κ, fixβ ⊂ sym(Ẋα) for each α < κ. Consequently,

fixβ ⊂
⋂

α<κ sym(Ẋα). Now we have that for every π ∈
⋂

α<κ sym(Ẋα), π(Ẋ) = Ẋ , and so

π ∈ sym(Ẋ). Thus fixβ ⊂ sym(Ẋ). Consequently, sym(Ẋ) ∈ F , i.e., Ẋ is symmetric with
respect to F , since we define F to be the filter generated by fix(α) groups for α < κ. Since all

the names appearing in Ẋ are from HS, Ẋ ∈ HS. Consequently, 〈Xα : α < κ〉 ∈ V (G).
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Although each Xα 6= ∅, we claim that (Πα<κXα)
V (G) = ∅. Otherwise let y ∈ (Πα<κXα)

V (G).
Since y is a sequence of sets of ordinals, so can be coded as a set of ordinals. There is then a
γ < κ such that y ∈ V [G ↾ γ] by Lemma 4.1 and V [G ↾ γ] is V -generic over P such that |P| < κ.
There is then a final segment of the sequence 〈(κ+++

α ) : α < κ〉 which remains a sequence of
cardinals in V [G ↾ γ] which is a contradiction. �

We prove that in V (G), GCH holds at a limit cardinal δ if and only if δ > κ. Since GCH implies
AC, GCH is weakened to a form which states that there is no injection from δ++ into P(δ) in
Theorem 3 of [Apt12]. We follow this weakened version of GCH in our following lemma. We
follow the explanation given in subsection 4.1 of [Kar19] by Karagila, to observe that in V (G),
GCH holds for a limit cardinal δ if and only if δ > κ.

Lemma 4.9. In V (G), GCH holds for a limit cardinal δ if and only if δ > κ.

Proof. Since P has κ-c.c., cardinals above κ are preserved in V [G]. Also, P ⊆ Vκ. Thus for any
limit cardinal δ > κ there is no injection from δ++ into P(δ) in V [G], since GCH holds above κ
in V . Consequently, there is no injection from δ++ into P(δ) in V (G).

We show that if δ ≤ κ is a limit cardinal then δ++ can be injected into P(δ) in V (G). Since

V
V (G)
κ = V

V [G]
κ , we note that it is enough to prove this phenomenon in V [G]. If δ < κ is a limit

cardinal in V [G], then δ = κi for some i < κ. Since δ ∈ C, we have 2δ = δ++. We note that the
Easton support product up to i is δ+-c.c., so it does not collapse δ++ and the Easton support
Product above i is δ++-closed, so it does not collapse δ++ also. Thus, δ++ is not collapsed in
V [G]. By similar arguments, κ++ injects into P(κ) in V (G) since 2κ = κ++ holds in V and
cardinals at and above κ are same in V , V (G) and V [G]. �

�

Remark 1. The referee suggested us to remark the following. In the context of ZF, there are
two reasonable definitions for the statement GCH at µ.

(1) There is no injection µ++ →inj P(µ).
(2) There is no surjection P(µ) →sur µ++.

In ZF, it is possible that there is no µ+ →inj P(µ), but there is always a surjection P(µ) →sur µ+.
In our case the above two definitions behave the same, so the referee suggested us to remark that
both definitions (1) and (2) work, by the same proof.

Remark 2. In Theorem 1 of [Apt01], assuming ‘o(κ) = δ∗ for δ∗ ≤ κ+ any finite or infinite
cardinal’ Apter constructed an analogous symmetric extension where DC<κ holds and where κ
can carry an arbitrary number of normal measures regardless of the specified behavior of the
continuum function on sets having measure one with respect to every normal measure over κ. We
observe that we can obtain the result of Theorem 1 of [Apt01] starting from just one measurable
cardinal κ if we use Theorem 1 of [MF09] by Friedman and Magidor instead of passing to an
inner model of Mitchell from [Mit74].11

Corollary 4.10. (of Theorem 1 of [Apt01]). Let V be a model of ZFC + GCH with a
measurable cardinal κ and let λ be a cardinal at most κ++. There is then a symmetric extension
with respect to a symmetric system 〈P,G,F〉 where κ is a measurable cardinal carrying λ many
normal measures 〈U∗

α : α < λ〉. Moreover for each α < λ, the set {δ : 2δ = δ++ and δ is
inaccessible} ∈ U∗

α
12 and DC<κ holds.

Remark 3. Apter used analogous arguments in Lemma 2.2 of [Apt01], similar to Lemma 4.1
to preserve a certain amount of dependent choice in some symmetric models (e.g. symmetric
models from Theorem 1 of [Apt01], Theorem of [Apt00], and Theorem 2 of [Apt12]).

11as done in the proof of Theorem 1 of [Apt01].
12There is nothing specific about δ++, the continuum function can take any value.
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5. Proving Dimitriou’s Conjecture

In Theorem 1 of [Apt83a], Apter obtained a symmetric inner model where ℵω carries a Rowbot-
tom filter and DCℵn0

holds for any arbitrary n0 ∈ ω from a ω-sequence of measurable cardinals.
In section 8, we observe that there is an alternating sequence of measurable and non-measurable
cardinals in the symmetric model. Apter constructed the model based on Easton support prod-
ucts of Lévy collapse. Consequently, DCℵn0

was preserved (see Lemma 1.4 of [Apt83a]). In

section 1.4 of [Dim11], Dimitriou constructed a similar symmetric extension with an alternat-
ing sequence of measurable and non-measurable cardinals, excluding the singular limits. She
constructed the model based on finite support products of collapsing functions, unlike the model
from [Apt83a]. In [Dim11], Dimitriou claimed that by using such a finite support product con-
struction, a lot of arguments could be made easier. In particular, she used finite support products
of injective tree-Prikry forcings, in several constructions from Chapter 2 of [Dim11]. There are
many symmetric extensions based on finite support products of Lévy Collapse. In Theorem
5.6 of [KH19], Karagila and Hayut considered a symmetric extension based on finite support
product of Lévy Collapse. In section 6, we encounter two symmetric extensions based on the
finite support products of Lévy Collapse due to Apter and Cody from [AC13] (see Theorem 2
of [AH91] also). On the other hand, there is a downside to this method. Specifically, Dimitriou
conjectured that DCω would fail in the model. In this section, we prove that ACω fails in the
model and thus prove the conjecture of Dimitriou. In other words, we prove Theorem 1.6. We
recall the terminologies from section 2.4.

Proof. (Theorem 1.6). Firstly, we give a description of the symmetric extension constructed
in section 1.4 of [Dim11] as follows.

(1) Defining ground model (V ): Let V be a model of ZFC, ρ is an ordinal, and K = 〈κǫ :
0 < ǫ < ρ〉 is a sequence of measurable cardinals with a regular cardinal κ0 below all the
regular cardinals in K.

(2) Defining a triple (P,G, I):
• For each ǫ ∈ (0, ρ) we define the following cardinals,
κ′1 = κ0,
κ′ǫ = κ+ǫ−1 if ǫ is a successor ordinal,

κ′ǫ = ((∪ζ<ǫκζ)
+)V if ǫ is a limit ordinal and ∪ζ<ǫκζ is singular,

κ′ǫ = (∪ζ<ǫκζ)
++ if ǫ is a limit ordinal and ∪ζ<ǫκζ = κǫ is regular,

κ′ǫ = ∪ζ<ǫκζ if ǫ is a limit ordinal and ∪ζ<ǫκζ < κǫ is regular.
Let P = Π0<i<ρPi be the Easton support product of Pi = Fn(κ′i, κi, κ

′
i) ordered

componentwise where for each 0 < i < ρ, Fn(κ′i, κi, κ
′
i)= {p : κ′i ⇀ κi : |p| < κ′i

and p is an injection} ordered by reverse inclusion. Also p : κ′i ⇀ κi is denoted as a
partial function from κ′i to κi.

• G = Π0<i<ρGi where for each 0 < i < ρ, Gi is the full permutation group of κi that
can be extended to Pi by permuting the range of its conditions, i.e., for all a ∈ Gi

and p ∈ Pi, a(p) = {(ψ, a(β)) : (ψ, β) ∈ p}.
• For m < ω and e = {αi : i ≤ m} is a sequence of ordinals such that for each
1 ≤ i ≤ m, there is a distinct ǫi ∈ (0, ρ) such that αi ∈ (κ′ǫi , κǫi). We define
Ee = {〈∅, ..., pǫ1 ∩ (κ′ǫ1 × α1), ∅, ..., pǫ2 ∩ (κ′ǫ2 × α2), ∅, ..., pǫi ∩ (κ′ǫi × αi), ∅, ...pǫm ∩

(κ′ǫm × αm), ∅, ...〉;−→p ∈ P} and I = {Ee : e ∈ Πfin
0<i<ρ(κ

′
i, κi)}, where Πfin

0<i<ρ(κ
′
i, κi)

is the finite support product.
(3) Defining symmetric extension of V : Clearly, I is a projectable symmetry generator

with projections −→p ↾ Ee = 〈∅, ..., pǫ1 ∩ (κ′ǫ1 × α1), ∅, ...pǫ2 ∩ (κ′ǫ2 × α2), ∅, ...pǫm ∩ (κ′ǫm ×
αm), ∅, ...〉. Let I generate a normal filter FI over G. Let G be a P-generic filter. We
consider the symmetric model V (G)FI as our desired symmetric extension.

It is possible to see that P is (G, I)-homogeneous and so 〈P,G, I〉 has the approximation property.
Consequently, by Lemma 2.10 for all set of ordinals X ∈ V (G)FI , there exists an E ∈ I such
that X ∈ V [G ∩ E]. Following Lemma 1.35 of [Dim11], in V (G)FI for every ǫ ∈ (0, ρ),
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(κ′ǫ)
+ = κǫ. We prove that ACω fails in V (G)FI . For the sake of convenience we define V (G)FI

as V (G), HSFI as HS, and FI as F .

Lemma 5.1. In V (G), ACω fails.

Proof. Since the cardinality of κ′n is preserved in V (G) for n < ω, we can define in V (G) the set
Xn = {x ⊆ κ′n : x codes a well ordering of ((κ′n)

+)V of order type κ′n}. We claim that 〈Xn :

n < ω〉 ∈ V (G). Let E ∈ I be a support of Xn for each n ∈ ω. Since Xn ∈ V (G), let Ẋn ∈ HS

be a name for Xn. We define the collection {Ẋn : n < ω} in V and let Ẋ = {Ẋn : n < ω}.
Since E is a support of Xn for each n ∈ ω, fixE ⊂ sym(Ẋn) for each n ∈ ω. Consequently,

fixE ⊂
⋂

n∈ω sym(Ẋn). Now we have that for every π ∈
⋂

n<ω sym(Ẋn), π(Ẋ) = Ẋ, and so

π ∈ sym(Ẋ). Thus fixE ⊂ sym(Ẋ). Consequently, sym(Ẋ) ∈ F , i.e., Ẋ is symmetric with
respect to F , since E ∈ I and the symmetry generator I generates F . Since all the names
appearing in Ẋ are from HS, Ẋ ∈ HS. Consequently, 〈Xn : n < ω〉 ∈ V (G).

Although Xn 6= ∅, we claim that (Πn<ωXn)
V (G) = ∅. Otherwise let y ∈ (Πn<ωXn)

V (G). Since
y is a sequence of sets of ordinals, so can be coded as a set of ordinals. Thus, there is an
e = {α1, ...αm} such that y ∈ V [G ∩ Ee] by Lemma 2.10. There are distinct ǫi such that
αi ∈ (κ′ǫi , κǫi) and let l be max{ǫi : αi ∈ e} such that l is an integer. Next letM = {i : ǫi ≤ l} and
M ′ = {i : ǫi > l}. Then V [G ∩ Ee] is Πi∈MFn(κ

′
ǫi
, αi, κ

′
ǫi
) × Πi∈M ′Fn(κ′ǫi , αi, κ

′
ǫi
)-generic over

V . By closure properties of Πi∈M ′Fn(κ′ǫi , αi, κ
′
ǫi
), all elements of the sequence 〈(κ′n)

+ : n < ω〉
remain cardinals after forcing with Πi∈M ′Fn(κ′ǫi , αi, κ

′
ǫi
). Next, since M is finite we can find

j < ω such that for all r ≥ j, |Πi∈MFn(κ
′
ǫi
, αi, κ

′
ǫi
)| < κr. Thus, a final segment of the sequence

〈(κ′n)
+ : n < ω〉 remains a sequence of cardinals in V [G ∩ Ee] which is a contradiction. �

�

Remark. In Theorem 5.6 of [KH19], Karagila and Hayut proved the following.

• Assuming the existence of countably many measurable cardinals, it is consistent that
there is a uniform ultrafilter on ℵω but for all 0 < n < ω, there are no uniform ultrafilters
on ℵn.

They considered a symmetric extension M based on finite support product of the symmetric
collapses Col(κn, < κn+1). Following the proof of Lemma 5.1, we can say that ACω fails in the
symmetric extension M . We consider another similar symmetric extension. Let V1 be a model
of ZFC where 〈κn : 1 ≤ n < ω〉 is a countable sequence of supercompact cardinals. Let Q be the
forcing notion (see [Apt83], [Apt04]) which makes the supercompactness of each κn indestructible
under κn-directed closed forcing notions. Let H be a Q-generic filter over V1 and V = V1[H ] be
our ground model. Let κ0 = ω in V . Consider the symmetric extension N obtained by taking
the finite support product of the symmetric collapses Col(κn, < κn+1). In the resulting model
N the following hold:

(1) Since the forcing notions involved are weakly homogeneous, if A is a set of ordinals in
N , then A was added by an intermediate submodel where AC holds.

(2) For n > 0, each κn becomes ℵn in N .

Following Lemma 4.3 of [KH19], we can observe that for each 1 ≤ n < ω, there are no uniform
ultrafilters on ℵn in N . Consequently for each 1 ≤ n < ω, ℵn can not be a measurable cardinal
in N . Since we are considering symmetric extension based on finite support products, ACω fails
following the proof of Lemma 5.1. We can see that each ℵn remains a Ramsey cardinal for
1 ≤ n < ω in N . Fix 1 ≤ n < ω. Let f : [κn]

<ω → 2 is in N . Since f can be coded by a set
of ordinals, f was added by an intermediate submodel (say V ′) where AC holds. Without loss
of generality, we can say that V ′ = V [G1][G2] where G1 is Q1-generic over V such that Q1 is
κn-directed closed and G2 is Q2-generic over V [G1] such that |Q2| < κn. Since Q1 is κn-directed
closed, κn remains supercompact in V [G1] as the supercompactness of κn was indestructible
under κn-directed closed forcing notions in V . Consequently, κn remains a Ramsey cardinal
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in V [G1]. Since Q2 is a small forcing with respect to κn, κn remains Ramsey in V [G1][G2] by
Theorem 2.3. There is then a set X ∈ [κn]

κn homogeneous for f in V ′, and since V ′ ⊆ N ,
X ∈ [κn]

κn is homogeneous for f in N . Consequently, for 1 ≤ n < ω, each κn is Ramsey in N .

6. Reducing the assumption of supercompactness by strong compactness

In this section, we prove Observation 1.7 and Observation 1.8. Consequently, we reduce
the large cardinal assumption of Theorem 2 and Theorem 3 of [AC13], from a supercompact
cardinal to a strongly compact cardinal.

6.1. Strongly compact Prikry forcing. Suppose λ > κ and κ be a λ-strongly compact car-
dinal in the ground model V . Let U be a κ-complete fine ultrafilter over Pκ(λ).

Definition 6.1. (Definition 1.51, [Git10]). A set T is called a U-tree with trunk t if and only if
the following holds.

(1) T consists of finite sequences 〈P1, ..., Pn〉 of elements of Pκ(λ) so that P1 ⊆ P2 ⊆ ...Pn.
(2) 〈T,E〉 is a tree, where E is the order of the end extension of finite sequences.
(3) t is a trunk of T , i.e., t ∈ T and for every η ∈ T , η E t or tE η.
(4) For every tE η, SucT (η) = {Q ∈ Pκ(λ) : η ⌢ 〈Q〉 ∈ T } ∈ U .

The set PU consists of all pairs 〈t, T 〉 such that T is a U-tree with trunk t. If 〈t, T 〉, 〈s, S〉 ∈ PU ,
we say that 〈t, T 〉 is stronger than 〈s, S〉, and denote this by 〈t, T 〉 ≥ 〈s, S〉, if and only if T ⊆ S.
Let G be V -generic over PU .

13 Following a Prikry like lemma (c.f. Theorem 1.52 of [Git10],
Lemma 1.1 of [AH91]), PU does not add bounded subsets to κ. Also, (λ)V is collapsed to κ
in V [G]. Again, PU is (λ<κ)+-c.c. Let δ ∈ [κ, λ) be an inaccessible cardinal. If x ⊆ Pκ(λ), let
x ↾ δ = {Z ∩ δ : Z ∈ x} and U ↾ δ = {x ↾ δ : x ∈ U}. Since, U is a κ-complete, fine ultrafilter
on Pκ(λ), U ↾ δ is a κ-complete, fine ultrafilter on Pκ(δ). Consequently, we can consider the
strongly compact Prikry forcing PU↾δ like PU .

Proof. (Observation 1.7). We perform the construction in two stages. In the first stage, we
consider a symmetric inner model of a forcing extension based on strongly comact Prikry forcing
as done in [AH91], instead of supercompact Prikry forcing as done in Theorem 1 of [AC13].

(1) Defining ground model(V ): We start with a model V0 of ZFC where κ is a strongly
compact cardinal, θ an ordinal and GCH holds. By Theorem 3.1 of [ADU19] we can
obtain a forcing extension V where 2κ = θ and strong compactness of κ is preserved. We
assume λ > κ in V such that (cf(λ))V < κ.

(2) Defining a symmetric inner model of the forcing extension of V :
• Let U be a fine measure on Pκ(λ) and P = PU be the strongly compact Prikry
forcing. Let G be V -generic over PU .

13Alternatively, we also recall the definition of a strongly compact Prikry forcing PU from [AH91]. Let U be
a fine measure on Pκ(λ) and F = {f : f is a function from [Pκ(λ)]<ω to U}. In particular, PU is the set of all
finite sequences of the form 〈p1, ...pn, f〉 satisfying the following properties.

• 〈p1, ...pn〉 ∈ [Pκ(λ)]<ω .
• for 0 ≤ i < j ≤ n, pi ∩ κ 6= pj ∩ κ.
• f ∈ F .

The ordering on PU is given by 〈q1, ...qm, g〉 ≤ 〈p1, ..., pn, f〉 if and only if we have the following.

• n ≤ m.
• 〈p1, ..., pn〉 is the initial segment of 〈q1, ..., qm〉.
• For i = n+ 1, ...,m, qi ∈ f(〈p1, ..., pn, qn+1, ..., qi−1〉).
• For −→s ∈ [Pκ(λ)]<ω , g(−→s ) ⊆ f(−→s ).

For any regular δ ∈ [κ, λ], we denote r ↾ δ = {〈p0∩δ, ...pn∩δ〉 : ∃f ∈ F [〈p0, ...pn, f〉 ∈ G]}. In V [r ↾ κ] ⊆ V [G],
κ is a singular cardinal having cofinality ω. Since any two conditions having the same stems are compatible, i.e.
any two conditions of the form 〈p1, ..., pn, f〉 and 〈p1, ..., pn, g〉 are compatible., PU is (λ<κ)+-c.c.
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• We consider the model constructed in section 2 of [AH91]. In particular, we
consider our symmetric inner model N to be the least model of ZF extending V and
containing r ↾ δ for each inaccessible δ ∈ [κ, λ) where r ↾ δ = {〈p0 ∩ δ, ...pn ∩ δ〉 :
∃f ∈ F [〈p0, ...pn, f〉 ∈ G]} but not the λ-sequence of r ↾ δ’s.

We follow the homogeneity of strongly compact Prikry forcing mentioned in Lemma 2.1 of
[AH91] to observe the following lemma.

Lemma 6.2. If A ∈ N is a set of ordinals, then A ∈ V [r ↾ δ] for some inaccessible δ ∈ [κ, λ).

Lemma 6.3. In N , κ is a strong limit cardinal.

Proof. Since, V ⊆ N ⊆ V [G] and P does not add bounded subsets to κ, V and N have same
bounded subsets of κ.14 Consequently, in N , κ is a limit of inaccessible cardinals and thus a
strong limit cardinal as well. �

As explained in the introduction, our definitions of strong limit cardinal and inaccessible cardinal
generally do not make sense in choiceless models. In spite of that, we can see that the assertion
in Lemma 6.3 makes sense (see the paragraph after Theorem 1 of [AC13]). Since N and V
have the same bounded subsets of κ, the usual definitions of κ is a strong limit cardinal and
δ < κ is an inaccessible cardinal make sense in N .

Lemma 6.4. If γ ≥ λ is a cardinal in V , then γ remains a cardinal in N .

Proof. For the sake of contradiction, let γ is not a cardinal in N . There is then a bijection
f : α → γ for some α < γ in N . Since f can be coded by a set of ordinals, by Lemma 6.2
f ∈ V [r ↾ δ] for some inaccessible δ ∈ [κ, λ). Since GCH is assumed in V0 we have (δ<κ)V0 = δ,
and since Add(κ, θ) preserves cardinals and adds no sequences of ordinals of length less than κ,
we conclude that (δ<κ)V = (δ<κ)V0 = δ. Now PU↾δ is (δ<κ)+-c.c. in V and hence δ+-c.c. in V .
Consequently, γ is a cardinal in V [r ↾ δ] which is a contradiction. �

Lemma 6.5. In N , cf(κ) = ω. Moreover, (κ+)N = λ and cf(λ)N = cf(λ)V .

Proof. For each δ ∈ [κ, λ), we have V [r ↾ δ] ⊆ N . Consequently, cf(κ)N = ω since cf(κ)V [r↾κ] =
ω. Following Lemma 2.4 of [AH91], every ordinal in (κ, λ) which is a cardinal in V collapses
to have size κ in N , and so (κ+)N = λ. Since V and N have same bounded subsets of κ, we see
that cf(λ)N = cf(λ)V < κ. �

We can see that since, V ⊆ N and (2κ = θ)V , there is a θ-sequence of distinct subsets of κ in
N . Since cf(κ+)N < κ we can also see that ACκ fails in N .

In the second stage, we consider a symmetric inner model of a forcing extension of N based on
product of Lévy collapse as done in the proof of Theorem 2 of [AC13].

(1) Defining ground model: Consider the ground model to be N . Let 〈κn : n < ω〉 be a
sequence of inaccessible cardinals less than κ which is cofinal in κ.

(2) Defining a symmetric inner model of a forcing extension of N :
• Let P = Col(ω,< κ) and G be N -generic for P. Let Pn = Col(ω,< κn). Following
the proof of Theorem 2 of [AC13], Gn = G ∩ Pn is N -generic for Pn.

• Let M be the least model of ZF extending N containing each Gn, but not G as
constructed in Theorem 2 of [AC13].

Following the proof of Theorem 2 of [AC13], we have the following in M.

(1) Since M contains Gn for each n, cardinals in [ω, κ) are collapsed to have size ω and so
ℵM
1 ≥ κ.

(2) If x ∈ M is a set of ordinals, then x ∈ N [Gn] for some n < ω.

14We can observe another argument from Lemma 2.2 of [AH91].
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(3) Since Col(ω,< κn) is canonically well-orderable in N with order type κn, cardinals and
cofinalities greater than or equal to κ are preserved to N [Gn].

(4) Since κ is not collapsed, κ = ℵM
1 , cf(ℵ1)

M = cf(ℵ2)
M = ω. Consequently, ACω fails in

M.
(5) There is a sequence of distinct subsets of ℵ1 of length θ.

�

Proof. (Observation 1.8). We recall the symmetric inner model N from the previous proof.
We consider a symmetric inner model of the forcing extension of N as done in the proof of
Theorem 3 of [AC13].

(1) Defining ground model: Consider the ground model to be N as in the previous proof.
Let 〈κn : n < ω〉 be a sequence of inaccessible cardinals less than κ which is cofinal in κ.

(2) Defining a symmetric inner model of the forcing extension of N :

• Let P0 = Col(ω,< κ0), Pi = Col(κi−1, < κi) for i ∈ [1, ω). Let P = Πfin
i<ωPi.

For each n < ω, we can factor P as P ∼= P∗
n × Pn where P∗

n = Πfin
0≤i≤nPi and

Pn = Πfin
n+1≤i<ωPi. Let G ∼= G∗

n × Gn be N -generic for P. Following Theorem 3

of [AC13], each G∗
n is N -generic for P∗

n.
• Let M be the least model of ZF extending N containing each G∗

n, but not 〈G∗
n :

n < ω〉 as constructed in Theorem 3 of [AC13].

Following the proof of Theorem 3 of [AC13], we have the following in M.

(1) Since G∗
n ∈ M for each n < ω, we have ℵω ≥ κ and hence ℵω+1 ≥ (κ+)N in M.

(2) If x is a set of ordinals in M, then x ∈ N [G∗
n] for some n < ω (see Lemma 6 of [AC13]).

(3) Since N and V contain the same bounded subsets of κ, and V ⊆ N , P∗
n can be well-

ordered in both V andN with order type less than κ. Therefore, cardinals and cofinalities
greater than or equal to κ are preserved.

(4) κ = ℵω and (κ+)N = ℵω+1 are both singular with ω ≤ cf(ℵω+1) < ℵω.
(5) There is a sequence of distinct subsets of ℵω of length θ.

�

7. Infinitary Chang conjecture from a measurable cardinal

In this section, we prove Theorem 1.9 and Theorem 1.10. In particular, first we observe an
infinitary Chang conjecture in a symmetric extension in terms of 〈P,G, I〉 triple, which is similar
to the model constructed in Theorem 11 of [AK06], except we construct a finite support product
construction as in section 5. Secondly, we observe an infinite Chang conjecture in Apter and
Koepke’s model from Theorem 11 of [AK06].

7.1. Infinitary Chang Conjecture. We define a set of good indiscernibles, Erdős like partition
property, infinitary Chang conjecture and state the relevant lemmas. We recall the required
definitions and Lemmas from Chapter 3 of [Dim11]. For the sake of our convenience we denote
a structure A on domain A as A = 〈A, ...〉.

Definition 7.1. (Set of good indiscernibles, Definition 3.2 of [Dim11]). For a structure
A = 〈A, ...〉 with A ⊆ Ord, a set I ⊆ A is a set of indiscernibles if for all n < ω, all n-ary formula
φ in the language for A and every α1, ..., αn, α

′
1, ..., α

′
n in I, if α1 < ... < αn and α′

1 < ... < α′
n

then
A |= φ(α1, ...αn) if and only if A |= φ(α′

1, ...α
′
n).

The set I is a set of good indiscernibles if and only if it is a set of indiscernibles and we al-
low parameters that lie below min{α1, ..., αn, α

′
1, ...α

′
n} i.e., if for all x1, ...xm ∈ A such that

x1, ...xm ≤ min{α1, ...αn, α
′
1, ...α

′
n} and every (n+m)-ary formula, then

A |= φ(x1, ...xm, α1, ...αn) if and only if A |= φ(x1, ..., xm, α
′
1, ...α

′
n).
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Definition 7.2. (α-Erdős cardinal and Erdős-like Partition Property, Definition 3.7
of [Dim11]). The partition relation α → (β)γδ for ordinals α, β, γ, δ means for all f : [α]γ → δ

there is a X ∈ [α]β such that X is homogeneous for f . For infinite ordinal α, the α-Erdős
cardinal κ(α) is the least κ such that κ → (α)<ω

2 . For cardinals κ > λ and ordinal θ < κ we
mean κ →θ (λ)<ω

2 if for every first order structure A = 〈κ, ...〉 with a countable language, there
is a set I ∈ [κ\θ]λ of good indiscernibles for A.

Definition 7.3. (Infinitary Chang conjecture, Definition 3.10 of [Dim11]). Infinitary
Chang conjecture is the statement (κn)n∈ω ։ (λn)n∈ω which means for every structure A =
〈∪κn, ...〉 there is an elementary substructure B ≺ A with domain B and cardinality ∪λi such
that for every n ∈ ω, |B ∩ κn| = λn.

Definition 7.4. (Definition 3.14 of [Dim11]). Let 〈κi : i < ω〉 and 〈λi : 0 < i < ω〉 be two
increasing sequence of cardinals such that κ = ∪i<ωκi. We say 〈κi : i < ω〉 is a coherent sequence
of cardinals with the property κi+1 →κi (λi+1)

<ω
2 if and only if for every structure A = 〈κ, ...〉

with a countable language there is a 〈λi : 0 < i < ω〉-coherent sequence of good indiscernibles for
A with respect to 〈κi : i < ω〉.

Lemma 7.5. (Corollary 3.15 of [Dim11]). (ZF) Let 〈κi : i < ω〉 and 〈λi : 0 < i < ω〉 be two
increasing sequence of cardinals such that κ = ∪i<ωκi. If {κi : i < ω} is a coherent sequence of
cardinals with the property κi+1 →κi (λi+1)

<ω
2 then the Chang Conjecture (κn)n∈ω ։ (λn)n∈ω

holds.

Lemma 7.6. (Proposition 3.50 of [Dim11]). Let us assume that V |= ZFC+ ‘κ = κ(λ)
exists’, P is a partial order such that |P| < κ and Q is a partial order that doesn’t add subsets to
κ. If G is P×Q generic then for every θ < κ, V [G] |= κ→θ (λ)<ω

2 .

Lemma 7.7. (Lemma 3.52 of [Dim11]). Let 〈κi : i < ω〉 and 〈λi : 0 < i < ω〉 be two
increasing sequence of cardinals such that 〈κi : 0 < i < ω〉 is a coherent sequence of Erdős
cardinals with respect to 〈λi : 0 < i < ω〉. If P1 is a partial order of cardinality < κ1 and G
is V -generic over P1, then in V [G], 〈κn : n < ω〉 is a coherent sequence of cardinals with the
property κn+1 →κn (λn+1)

<ω
2 .

Proof. (Theorem 1.9).

(1) Defining ground model (V ). Let κ be a measurable cardinal in a model V ′ of ZFC.
By Prikry forcing it is possible to make κ singular with cofinality ω where an end segment
〈κi : 1 ≤ i < ω〉 of the Prikry sequence 〈δi : 1 ≤ i < ω〉 is a coherent sequence of Ramsey
cardinals by Theorem 3 of [AK06]. Now Ramsey cardinals κi are exactly the κi-Erdős
cardinals. Thus we obtain a generic extension (say V ) where 〈κi : 1 ≤ i < ω〉 is a
coherent sequence of cardinals with supremum κ such that for all 1 ≤ i < ω, κi = κ(κi).
We define the following cardinals.
(a) κ′0 = ω and κ0 = ℵω.
(b) κ′1 = ℵω+1.

(c) κ′i = κ
+ωi−1+1
i−1 for each 1 < i < ω.

(2) Defining a triple 〈P,G, I〉. We consider a triple similar to the one constructed in
section 5.

• Let P = Πi<ωPi be the Easton support product of Pi = Fn(κ′i, κi, κ
′
i) ordered

componentwise where for each 0 < i < ω, Fn(κ′i, κi, κ
′
i)= {p : κ′i ⇀ κi : |p| < κ′i

and p is an injection} ordered by reverse inclusion. Also p : κ′i ⇀ κi is denoted as a
partial function from κ′i to κi.

• G = Πi<ωGi where for each i < ω, Gi is the full permutation group of κi that can
be extended to Pi by permuting the range of its conditions, i.e., for all a ∈ Gi and
p ∈ Pi, a(p) = {(ψ, a(β)) : (ψ, β) ∈ p}.

• For m ∈ ω and e = {α1, ...αm} a sequence of ordinals such that for each 1 ≤ i ≤ m,
there is a distinct ǫi < ω such that αi ∈ (κ′ǫi , κǫi), we define Ee = {〈∅, ..., pǫ1∩(κ′ǫ1 ×
α1), ∅, ...pǫ2 ∩ (κ′ǫ2 × α2), ∅, ...pǫm ∩ (κ′ǫm × αm), ∅, ...〉;−→p ∈ P} and I = {Ee : e ∈

Πfin
i<ω(κ

′
i, κi)}.
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(3) Defining symmetric extension of V . Let I generate a normal filter FI over G. Let
G be a P-generic filter. We consider the symmetric model V (G)FI . We denote V (G)FI

by V (G) for the sake of convenience.

Since the forcing notions involved are weakly homogeneous, the following holds.

Lemma 7.8. If A ∈ V (G) is a set of ordinals, then A ∈ V [G ∩Ee] for some Ee ∈ I.

Following the arguments in Lemma 1.35 of [Dim11], we can see that in V (G), (κ′i)
+ = κi for

every i < ω. Similar to the arguments from the proof of Theorem 11 of [AK06], it is possible
to see that in V (G), κ = ℵ(ℵω)V and (ℵω)

V = ℵ1. Consequently κ = ℵω1
and cf(κ) = ω in

V (G). Further ω1 is singular in V (G). Following Fact 2.12, ACω fails in V (G). We prove that
an infinitary Chang conjecture holds in V (G).

Lemma 7.9. In V (G), an infinitary Chang conjecture holds.

Proof. Let A = 〈κ, ...〉 be a structure in a countable language in V (G). Let {φn : n < ω} be
an enumeration of the formulas of the language of A such that each φn has k(n) ≤ n many free
variables. Define f : [κ]<ω → 2 by,

f(ǫ1, ...ǫn) = 1 if and only if A |= φn(ǫ1, ..., ǫk(n)) and f(ǫ1, ...ǫn) = 0 otherwise.

By Lemma 7.8, there is a Ee ∈ I such that f ∈ V [G ∩ Ee]. Fix an arbitrary 1 ≤ i < ω. We
can write V [G ∩ Ee]=V [G1][G2] where G1 is Q1-generic over V such that |Q1| < κi, and G2

is Q2-generic over V [G1] such that G2 adds no subsets of κi. Consequently, by Lemma 7.6,
κi →

κi−1 (κi)
<ω
2 in V [G ∩ Ee]. So, for all 1 ≤ i < ω, κi →

κi−1 (κi)
<ω
2 in V [G ∩ Ee].

Let e = {α1, ..., αm} where for each i ∈ {1, ...,m}, there is a dictinct ǫi such that αi ∈ (κ′ǫi−1, κǫi).
Consider j to be max{ǫi : αi ∈ e}. If G∩Ee is P-generic over V then since |P| < κj , by Lemma
7.7, 〈κi : j ≤ i < ω〉 is a coherent sequence of cardinals with the property κi →κi−1 (κi)

<ω
2 for

all j ≤ i < ω. By Definition 7.4, there is a 〈κi : j ≤ i < ω〉-coherent sequence 〈An : j ≤ n < ω〉
of good indiscernibles for A with respect to 〈κi : j − 1 ≤ i < ω〉. We obtain a 〈κi : j − 1 ≤
i < ω〉-coherent sequence 〈An : j − 1 ≤ n < ω〉 of good indiscernibles for A with respect to
〈κi : j − 2 ≤ i < ω〉 as follows.

• Since κj−1 →κj−2 (κj−1)
<ω
2 , we obtain a set Aj−1 ∈ [κj−1\κj−2]

κj−1 of indiscernibles for
A with respect to parameters below κj−2. Consequently, we obtain a 〈κi : j−1 ≤ i < ω〉-
coherent sequence 〈An : j − 1 ≤ n < ω〉 of good indiscernibles for A with respect to
〈κi : j − 2 ≤ i < ω〉.

If we continue in this manner step by step for the remaining cardinals κ1, ...κj−2, then since
κi →κi−1 (κi)

<ω
2 for each 1 ≤ i ≤ j − 2, we can obtain a 〈κi : 0 < i < ω〉-coherent sequence

A = 〈An : 0 < n < ω〉 of good indiscernibles for A with respect to 〈κi : i < ω〉 and A ∈
V [G ∩ Ee] ⊆ V (G). Therefore for all 1 ≤ i < ω, κi →κi−1 (κi)

<ω
2 and 〈κi : 1 ≤ i < ω〉 is a

coherent sequence of cardinals in V (G) by Definition 7.4. Using Lemma 7.5, we can obtain
an infinitary Chang conjecture in V (G) as Lemma 7.5 can be proved in ZF. �

�

Proof. (Theorem 1.10). Let N be the symmetric inner model constructed in Theorem 11 of
[AK06]. We first translate the arguments in terms of a symmetric extension based on a symmetric
system 〈P,G,F〉.

• Consider P and G as mentioned in the previous construction (used for proving Theorem
1.9).

• Let I = {Ee : e ∈ Πi<ω(κ
′
i, κi)} where for every e = {αi : i < ω} ∈ Πi∈ω(κ

′
i, κi),

Ee = {〈pi ∩ (κ′i × αi) : i < ω〉 : −→p ∈ P}. Let I generate a normal filter FI over G. We
define F to be FI .
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Let G be a P-generic filter. We consider the symmetric model V (G)F . We denote V (G)F

by V (G) for the sake of convenience. The model V (G) is analogous to the symmetric inner
model N constructed in Theorem 11 of [AK06]. Since the forcing notions involved are weakly
homogeneous, the following holds.

Lemma 7.10. If A ∈ V (G) is a set of ordinals, then A ∈ V [G ∩ Ee] for some Ee ∈ I.

Similar to Lemma 7.9, we observe an infinite Chang conjecture in V (G).

Lemma 7.11. In V (G), an infinite Chang conjecture holds .

Proof. Let A = 〈κ, ...〉 be a structure in a countable language in V (G). Let {φn : n < ω} be
an enumeration of the formulas of the language of A such that each φn has k(n) ≤ n many free
variables. Define f : [κ]<ω → 2 by,

f(ǫ1, ...ǫn) = 1 if and only if A |= φn(ǫ1, ..., ǫk(n)) and f(ǫ1, ...ǫn) = 0 otherwise.

By Lemma 7.10, there is a Ee ∈ I such that f ∈ V [G ∩ Ee]. Fix an arbitrary 1 ≤ i < ω.
We can write V [G ∩Ee]=V [G1][G2] where G1 is Q1-generic over V such that |Q1| < κi, and G2

is Q2-generic over V [G1] such that G2 adds no subsets of κi. Consequently, by Lemma 7.6,
κi →κi−1 (κi)

<ω
2 in V [G ∩ Ee]. So, for all 1 ≤ i < ω, κi →κi−1 (κi)

<ω
2 in V [G ∩ Ee]. Thus by

Definition 7.2, we obtain a set Ai ∈ [κi\κi−1]
κi of good indiscernibles for A for each 1 ≤ i < ω,

in V [G∩Ee]. Consequently, we obtain a 〈κi : 0 < i < ω〉-coherent sequence A = 〈Ai : 0 < i < ω〉
of good indiscernibles for A with respect to 〈κi : i < ω〉 and A ∈ V [G ∩ Ee] ⊆ V (G). Therefore
for all 1 ≤ i < ω, κi →κi−1 (κi)

<ω
2 and 〈κi : 1 ≤ i < ω〉 is a coherent sequence of cardinals in

V (G) by Definition 7.4. Using Lemma 7.5, we can obtain an infinitary Chang conjecture in
V (G) as Lemma 7.5 can be proved in ZF. �

Applying Theorem 4 of [AK06] and Proposition 1 of [AK08], we prove that ℵω1
is an almost

Ramsey cardinal in V (G).

Lemma 7.12. In V (G), ℵω1
is an almost Ramsey cardinal.

Proof. Following the terminologies from the proof of Theorem 11 of [AK06], κ = ℵω1
in V (G).

We show κ is an almost Ramsey cardinal in V (G). Let f : [κ]<ω → 2 be in V (G). Since f can
be coded by a subset of κ, f ∈ V [G∩Ee] for some Ee ∈ I by Lemma 7.10. Now, in V , κ is the
supremum of a coherent sequence of Ramsey cardinals 〈κi : i < ω〉. By Theorem 4 of [AK06],
we can see that 〈κi : i < ω〉 stays a coherent sequence of Ramsey cardinals in V [G ∩Ee]. Also κ
is the supremum of 〈κi : i < ω〉 in V [G∩Ee]. Thus κ is an almost Ramsey cardinal in V [G∩Ee]
by Proposition 1 of [AK08]. Thus for all β < κ, there is a set Xβ ∈ V [G ∩ Ee] ⊆ V (G) which
is homogeneous for f and has order type at least β. Hence, κ is almost Ramsey in V (G) since f
was arbitrary. �

�

8. Mutually stationary property from a sequence of measurable cardinals

Let κ be a cardinal. C ⊆ κ is a club set if it is closed and unbounded. S ⊆ κ is stationary if
S ∩ C 6= ∅ for every club C. We recall the definition of mutually stationary sets from Foreman–
Magidor [MF01] and a theorem due to Foreman and Magidor.

Definition 8.1. (Mutually Stationary Sets, Definition 1.1 of [Apt04]). Let K be a set
of regular cardinals with supremum λ. Suppose Sκ ⊆ κ for all κ ∈ K. Then 〈Sκ : κ ∈ K〉 is
mutually stationary if and only if for all algebras A on λ, there is an elementary substructure
B ≺ A such that for all κ ∈ B ∩ K, sup(B ∩ κ) ∈ Sκ.

Theorem 8.2. (Theorem 5.2 of [CFM06]). Let 〈κi : i < δ〉 be an increasing sequence of
measurable cardinals, where δ < κ0 is a regular cardinal. Let Si ⊆ κi be stationary for each
i < δ. It is then the case that 〈Si : i < δ〉 is mutually stationary.
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8.1. Mutually Stationary property from a sequence of measurable cardinals. It is not
a theorem in ZFC, that if K consists of an increasing sequence of regular cardinals and for each
κ ∈ K, Sκ ⊆ κ is stationary in κ, then 〈Sκ : κ ∈ K〉 is mutually stationary. In particular, in L,
by Theorem 24 of [MF01], there is a sequence of stationary sets 〈Sn : 1 < n < ω〉 such that
Sn ⊆ ℵn, Sn is stationary and consists of points having cofinality ℵ1, yet 〈Sn : 1 < n < ω〉 is not
mutually stationary. Foreman and Magidor asked15 whether it is possible to construct a model of
ZFC where if 〈Sn : 1 ≤ n < ω〉 is such that each Sn is stationary on ℵn, then 〈Sn : 1 ≤ n < ω〉 is
mutually stationary. Starting from an ω-sequence of supercompact cardinals, Shelah constructed
a model of ZFC in section 6 of [CFM06], where if we define the sequence of stationary sets as
follows,

Sf
n = {α < ℵn : cf(α) = ℵf(n)} if n > 1 and f : ω → 2 is an arbitrary function.

then the sequence 〈Sf
n : 1 < n < ω〉 is mutually stationary. In [Apt04], Apter gave a com-

plete answer to the aforementioned question of Foreman and Magidor in a choiceless context.
Specifically, Apter constructed a symmetric inner model preserving DCω, from a ω-sequence of
supercompact cardinals where if 〈Sn : 1 ≤ n < ω〉 is a sequence of stationary sets such that
Sn ⊆ ℵn, then 〈Sn : 1 ≤ n < ω〉 is mutually stationary.

We recall the symmetric inner model from Theorem 1 of [Apt83a] and recall the terminologies
from [Apt83a]. In particular we fix an arbitrary n0 ∈ ω and assume an increasing sequence of
measurable cardinals 〈χk : k < ω〉 in a ground model V of ZFC. Then we consider the symmetric
inner model constructed in Theorem 1 of [Apt83a]. For the sake of convenience we call the
symmetric model Nn0

.

Proof. (Observation 1.11). We note that in Nn0
, χk = ℵn0+2(k+1) for each k < ω.

(1) Following Lemma 1.36 of [Dim11], each ℵn0+2(k+1) is a measurable cardinal in Nn0
,

for each 1 ≤ k < ω. Following Lemma 4.3 of [KH19], for each 1 ≤ k < ω, there are no
uniform ultrafilters on ℵn0+2k in Nn0

. Consequently for each 1 ≤ k < ω, ℵn0+2k can not
be a measurable cardinal in Nn0

.
(2) We observe that in the symmetric model Nn0

from Theorem 1 of [Apt83a], if 〈Sk : 1 ≤
k < ω〉 is a sequence of stationary sets such that Sk ⊆ χk for every 1 ≤ k < ω, then
〈Sk : 1 ≤ k < ω〉 is mutually stationary. Suppose Nn0

|= 〈Sk : 1 ≤ k < ω〉 is a sequence
of stationary sets such that Sk ⊆ χk for every 1 ≤ k < ω. Since 〈Sk : 1 ≤ k < ω〉 can be
coded by set of ordinals, by Lemma 1.1 of [Apt83a], there exists some f ∈ K for which
〈Sk : 1 ≤ k < ω〉 ∈ V [G ↾ f ].

Following Lemma 1.3 of [Apt83a], χk remains measurable in V [G ↾ f ] for every
1 ≤ k < ω. We can observe that Sk is a stationary subset of χk in V [G ↾ f ]. Let C be
any club set of χk in V [G ↾ f ]. Since the notion of club subset of χk is upward absolute
and V [G ↾ f ] ⊆ Nn0

, C is also a club set of χk in Nn0
. Since in Nn0

, Sk is a stationary
subset of χk we have Sk ∩ C 6= ∅. By Theorem 8.2, 〈Sk : 1 ≤ k < ω〉 is mutually
stationary in V [G ↾ f ].

We note that following Lemma 1.2 of [Apt83a], if λ = ∪k∈ωχk, then λ = ℵω in Nn0
.

Thus for algebras A on λ, there is an elementary substructure B ≺ A in V [G ↾ f ] such
that for all k < ω, sup(B ∩ χk) ∈ Sk. Thus there is an elementary substructure B ≺ A
in Nn0

such that for all k < ω, sup(B ∩ χk) ∈ Sk. Hence in Nn0
, 〈Sk : 1 ≤ k < ω〉 is

mutually stationary.
(3) By Lemma 1.2 of [Apt83a], if λ = ∪n<ωχn, then λ = ℵω in Nn0

. We can see that λ
is an almost Ramsey cardinal in Nn0

by a well-known argument from Lemma 2.5 of
[ADK16]. For reader’s convenience, we provide a sketch of the proof. Let f : [λ]<ω → 2
be in Nn0

. Since f can be coded by a set of ordinals, f ∈ V [G ↾ f ] for some f ∈ K by
Lemma 1.1 of [Apt83a]. Following Lemma 1.3 of [Apt83a], χk remains measurable
in V [G ↾ f ] for every 1 ≤ k < ω. Consequently, χk is Ramsey in V [G ↾ f ] for every

15in page 290 of [MF01].
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1 ≤ k < ω. Now, in V [G ↾ f ], λ is the supremum of Ramsey cardinals 〈χi : 1 ≤ i < ω〉.
Thus λ is an almost Ramsey cardinal in V [G ↾ f ] by Proposition 1 of [AK08]. Thus
for all β < λ, there is a set Xβ ∈ V [G ↾ f ] ⊆ Nn0

which is homogeneous for f and has
order type at least β. Hence, λ is almost Ramsey in Nn0

since f was arbitrary.

�
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