468 research outputs found

    Survey of semi-regular multiresolution models for interactive terrain rendering

    Get PDF
    Rendering high quality digital terrains at interactive rates requires carefully crafted algorithms and data structures able to balance the competing requirements of realism and frame rates, while taking into account the memory and speed limitations of the underlying graphics platform. In this survey, we analyze multiresolution approaches that exploit a certain semi-regularity of the data. These approaches have produced some of the most efficient systems to date. After providing a short background and motivation for the methods, we focus on illustrating models based on tiled blocks and nested regular grids, quadtrees and triangle bin-trees triangulations, as well as cluster-based approaches. We then discuss LOD error metrics and system-level data management aspects of interactive terrain visualization, including dynamic scene management, out-of-core data organization and compression, as well as numerical accurac

    Query-by-Pointing: Algorithms and Pointing Error Compensation

    Get PDF
    People typically communicate by pointing, talking, sketching, writing, and typing. Pointing can be used to visualize or exchange information about an object when there is no other mutually understood way of communication. Despite its proven expressiveness, however, it has not yet become a frequently used modality to interact with computer systems. With the rapid move towards the adoption of mobile technologies, geographic information systems (GISs) have a particular need for advanced forms of interaction that enable users to query the geographic world directly. To enable pointing-based query system on a handheld device, a number of fundamental technical challenges have to be overcome. For such a system to materialize we need models stored in the device\u27s knowledge base that can be used as surrogate of real world objects. These computations, however, assume that (1) the pointing direction matches with the line-of-sight and (2) the observations about location and direction are precise enough so that a computational model will determine the same object as what the user points at. Both assumptions are not true. This thesis, therefore, develops an efficient error compensation model to reduce the discrepancy between the line-of-sight of the eye and the pointer direction. The model is based on a coordinate system centered at the neck and distances measured from neck to eye, neck to shoulder, shoulder to handheld pointer, and the pointing direction. An experiment was conducted using a gyro-enhanced sensor and three subjects who pointed at marked targets in a given room. It showed that the error compensation algorithm significantly reduces errors in pointing with arms outstretched

    Multi-scale data storage schemes for spatial information systems

    Get PDF
    This thesis documents a research project that has led to the design and prototype implementation of several data storage schemes suited to the efficient multi-scale representation of integrated spatial data. Spatial information systems will benefit from having data models which allow for data to be viewed and analysed at various levels of detail, while the integration of data from different sources will lead to a more accurate representation of reality. The work has addressed two specific problems. The first concerns the design of an integrated multi-scale data model suited for use within Geographical Information Systems. This has led to the development of two data models, each of which allow for the integration of terrain data and topographic data at multiple levels of detail. The models are based on a combination of adapted versions of three previous data structures, namely, the constrained Delaunay pyramid, the line generalisation tree and the fixed grid. The second specific problem addressed in this thesis has been the development of an integrated multi-scale 3-D geological data model, for use within a Geoscientific Information System. This has resulted in a data storage scheme which enables the integration of terrain data, geological outcrop data and borehole data at various levels of detail. The thesis also presents details of prototype database implementations of each of the new data storage schemes. These implementations have served to demonstrate the feasibility and benefits of an integrated multi-scale approach. The research has also brought to light some areas that will need further research before fully functional systems are produced. The final chapter contains, in addition to conclusions made as a result of the research to date, a summary of some of these areas that require future work

    Fundamental remote sensing science research program. Part 1: Status report of the mathematical pattern recognition and image analysis project

    Get PDF
    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth

    Real-time Photorealistic Visualisation of Large-scaleMultiresolution Terrain Models

    Get PDF
    Height field terrain rendering is an important aspect of GIS, outdoor virtual reality applicationssuch as flight simulation, 3-D games, etc. A polygonal model of very large terrain data requiresa large number of triangles. So, even most high-performance graphics workstations have greatdifficulty to display even moderately sized height fields at interactive frame rates. To bringphotorealism in visualisation, it is required to drape corresponding high-resolution satellite oraerial phototexture over 3-D digital terrain and also to place multiple collections of point-location-based static objects such as buildings, trees, etc and to overlay polyline vector objects suchas roads on top of the terrain surface. It further complicates the requirement of interactive framerates while navigation over the terrain. This paper describes a novel approach for objects andterrain visualisation by combination of two algorithms, one for terrain data and the other forobjects. The terrain rendering is accomplished by an efficient dynamic multiresolution view-dependent level-of-detail mesh simplification algorithm. It is augmented with out-of-corevisualisation of large-height geometry and phototexture terrain data populated with 3-D/2-Dstatic objects as well as vector overlays without extensive memory load. The proposedmethodology provides interactive frame rates on a general-purpose desktop PC with OpenGL-enabled graphics hardware. The software TREND has been successfully tested on different real-world height maps and satellite phototextures of sizes up to 16K*16K coupled with thousandsof static objects and polyline vector overlays

    Structural graph matching using the EM algorithm and singular value decomposition

    Get PDF
    This paper describes an efficient algorithm for inexact graph matching. The method is purely structural, that is, it uses only the edge or connectivity structure of the graph and does not draw on node or edge attributes. We make two contributions: 1) commencing from a probability distribution for matching errors, we show how the problem of graph matching can be posed as maximum-likelihood estimation using the apparatus of the EM algorithm; and 2) we cast the recovery of correspondence matches between the graph nodes in a matrix framework. This allows one to efficiently recover correspondence matches using the singular value decomposition. We experiment with the method on both real-world and synthetic data. Here, we demonstrate that the method offers comparable performance to more computationally demanding method

    Search Problems in Mission Planning and Navigation of Autonomous Aircraft

    Get PDF
    An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft
    corecore