5 research outputs found

    A low-cost high-speed twin-prefetching DSP-based shared-memory system for real-time image processing applications

    Get PDF
    This dissertation introduces, investigates, and evaluates a low-cost high-speed twin-prefetching DSP-based bus-interconnected shared-memory system for real-time image processing applications. The proposed architecture can effectively support 32 DSPs in contrast to a maximum of 4 DSPs supported by existing DSP-based bus- interconnected systems. This significant enhancement is achieved by introducing two small programmable fast memories (Twins) between the processor and the shared bus interconnect. While one memory is transferring data from/to the shared memory, the other is supplying the core processor with data. The elimination of the traditional direct linkage of the shared bus and processor data bus makes feasible the utilization of a wider shared bus i.e., shared bus width becomes independent of the data bus width of the processors. The fast prefetching memories and the wider shared bus provide additional bus bandwidth into the system, which eliminates large memory latencies; such memory latencies constitute the major drawback for the performance of shared-memory multiprocessors. Furthermore, in contrast to existing DSP-based uniprocessor or multiprocessor systems the proposed architecture does not require all data to be placed on on-chip or off-chip expensive fast memory in order to reach or maintain peak performance. Further, it can maintain peak performance regardless of whether the processed image is small or large. The performance of the proposed architecture has been extensively investigated executing computationally intensive applications such as real-time high-resolution image processing. The effect of a wide variety of hardware design parameters on performance has been examined. More specifically tables and graphs comprehensively analyze the performance of 1, 2, 4, 8, 16, 32 and 64 DSP-based systems, for a wide variety of shared data interconnect widths such as 32, 64, 128, 256 and 512. In addition, the effect of the wide variance of temporal and spatial locality (present in different applications) on the multiprocessor\u27s execution time is investigated and analyzed. Finally, the prefetching cache-size was varied from a few kilobytes to 4 Mbytes and the corresponding effect on the execution time was investigated. Our performance analysis has clearly showed that the execution time converges to a shallow minimum i.e., it is not sensitive to the size of the prefetching cache. The significance of this observation is that near optimum performance can be achieved with a small (16 to 300 Kbytes) amount of prefetching cache

    Prefetching and Caching Techniques in File Systems for Mimd Multiprocessors

    Get PDF
    The increasing speed of the most powerful computers, especially multiprocessors, makes it difficult to provide sufficient I/O bandwidth to keep them running at full speed for the largest problems. Trends show that the difference in the speed of disk hardware and the speed of processors is increasing, with I/O severely limiting the performance of otherwise fast machines. This widening access-time gap is known as the “I/O bottleneck crisis.” One solution to the crisis, suggested by many researchers, is to use many disks in parallel to increase the overall bandwidth. \par This dissertation studies some of the file system issues needed to get high performance from parallel disk systems, since parallel hardware alone cannot guarantee good performance. The target systems are large MIMD multiprocessors used for scientific applications, with large files spread over multiple disks attached in parallel. The focus is on automatic caching and prefetching techniques. We show that caching and prefetching can transparently provide the power of parallel disk hardware to both sequential and parallel applications using a conventional file system interface. We also propose a new file system interface (compatible with the conventional interface) that could make it easier to use parallel disks effectively. \par Our methodology is a mixture of implementation and simulation, using a software testbed that we built to run on a BBN GP1000 multiprocessor. The testbed simulates the disks and fully implements the caching and prefetching policies. Using a synthetic workload as input, we use the testbed in an extensive set of experiments. The results show that prefetching and caching improved the performance of parallel file systems, often dramatically

    Improving prefetching mechanisms for tiled CMP platforms

    Get PDF
    Recently, high performance processor designs have evolved toward Chip-Multiprocessor (CMP) architectures to deal with instruction level parallelism limitations and, more important, to manage the power consumption that is becoming unaffordable due to the increased transistor count and clock frequency. At the present moment, this architecture, which implements multiple processing cores on a single die, is commercially available with up to twenty four processors on a single chip and there are roadmaps and research trends that suggest that number of cores will increase in the near future. The increasing on number of cores has converted the interconnection network in a key issue that will have significant impact on performance. Moreover, as the number of cores increases, tiled architectures are foreseen to provide a scalable solution to handle design complexity. Network-on-Chip (NoC) emerges as a solution to deal with growing on-chip wire delays. On the other hand, CMP designs are likely to be equipped with latency hiding techniques like prefetching in order to reduce the negative impact on performance that, otherwise, high cache miss rates would lead to. Unfortunately, the extra number of network messages that prefetching entails can drastically increase power consumption and the latency in the NoC. In this thesis, we do not develop a new prefetching technique for CMPs but propose improvements applicable to any of them. Specifically, we analyze the behavior of the prefetching in the CMPs and its impact to the interconnect. We propose several dynamic management techniques to improve the performance of the prefetching mechanism in the system. Furthermore, we identify the main problems when implementing prefetching in distributed memory systems like tiled architectures and propose directions to solve them. Finally, we propose several research lines to continue the work done in this thesis.Recentment l'arquitectura dels processadors d'altes prestacions ha evolucionat cap a processadors amb diversos nuclis per a concordar amb les limitacions del paral·lelisme a nivell d'instrucció i, mes important encara, per tractar el consum d'energia que ha esdevingut insostenible degut a l'increment de transistors i la freqüència de rellotge. Ara mateix, aquestes arquitectures, que implementes varis nuclis en un sol xip, estan a la venta amb mes de vint-i-quatre processadors en un sol xip i hi ha previsions que suggereixen que aquest nombre de nuclis creixerà en un futur pròxim. Aquest increment del nombre de nuclis, ha convertit la xarxa que els connecta en un punt clau que tindrà un impacte important en el seu rendiment. Una topologia de xarxa que sembla que serà capaç de proveir una solució escalable per aquestes arquitectures ha estat la topologia tile. Les xarxes en el xip (NoC) es presenten com la solució del increment de la latència dels cables del xip. Per altre banda, els dissenys de multiprocessadors seguiran disposant de tècniques de reducció de latència de memòria com el prefetch per tal de reduir l'impacte negatiu en rendiment que, altrament, tindríem degut als elevats temps de latència en fallades a memòria cache. Desafortunadament, el gran nombre de peticions destinades a prefetch, pot augmentar dràsticament la congestió a la xarxa i el consum d'energia. En aquesta tesi, no desenvolupem cap tècnica nova de prefetching, però proposem millores aplicables a qualsevol d'ells. Concretament analitzem el comportament del prefetching en multiprocessadors i el seu impacte a la xarxa. Proposem diverses tècniques de control dinàmic per millor el rendiment del prefetcher al sistema. A més, identifiquem els problemes principals d'implementar el prefetching en els sistemes de memòria distribuïts com els de les arquitectures tile i proposem línies d'investigació per solucionar-los. Finalment, també proposem diverses línies d'investigació per continuar amb el treball fet en aquesta tesi.Postprint (published version

    Thread Scheduling Mechanisms for Multiple-Context Parallel Processors

    Get PDF
    Scheduling tasks to efficiently use the available processor resources is crucial to minimizing the runtime of applications on shared-memory parallel processors. One factor that contributes to poor processor utilization is the idle time caused by long latency operations, such as remote memory references or processor synchronization operations. One way of tolerating this latency is to use a processor with multiple hardware contexts that can rapidly switch to executing another thread of computation whenever a long latency operation occurs, thus increasing processor utilization by overlapping computation with communication. Although multiple contexts are effective for tolerating latency, this effectiveness can be limited by memory and network bandwidth, by cache interference effects among the multiple contexts, and by critical tasks sharing processor resources with less critical tasks. This thesis presents techniques that increase the effectiveness of multiple contexts by intelligently scheduling threads to make more efficient use of processor pipeline, bandwidth, and cache resources. This thesis proposes thread prioritization as a fundamental mechanism for directing the thread schedule on a multiple-context processor. A priority is assigned to each thread either statically or dynamically and is used by the thread scheduler to decide which threads to load in the contexts, and to decide which context to switch to on a context switch. We develop a multiple-context model that integrates both cache and network effects, and shows how thread prioritization can both maintain high processor utilization, and limit increases in critical path runtime caused by multithreading. The model also shows that in order to be effective in bandwidth limited applications, thread prioritization must be extended to prioritize memory requests. We show how simple hardware can prioritize the running of threads in the multiple contexts, and the issuing of requests to both the local memory and the network. Simulation experiments show how thread prioritization is used in a variety of applications. Thread prioritization can improve the performance of synchronization primitives by minimizing the number of processor cycles wasted in spinning and devoting more cycles to critical threads. Thread prioritization can be used in combination with other techniques to improve cache performance and minimize cache interference between different working sets in the cache. For applications that are critical path limited, thread prioritization can improve performance by allowing processor resources to be devoted preferentially to critical threads. These experimental results show that thread prioritization is a mechanism that can be used to implement a wide range of scheduling policies
    corecore