3,943 research outputs found

    Hyper-parameter selection in non-quadratic regularization-based radar image formation

    Get PDF
    We consider the problem of automatic parameter selection in regularization-based radar image formation techniques. It has previously been shown that non-quadratic regularization produces feature-enhanced radar images; can yield superresolution; is robust to uncertain or limited data; and can generate enhanced images in non-conventional data collection scenarios such as sparse aperture imaging. However, this regularized imaging framework involves some hyper-parameters, whose choice is crucial because that directly affects the characteristics of the reconstruction. Hence there is interest in developing methods for automatic parameter choice. We investigate Stein’s unbiased risk estimator (SURE) and generalized cross-validation (GCV) for automatic selection of hyper-parameters in regularized radar imaging. We present experimental results based on the Air Force Research Laboratory (AFRL) “Backhoe Data Dome,” to demonstrate and discuss the effectiveness of these methods

    Ship Wake Detection in SAR Images via Sparse Regularization

    Get PDF
    In order to analyse synthetic aperture radar (SAR) images of the sea surface, ship wake detection is essential for extracting information on the wake generating vessels. One possibility is to assume a linear model for wakes, in which case detection approaches are based on transforms such as Radon and Hough. These express the bright (dark) lines as peak (trough) points in the transform domain. In this paper, ship wake detection is posed as an inverse problem, which the associated cost function including a sparsity enforcing penalty, i.e. the generalized minimax concave (GMC) function. Despite being a non-convex regularizer, the GMC penalty enforces the overall cost function to be convex. The proposed solution is based on a Bayesian formulation, whereby the point estimates are recovered using maximum a posteriori (MAP) estimation. To quantify the performance of the proposed method, various types of SAR images are used, corresponding to TerraSAR-X, COSMO-SkyMed, Sentinel-1, and ALOS2. The performance of various priors in solving the proposed inverse problem is first studied by investigating the GMC along with the L1, Lp, nuclear and total variation (TV) norms. We show that the GMC achieves the best results and we subsequently study the merits of the corresponding method in comparison to two state-of-the-art approaches for ship wake detection. The results show that our proposed technique offers the best performance by achieving 80% success rate.Comment: 18 page

    FMCW rail-mounted SAR: Porting spotlight SAR imaging from MATLAB to FPGA

    Get PDF
    In this work, a low-cost laptop-based radar platform derived from the MIT open courseware has been implemented. It can perform ranging, Doppler measurement and SAR imaging using MATLAB as the processor. In this work, porting the signal processing algorithms onto a FPGA platform will be addressed as well as differences between results obtained using MATLAB and those obtained using the FPGA platform. The target FPGA platforms were a Virtex6 DSP kit and Spartan3A starter kit, the latter was also low-cost to further reduce the cost for students to access radar technology

    A Multiple Radar Approach for Automatic Target Recognition of Aircraft using Inverse Synthetic Aperture Radar

    Get PDF
    Along with the improvement of radar technologies, Automatic Target Recognition (ATR) using Synthetic Aperture Radar (SAR) and Inverse SAR (ISAR) has come to be an active research area. SAR/ISAR are radar techniques to generate a two-dimensional high-resolution image of a target. Unlike other similar experiments using Convolutional Neural Networks (CNN) to solve this problem, we utilize an unusual approach that leads to better performance and faster training times. Our CNN uses complex values generated by a simulation to train the network; additionally, we utilize a multi-radar approach to increase the accuracy of the training and testing processes, thus resulting in higher accuracies than the other papers working on SAR/ISAR ATR. We generated our dataset with 7 different aircraft models with a radar simulator we developed called RadarPixel; it is a Windows GUI program implemented using Matlab and Java programming, the simulator is capable of accurately replicating a real SAR/ISAR configurations. Our objective is to utilize our multi-radar technique and determine the optimal number of radars needed to detect and classify targets.Comment: 8 pages, 9 figures, International Conference for Data Intelligence and Security (ICDIS

    On the remote sensing of oceanic and atmospheric convection in the Greenland Sea by synthetic aperture radar

    No full text
    In this paper we discuss characteristic properties of radar signatures of oceanic and atmospheric convection features in the Greenland Sea. If the water surface is clean (no surface films or ice coverage), oceanic and atmospheric features can become visible in radar images via a modulation of the surface roughness, and their radar signatures can be very similar. For an unambiguous interpretation and for the retrieval of quantitative information on current and wind variations from radar imagery with such signatures, theoretical models of current and wind phenomena and their radar imaging mechanisms must be utilized. We demonstrate this approach with the analysis of some synthetic aperture radar (SAR) images acquired by the satellites ERS-2 and RADARSAT-1. In once case, an ERS-2 SAR image an a RADARSAT-1 ScanSAR image exhibit pronounced cell-like signatures with length scales on the order of 10-20 km and modulation depths of about 5-6 dB and 9-10 dB, respectively. Simulations with a numerical SAR imagaing model and various input current and wind fields reveal that the signatures in both images can be expained consistently by wind variations on the order of±2.5 ms, but not by surface current variations on realistic orders of magnitude. Accordingly, the observed features must be atmospheric convection cells. This is confirmed by visible typical cloud patterns in a NOAA AVHRR image of the test scenario. In another case, the presence of an oceanic convective chimney is obvious from in situ data, but no signatures of it are visible in an ERS-2 SAR image. We show by numerical simulations with an oceanic convection model and our SAR imaging model that this is consistent with theoretical predictions, since the current gradients associated with the observed chimney are not sufficiently strong to give rise to significant signatures in an ERS-2 SAR image under the given conditions. Further model results indicate that it should be generally difficult to observe oceanic convection features in the Greenland Sea with ERS-2 or RADARSAT-1 SAR, since their signatures resulting from pure wave-current interaction will be too weak to become visible in the noisy SAR images in most cases. This situation will improve with the availability of future high-resolution SARs such as RADARSAT-2 SAR in fine resolution mode (2004) and TerraSAR-X (2005) which will offer significantly reduced speckle noise fluctuations at comparable spatial resolutions and thus a much better visibility of small image variations on spatial scales on the order of a few hundred meters

    APPLYING DEEP LEARNING METHODS TO IDENTIFY TARGETS IN SYNTHETIC APERTURE RADAR IMAGES

    Get PDF
    Synthetic aperture radar (SAR) provides high-resolution imagery and can operate in the day and at night and in every weather condition. SAR has been used for military reconnaissance and surveillance. Examining SAR images manually, however, is challenging even for a specialist, since it is difficult to find high-value targets in a wide area of SAR images. This is especially true when time is critical for operations. Thus, an efficient, reliable method to analyze SAR images automatically is needed. To solve this problem, deep learning (DL) methods are developed for automatic target recognition (ATR). A convolutional neural network (CNN) is a deep-learning algorithm made up of several processing layers for target recognition and classification. One of the challenges in developing and testing a CNN algorithm is to find relevant datasets. The dataset used in this thesis comes from the Moving and Stationary Target Acquisition and Recognition program (MSTAR). In this research, the SAR ATR concept and performance are analyzed using several CNN DL architectures. Specifically, this investigation examines the effects of a few variable parameters within CNN DL architectures to gain insight into optimal strategies for using these architectures. Using CNN structures with different numbers of layers, it was possible to classify SAR targets successfully and automatically with state-of-the-art accuracy. This method proved useful for classification and recognition of military targets.Captain, Turkish Air ForceApproved for public release. distribution is unlimite

    Analysis of Polarimetric Synthetic Aperture Radar and Passive Visible Light Polarimetric Imaging Data Fusion for Remote Sensing Applications

    Get PDF
    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single bounce occurs from flat surfaces like lakes, rivers, bare soil, and oceans. Double bounce can be observed from two adjacent surfaces where one horizontal flat surface is near a vertical surface such as buildings and other vertical structures. Randomly oriented scatters in homogeneous media produce a multiple bounce scattering effect which occurs in forest canopies and vegetated areas. Relationships between Pauli color components from PolSAR and Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging are established using real measurements. Results show higher values of the red channel in Pauli color image (|HH-VV|) correspond to high DOLP from double bounce effect. A novel information fusion technique is applied to combine information from the two modes. In this research, it is demonstrated that the Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging can be used for separation of the classes in terms of scattering mechanisms from the PolSAR data. The separation of these three classes in terms of the scattering mechanisms has its application in the area of land cover classification and anomaly detection. The fusion of information from these particular two modes of imaging, i.e. PolSAR and passive visible light polarimetric imaging, is a largely unexplored area in remote sensing and the main challenge in this research is to identify areas and scenarios where information fusion between the two modes is advantageous for separation of the classes in terms of scattering mechanisms relative to separation achieved with only PolSAR
    corecore