278 research outputs found

    Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses.

    Get PDF
    Flaviviruses continue to cause globally relevant epidemics and have emerged or re-emerged in regions that were previously unaffected. Factors determining emergence of flaviviruses and continuing circulation in sylvatic cycles are incompletely understood. Here we identify potential sylvatic reservoirs of flaviviruses and characterize the macro-ecological traits common to known wildlife hosts to predict the risk of sylvatic flavivirus transmission among wildlife and identify regions that could be vulnerable to outbreaks. We evaluate variability in wildlife hosts for zoonotic flaviviruses and find that flaviviruses group together in distinct clusters with similar hosts. Models incorporating ecological and climatic variables as well as life history traits shared by flaviviruses predict new host species with similar host characteristics. The combination of vector distribution data with models for flavivirus hosts allows for prediction of  global vulnerability to flaviviruses and provides potential targets for disease surveillance in animals and humans

    Discovering visiting behaviors and city perceptions by mining semantic trajectory

    Get PDF
    Tourism is a crucial industry for many cities, necessitating the development of unique attractions to draw in more visitors. Understanding the visiting behaviors and perceptions of visitors helps to uncover the cityā€™s distinctive characteristics, thereby aiding in the further growth of its tourism industry. Itā€™s important to note that different population groups may exhibit varying visiting behaviors depending on the time of their visit, which in turn can shape their impressions of the city. This study explores the dynamic visiting behaviors and city perceptions of locals and tourists throughout different times of the day and week. The study area is London, one of the worldā€™s most famous tourist cities. To conduct this study, User-Generated Content (UGC) is utilized, specifically data from Foursquare check-ins and Flickr tags from April 3, 2012, to September 16, 2013. The study first identifies the spatiotemporal distribution of hotspots for each population group based on their Foursquare check-ins. The relative concentration of locals and tourists is then examined through the difference ratio to understand their unique visiting preferences. Next, the spatiotemporal movements of locals and tourists and their city descriptions during their trips are analyzed by constructing semantic trajectories. The place is the fundamental element of a semantic trajectory, and places are constructed by clustering Foursquare check-ins. The property of the place is defined by three dimensions: location (represented by borough names), locale (represented by place categories), and sense of place (represented by topics generated in topic modeling based on Flickr tags). Semantic trajectories are then clustered based on their semantic dimensions, and typical trajectories are mined for each cluster. The distribution of trajectories and their semantic dimensions are compared between locals and tourists at different time spans to explore how Londonā€™s impressions evolve over time. The results suggest distinct visiting behaviors and city perceptions over time for locals and tourists. Both groups primarily concentrate in the city center, with small hotspots around the airport. However, locals tend to visit more suburban areas than tourists. Locals show higher preferences for business districts during the daytime and on weekdays, while tourists consistently show interest in shopping in the city center. In terms of city perceptions, the city center is associated with descriptions of cityscapes and transport during the daytime. At night, people tend to associate the same area with nightlife activities. Furthermore, locals are interested in leisure activities and fitness, while tourists tend to focus on tourist attractions and the Olympics

    Detecting stressful older adults-environment interactions to improve neighbourhood mobility: A multimodal physiological sensing, machine learning, and risk hotspot analysis-based approach

    Get PDF
    Not only is the global population ageing, but also the built environment infrastructure in many cities and communities are approaching their design life or showing significant deterioration. Such built environment conditions often become an environmental barrier that can either cause stress and/or limit the mobility of older adults in their neighbourhood. Current approaches to detecting stressful environmental interactions are less effective in terms of time, cost, labour, and individual stress detection. This study harnesses the recent advances in wearable sensing technologies, machine learning intelligence and hotspot analysis to develop and test a more efficient approach to detecting older adults' stressful interactions with the environment. Specifically, this study monitored older adults' physiological reactions (Photoplethysmogram and electrodermal activity) and global positioning system (GPS) trajectory using wearable sensors during an outdoor walk. Machine learning algorithms, including Gaussian Support Vector Machine, Ensemble bagged tree, and deep belief network were trained and tested to detect older adults' stressful interactions from their physiological signals, location and environmental data. The Ensemble bagged tree achieved the best performance (98.25% accuracy). The detected stressful interactions were geospatially referenced to the GPS data, and locations with high-risk clusters of stressful interactions were detected as risk stress hotspots for older adults. The detected risk stress hotspot locations corresponded to the places the older adults encountered environmental barriers, supported by site inspections, interviews and video records. The findings of this study will facilitate a near real-time assessment of the outdoor neighbourhood environment, hence improving the age-friendliness of cities and communities

    Understanding Mobility and Transport Modal Disparities Using Emerging Data Sources: Modelling Potentials and Limitations

    Get PDF
    Transportation presents a major challenge to curb climate change due in part to its ever-increasing travel demand. Better informed policy-making requires up-to-date empirical mobility data to model viable mitigation options for reducing emissions from the transport sector. On the one hand, the prevalence of digital technologies enables a large-scale collection of human mobility traces, providing big potentials for improving the understanding of mobility patterns and transport modal disparities. On the other hand, the advancement in data science has allowed us to continue pushing the boundary of the potentials and limitations, for new uses of big data in transport.This thesis uses emerging data sources, including Twitter data, traffic data, OpenStreetMap (OSM), and trip data from new transport modes, to enhance the understanding of mobility and transport modal disparities, e.g., how car and public transit support mobility differently. Specifically, this thesis aims to answer two research questions: (1) What are the potentials and limitations of using these emerging data sources for modelling mobility? (2) How can these new data sources be properly modelled for characterising transport modal disparities? Papers I-III model mobility mainly using geotagged social media data, and reveal the potentials and limitations of this data source by validating against established sources (Q1). Papers IV-V combine multiple data sources to characterise transport modal disparities (Q2) which further demonstrate the modelling potentials of the emerging data sources (Q1).Despite a biased population representation and low and irregular sampling of the actual mobility, the geolocations of Twitter data can be used in models to produce good agreements with the other data sources on the fundamental characteristics of individual and population mobility. However, its feasibility for estimating travel demand depends on spatial scale, sparsity, sampling method, and sample size. To extend the use of social media data, this thesis develops two novel approaches to address the sparsity issue: (1) An individual-based mobility model that fills the gaps in the sparse mobility traces for synthetic travel demand; (2) A population-based model that uses Twitter geolocations as attractions instead of trips for estimating the flows of people between regions. This thesis also presents two reproducible data fusion frameworks for characterising transport modal disparities. They demonstrate the power of combining different data sources to gain new insights into the spatiotemporal patterns of travel time disparities between car and public transit, and the competition between ride-sourcing and public transport

    Accident prediction using machine learning:analyzing weather conditions, and model performance

    Get PDF
    Abstract. The primary focus of this study was to investigate the impact of weather and road conditions on the severity of accidents and to determine the feasibility of machine learning models in accurately predicting the likelihood of such incidents. The research was centered on two key research questions. Firstly, the study examined the influence of weather and road conditions on accident severity and identified the most related factors contributing to accidents. We utilized an open-source accident dataset, which was preprocessed using techniques like variable selection, missing data elimination, and data balancing through the Synthetic Minority Over-sampling Technique (SMOTE). Chi-square statistical analysis was performed, suggesting that all weather-related variables are more or less associated with the severity of accidents. Visibility and temperature were found to be the most critical factors affecting the severity of road accidents. Hence, appropriate measures such as implementing effective fog dispersal systems, heatwave alerts, or improved road maintenance during extreme temperatures could help reduce accident severity. Secondly, the research evaluated the ability of machine learning models including decision trees, random forests, naive bayes, extreme gradient boost, and neural networks to predict accident likelihood. The modelsā€™ performance was gauged using metrics like accuracy, precision, recall, and F1 score. The Random Forest model emerged as the most reliable and accurate model for predicting accidents, with an overall accuracy of 98.53%. The Decision Tree model also showed high overall accuracy (95.33%), indicating its reliability. However, the Naive Bayes model showed the lowest accuracy (63.31%) and was deemed less reliable in this context. It is concluded that machine learning models can be effectively used to predict the likelihood of accidents, with models like Random Forest and Decision Tree proving the most effective. However, the effectiveness of each model may vary depending on the dataset and context, necessitating further testing and validation for real-world implementation. These findings not only provide insight into the factors affecting accident severity but also open a promising avenue in employing machine learning techniques for proactive accident prediction and mitigation. Future studies can aim to refine the models further and potentially integrate them into traffic management systems to enhance road safety

    Spatiotemporal Graph Neural Networks with Uncertainty Quantification for Traffic Incident Risk Prediction

    Full text link
    Predicting traffic incident risks at granular spatiotemporal levels is challenging. The datasets predominantly feature zero values, indicating no incidents, with sporadic high-risk values for severe incidents. Notably, a majority of current models, especially deep learning methods, focus solely on estimating risk values, overlooking the uncertainties arising from the inherently unpredictable nature of incidents. To tackle this challenge, we introduce the Spatiotemporal Zero-Inflated Tweedie Graph Neural Networks (STZITD-GNNs). Our model merges the reliability of traditional statistical models with the flexibility of graph neural networks, aiming to precisely quantify uncertainties associated with road-level traffic incident risks. This model strategically employs a compound model from the Tweedie family, as a Poisson distribution to model risk frequency and a Gamma distribution to account for incident severity. Furthermore, a zero-inflated component helps to identify the non-incident risk scenarios. As a result, the STZITD-GNNs effectively capture the dataset's skewed distribution, placing emphasis on infrequent but impactful severe incidents. Empirical tests using real-world traffic data from London, UK, demonstrate that our model excels beyond current benchmarks. The forte of STZITD-GNN resides not only in its accuracy but also in its adeptness at curtailing uncertainties, delivering robust predictions over short (7 days) and extended (14 days) timeframes

    What happens where during disasters? A Workflow for the multifaceted characterization of crisis events based on Twitter data

    Get PDF
    Twitter data are a valuable source of information for rescue and helping activities in case of natural disasters and technical accidents. Several methods for disaster- and event-related tweet filtering and classification are available to analyse social media streams. Rather than processing single tweets, taking into account space and time is likely to reveal even more insights regarding local event dynamics and impacts on population and environment. This study focuses on the design and evaluation of a generic workflow for Twitter data analysis that leverages that additional information to characterize crisis events more comprehensively. The workflow covers data acquisition, analysis and visualization, and aims at the provision of a multifaceted and detailed picture of events that happen in affected areas. This is approached by utilizing agile and flexible analysis methods providing different and complementary views on the data. Utilizing stateā€ofā€theā€art deep learning and clustering methods, we are interested in the question, whether our workflow is suitable to reconstruct and picture the course of events during major natural disasters from Twitter data. Experimental results obtained with a data set acquired during hurricane Florence in September 2018 demonstrate the effectiveness of the applied methods but also indicate further interesting research questions and directions

    Seamless Interactions Between Humans and Mobility Systems

    Full text link
    As mobility systems, including vehicles and roadside infrastructure, enter a period of rapid and profound change, it is important to enhance interactions between people and mobility systems. Seamless humanā€”mobility system interactions can promote widespread deployment of engaging applications, which are crucial for driving safety and efficiency. The ever-increasing penetration rate of ubiquitous computing devices, such as smartphones and wearable devices, can facilitate realization of this goal. Although researchers and developers have attempted to adapt ubiquitous sensors for mobility applications (e.g., navigation apps), these solutions often suffer from limited usability and can be risk-prone. The root causes of these limitations include the low sensing modality and limited computational power available in ubiquitous computing devices. We address these challenges by developing and demonstrating that novel sensing techniques and machine learning can be applied to extract essential, safety-critical information from drivers natural driving behavior, even actions as subtle as steering maneuvers (e.g., left-/righthand turns and lane changes). We first show how ubiquitous sensors can be used to detect steering maneuvers regardless of disturbances to sensing devices. Next, by focusing on turning maneuvers, we characterize drivers driving patterns using a quantifiable metric. Then, we demonstrate how microscopic analyses of crowdsourced ubiquitous sensory data can be used to infer critical macroscopic contextual information, such as risks present at road intersections. Finally, we use ubiquitous sensors to profile a driverā€™s behavioral patterns on a large scale; such sensors are found to be essential to the analysis and improvement of drivers driving behavior.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163127/1/chendy_1.pd
    • ā€¦
    corecore