373 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    AdaEvo: Edge-Assisted Continuous and Timely DNN Model Evolution for Mobile Devices

    Full text link
    Mobile video applications today have attracted significant attention. Deep learning model (e.g. deep neural network, DNN) compression is widely used to enable on-device inference for facilitating robust and private mobile video applications. The compressed DNN, however, is vulnerable to the agnostic data drift of the live video captured from the dynamically changing mobile scenarios. To combat the data drift, mobile ends rely on edge servers to continuously evolve and re-compress the DNN with freshly collected data. We design a framework, AdaEvo, that efficiently supports the resource-limited edge server handling mobile DNN evolution tasks from multiple mobile ends. The key goal of AdaEvo is to maximize the average quality of experience (QoE), e.g. the proportion of high-quality DNN service time to the entire life cycle, for all mobile ends. Specifically, it estimates the DNN accuracy drops at the mobile end without labels and performs a dedicated video frame sampling strategy to control the size of retraining data. In addition, it balances the limited computing and memory resources on the edge server and the competition between asynchronous tasks initiated by different mobile users. With an extensive evaluation of real-world videos from mobile scenarios and across four diverse mobile tasks, experimental results show that AdaEvo enables up to 34% accuracy improvement and 32% average QoE improvement.Comment: Accepted by IEEE Transactions on Mobile Computing 202

    Satisfaction-Aware Data Offloading in Surveillance Systems

    Get PDF
    In this thesis, exploiting Fully Autonomous Aerial Systems\u27 (FAAS) and Mobile Edge Computing (MEC) servers\u27 computing capabilities to introduce a novel data offloading framework to support the energy and time-efficient video processing in surveillance systems based on satisfaction games. A surveillance system is introduced consisting of Areas of Interest (AoIs), where a MEC server is associated with each AoI, and a FAAS is flying above the AoIs to support the IP cameras\u27 computing demands. Each IP camera adopts a utility function capturing its Quality of Service (QoS) considering the experienced time and energy overhead to offload and process remotely or locally the data. A non-cooperative game among the cameras is formulated to determine the amount of offloading data to the MEC server and/or the FAAS, and the novel concept of Satisfaction Equilibrium (SE) is introduced where the IP cameras satisfy their minimum QoS prerequisites instead of maximizing their performance by consuming additional system resources. A distributed learning algorithm determines the IP cameras\u27 stable data offloading. Also, a reinforcement learning algorithm indicates the FAAS\u27s movement among the AoIs exploiting the accuracy, timeliness, and certainty of the collected data by the IP cameras per AoI. Detailed numerical and comparative results are presented to show the operation and efficiency of the proposed framework

    Drone-assisted emergency communications

    Get PDF
    Drone-mounted base stations (DBSs) have been proposed to extend coverage and improve communications between mobile users (MUs) and their corresponding macro base stations (MBSs). Different from the base stations on the ground, DBSs can flexibly fly over and close to MUs to establish a better vantage for communications. Thus, the pathloss between a DBS and an MU can be much smaller than that between the MU and MBS. In addition, by hovering in the air, the DBS can likely establish a Line-of-Sight link to the MBS. DBSs can be leveraged to recover communications in a large natural disaster struck area and to fully embody the advantage of drone-assisted communications. In order to retrieve signals from MUs in a large disaster struck area, DBSs need to overcome the large pathloss incurred by the long distance between DBSs and MBSs. This can be addressed by the following two strategies. First, placing multiple drones in a disaster struck area can be used to mitigate the problem of large backhaul pathloss. In this method, data from MUs in the disaster struck area may be forwarded by more than one drone, i.e., DBSs can enable drone-to-drone communications. Thus, the throughput from the disaster struck area can potentially be enhanced by this multi-drone strategy. A cooperative DBS placement and channel allocation algorithm is proposed to maximize the aggregated data rate from MUs in a disaster struck area. It is demonstrated by simulations that the aggregated data rate can be improved by more than 10%, as compared to the scenario without drone-to-drone communications. Second, free space optics (FSO) can be used as backhaul links to reduce the backhaul pathloss. FSO can provision a high-speed point-to-point transmission and is thus suitable for backhaul transmission. A heuristic algorithm is proposed to maximize the number of MUs that can be served by the drones by optimizing user association, DBS placement and spectrum allocation iteratively. It is demonstrated by simulations that the proposed algorithm can cover over 15% more MUs at the expense of less than 5% of the aggregated throughput. Equipping DBSs and MBSs with FSO transceivers incurs extra payload for DBSs, hence shortening the hovering time of DBSs. To prolong the hovering time of a DBS, the FSO beam is deployed to facilitate simultaneous communications and charging. The viability of this concept has been studied by varying the distance between a DBS and an MBS, in which an optimal location of the DBS is found to maximize the data throughput, while the charging power directed to the DBS from the MBS diminishes with the increasing distance between them. Future work is planned to incorporate artificial intelligence to enhance drone-assisted networking for various applications. For example, a drone equipped with a camera can be used to detect victims. By analyzing the captured pictures, the locations of the victims can be estimated by some machine learning based image processing technology

    Energy-Efficient Joint Resource Allocation Algorithms for MEC-Enabled Emotional Computing in Urban Communities

    Get PDF
    This paper considers a mobile edge computing (MEC) system, where the MEC server first collects data from emotion sensors and then computes the emotion of each user. We give the formula of the emotional prediction accuracy. In order to improve the energy efficiency of the system, we propose resources allocation algorithms. We aim to minimize the total energy consumption of the MEC server and sensors by jointly optimizing the computing resources allocation and the data transmitting time. The formulated problem is a non-convex problem, which is very difficult to solve in general. However, we transform it into convex problems and apply convex optimization techniques to address it. The optimal solution is given in closed form. Simulation results show that the total energy consumption of our system can be effectively reduced by the proposed scheme compared with the benchmark
    corecore