1,570 research outputs found

    Differentially Private Multi-Agent Planning for Logistic-like Problems

    Full text link
    Planning is one of the main approaches used to improve agents' working efficiency by making plans beforehand. However, during planning, agents face the risk of having their private information leaked. This paper proposes a novel strong privacy-preserving planning approach for logistic-like problems. This approach outperforms existing approaches by addressing two challenges: 1) simultaneously achieving strong privacy, completeness and efficiency, and 2) addressing communication constraints. These two challenges are prevalent in many real-world applications including logistics in military environments and packet routing in networks. To tackle these two challenges, our approach adopts the differential privacy technique, which can both guarantee strong privacy and control communication overhead. To the best of our knowledge, this paper is the first to apply differential privacy to the field of multi-agent planning as a means of preserving the privacy of agents for logistic-like problems. We theoretically prove the strong privacy and completeness of our approach and empirically demonstrate its efficiency. We also theoretically analyze the communication overhead of our approach and illustrate how differential privacy can be used to control it

    Differentially Private Linear Optimization for Multi-Party Resource Sharing

    Full text link
    This study examines a resource-sharing problem involving multiple parties that agree to use a set of capacities together. We start with modeling the whole problem as a mathematical program, where all parties are required to exchange information to obtain the optimal objective function value. This information bears private data from each party in terms of coefficients used in the mathematical program. Moreover, the parties also consider the individual optimal solutions as private. In this setting, the concern for the parties is the privacy of their data and their optimal allocations. We propose a two-step approach to meet the privacy requirements of the parties. In the first step, we obtain a reformulated model that is amenable to a decomposition scheme. Although this scheme eliminates almost all data exchanges, it does not provide a formal privacy guarantee. In the second step, we provide this guarantee with a locally differentially private algorithm, which does not need a trusted aggregator, at the expense of deviating slightly from the optimality. We provide bounds on this deviation and discuss the consequences of these theoretical results. We also propose a novel modification to increase the efficiency of the algorithm in terms of reducing the theoretical optimality gap. The study ends with a numerical experiment on a planning problem that demonstrates an application of the proposed approach. As we work with a general linear optimization model, our analysis and discussion can be used in different application areas including production planning, logistics, and revenue management

    Coordination and Privacy Preservation in Multi-Agent Systems

    Get PDF
    This dissertation considers two key problems in multi-agent systems: coordination (including both synchronization and desynchronization) and privacy preservation. For coordination in multi-agent systems, we focus on synchronization/desynchronization of distributed pulse-coupled oscillator (PCO) networks and their applications in collective motion coordination. Pulse-coupled oscillators were originally proposed to model synchronization in biological systems such as flashing fireflies and firing neurons. In recent years, with proven scalability, simplicity, accuracy, and robustness, the PCO based synchronization strategy has become a powerful clock synchronization primitive for wireless sensor networks. Driven by these increased applications in biological networks and wireless sensor networks, synchronization of pulse-coupled oscillators has gained increased popularity. However, most existing results address the local synchronization of PCOs with initial phases constrained in a half cycle, and results on global synchronization from any initial condition are very sparse. In our work, we address global PCO synchronization from an arbitrary phase distribution under chain or directed tree graphs. More importantly, different from existing global synchronization studies on decentralized PCO networks, our work allows heterogeneous coupling functions and perturbations on PCOs\u27 natural frequencies, and our results hold under any coupling strength between zero and one, which is crucial because a large coupling strength has been shown to be detrimental to the robustness of PCO synchronization to disturbances. Compared with synchronization, desynchronization of PCOs is less explored. Desynchronization spreads the phase variables of all PCOs uniformly apart (with equal difference between neighboring phases). It has also been found in many biological phenomena, such as neuron spiking and fish signaling. Recently, phase desynchronization has been employed to achieve round-robin scheduling, which is crucial in applications as diverse as media access control of communication networks, realization of analog-to-digital converters, and scheduling of traffic flows in intersections. In our work, we systematically characterize pulse-coupled oscillators based decentralized phase desynchronization and propose an interaction function that is more general than existing results. Numerical simulations show that the proposed pulse based interaction function also has better robustness to pulse losses, time delays, and frequency errors than existing results. Collective motion coordination is fundamental in systems as diverse as mobile sensor networks, swarm robotics, autonomous vehicles, and animal groups. Inspired by the close relationship between phase synchronization/desynchronization of PCOs and the heading dynamics of connected vehicles/robots, we propose a pulse-based integrated communication and control approach for collective motion coordination. Our approach only employs simple and identical pulses, which significantly reduces processing latency and communication delay compared with conventional packet based communications. Not only can heading control be achieved in the proposed approach to coordinate the headings (orientations) of motions in a network, but also spacing control for circular motion is achievable to design the spacing between neighboring nodes (e.g., vehicles or robots). The second part of this dissertation is privacy preservation in multi-agent systems. More specifically, we focus on privacy-preserving average consensus as it is key for multi-agent systems, with applications ranging from time synchronization, information fusion, load balancing, to decentralized control. Existing average consensus algorithms require individual nodes (agents) to exchange explicit state values with their neighbors, which leads to the undesirable disclosure of sensitive information in the state. In our work, we propose a novel average consensus algorithm for time-varying directed graphs which can protect the privacy of participating nodes\u27 initial states. Leveraging algorithm-level obfuscation, the algorithm does not need the assistance of any trusted third party or data aggregator. By leveraging the inherent robustness of consensus dynamics against random variations in interaction, our proposed algorithm can guarantee privacy of participating nodes without compromising the accuracy of consensus. The algorithm is distinctly different from differential-privacy based average consensus approaches which enable privacy through compromising accuracy in obtained consensus value. The approach is able to protect the privacy of participating nodes even in the presence of multiple honest-but-curious nodes which can collude with each other

    Privacy in resource allocation problems

    Get PDF
    Collaborative decision-making processes help parties optimize their operations, remain competitive in their markets, and improve their performances with environmental issues. However, those parties also want to keep their data private to meet their obligations regarding various regulations and not to disclose their strategic information to the competitors. In this thesis, we study collaborative capacity allocation among multiple parties and present that (near) optimal allocations can be realized while considering the parties' privacy concerns.We first attempt to solve the multi-party resource sharing problem by constructing a single model that is available to all parties. We propose an equivalent data-private model that meets the parties' data privacy requirements while ensuring optimal solutions for each party. We show that when the proposed model is solved, each party can only get its own optimal decisions and cannot observe others' solutions. We support our findings with a simulation study.The third and fourth chapters of this thesis focus on the problem from a different perspective in which we use a reformulation that can be used to distribute the problem among the involved parties. This decomposition lets us eliminate almost all the information-sharing requirements. In Chapter 3, together with the reformulated model, we benefit from a secure multi-party computation protocol that allows parties to disguise their shared information while attaining optimal allocation decisions. We conduct a simulation study on a planning problem and show our proposed algorithm in practice. We use the decomposition approach in Chapter 4 with a different privacy notion. We employ differential privacy as our privacy definition and design a differentially private algorithm for solving the multi-party resource sharing problem. Differential privacy brings in formal data privacy guarantees at the cost of deviating slightly from optimality. We provide bounds on this deviation and discuss the consequences of these theoretical results. We show the proposed algorithm on a planning problem and present insights about its efficiency.<br/

    PRIVACY PRESERVING DATA MINING FOR NUMERICAL MATRICES, SOCIAL NETWORKS, AND BIG DATA

    Get PDF
    Motivated by increasing public awareness of possible abuse of confidential information, which is considered as a significant hindrance to the development of e-society, medical and financial markets, a privacy preserving data mining framework is presented so that data owners can carefully process data in order to preserve confidential information and guarantee information functionality within an acceptable boundary. First, among many privacy-preserving methodologies, as a group of popular techniques for achieving a balance between data utility and information privacy, a class of data perturbation methods add a noise signal, following a statistical distribution, to an original numerical matrix. With the help of analysis in eigenspace of perturbed data, the potential privacy vulnerability of a popular data perturbation is analyzed in the presence of very little information leakage in privacy-preserving databases. The vulnerability to very little data leakage is theoretically proved and experimentally illustrated. Second, in addition to numerical matrices, social networks have played a critical role in modern e-society. Security and privacy in social networks receive a lot of attention because of recent security scandals among some popular social network service providers. So, the need to protect confidential information from being disclosed motivates us to develop multiple privacy-preserving techniques for social networks. Affinities (or weights) attached to edges are private and can lead to personal security leakage. To protect privacy of social networks, several algorithms are proposed, including Gaussian perturbation, greedy algorithm, and probability random walking algorithm. They can quickly modify original data in a large-scale situation, to satisfy different privacy requirements. Third, the era of big data is approaching on the horizon in the industrial arena and academia, as the quantity of collected data is increasing in an exponential fashion. Three issues are studied in the age of big data with privacy preservation, obtaining a high confidence about accuracy of any specific differentially private queries, speedily and accurately updating a private summary of a binary stream with I/O-awareness, and launching a mutual private information retrieval for big data. All three issues are handled by two core backbones, differential privacy and the Chernoff Bound

    Proceedings of the 2019 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    In 2019 fand wieder der jährliche Workshop des Fraunhofer IOSB und des Lehrstuhls für Interaktive Echtzeitsysteme des Karlsruher Insitut für Technologie statt. Die Doktoranden beider Institutionen präsentierten den Fortschritt ihrer Forschung in den Themen Maschinelles Lernen, Machine Vision, Messtechnik, Netzwerksicherheit und Usage Control. Die Ideen dieses Workshops sind in diesem Buch gesammelt in der Form technischer Berichte

    Proceedings of the 2019 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    In 2019 again, the annual joint workshop of the Fraunhofer IOSB and the Vision and Fusion Laboratory of the Karlsruhe Institute of Technology took place. The doctoral students of both institutions presented extensive reports on the status of their research and discussed topics ranging from computer vision and optical metrology to network security, usage control and machine learning. The results and ideas presented at the workshop are collected in this book in the form of technical reports
    corecore