
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Open Dartmouth: Peer-reviewed articles by
Dartmouth faculty Faculty Work

4-2-1991

Prefetching and Caching Techniques in File Systems for Mimd Prefetching and Caching Techniques in File Systems for Mimd

Multiprocessors Multiprocessors

David F. Kotz
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Kotz, David F., "Prefetching and Caching Techniques in File Systems for Mimd Multiprocessors" (1991).
Open Dartmouth: Peer-reviewed articles by Dartmouth faculty. 3355.
https://digitalcommons.dartmouth.edu/facoa/3355

This Dissertation is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It
has been accepted for inclusion in Open Dartmouth: Peer-reviewed articles by Dartmouth faculty by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/231141433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/3355?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3355&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

CS��������

Prefetching and Caching Techniques

in File Systems
for MIMD Multiprocessors

David F� Kotz

Department of Computer Science

Duke University

Durham� North Carolina �		
�

April �� ����

�

NOTE� this report is meant to be printed ��sided� For best e
ect� make a copy this report using
a copier that can produce ��sided output�

You might want to substitute a blank page for this page�

Prefetching and Caching Techniques

in File Systems

for MIMD Multiprocessors

David F� Kotz

April �� ����

Supervised by Carla S� Ellis

Dissertation submitted in partial ful�llment
of the requirements for the degree

of Doctor of Philosophy
in the Department of Computer Science

in the Graduate School of
Duke University

This document is a reformatted version of the disseration� and equivalent in content�

Copyright c� ���� by David F� Kotz

All rights reserved

Abstract

The increasing speed of the most powerful computers� especially multiprocessors� makes it di�cult
to provide su�cient I�O bandwidth to keep them running at full speed for the largest problems�
Trends show that the di
erence in the speed of disk hardware and the speed of processors is
increasing� with I�O severely limiting the performance of otherwise fast machines� This widening
access�time gap is known as the �I�O bottleneck crisis�� One solution to the crisis� suggested by
many researchers� is to use many disks in parallel to increase the overall bandwidth�

This dissertation studies some of the �le system issues needed to get high performance from
parallel disk systems� since parallel hardware alone cannot guarantee good performance� The
target systems are large MIMD multiprocessors used for scienti�c applications� with large �les
spread over multiple disks attached in parallel� The focus is on automatic caching and prefetching
techniques� We show that caching and prefetching can transparently provide the power of parallel
disk hardware to both sequential and parallel applications using a conventional �le system interface�
We also propose a new �le system interface �compatible with the conventional interface� that could
make it easier to use parallel disks e
ectively�

Our methodology is a mixture of implementation and simulation� using a software testbed that
we built to run on a BBN GP�

 multiprocessor� The testbed simulates the disks and fully
implements the caching and prefetching policies� Using a synthetic workload as input� we use the
testbed in an extensive set of experiments� The results show that prefetching and caching improved
the performance of parallel �le systems� often dramatically�

i

ii

Acknowledgements

Needless to say� a Ph�D� cannot be obtained without the support of many other people� The
signi�cance of my parents� love� encouragement� and support cannot be understated� having helped
me through twenty years of schooling�

My advisor Carla Ellis has been a wonderful mentor� colleague� and yes� �mom�� over the last
four years� She has guided me into the world of experimental research� and through many di�cult
new experiences� She has eased me through my failures and encouraged my successes� Best of all�
she has allowed me �exibility while still cracking the whip when I needed it�

Pamela Jenkins has been a solid support for me throughout� She has helped me keep my sanity�
boosted my motivation when it failed� and shared all the highs and lows of a graduate student�s
life� In particular� her caring and incredible strength got me through the roughest period of my
life� recovering from a broken neck�

Thanks to everyone in the department for their encouragement while I walked around with a
�halo� neck brace� looking like an alien in a bad sci�� movie� Thanks especially to all of my friends
in the department� including Owen� Vick� Rick� and many others� What would life be without
wasting time in Owen�s o�ce� on frisbee golf expeditions� or at lunch�time bridge games�

Thanks to the BUG group and Rick Floyd for helping with Chapter �
 and for listening to
many practice talks� Thanks to my committee for their helpful suggestions� Finally� thanks to
the organizations that paid the tuition and put food on my table� this research was supported by
an MCNC graduate fellowship� two NSF research assistantships �under grants CCR�	��	�� and
CCR�����
��� and two DARPA�UMIACS�NASA Parallel Processing Research Assistantships�

iii

iv

Contents

Abstract i

Acknowledgements iii

� Introduction �
��� The I�O Crisis �
��� I�O Parallelism as a Solution �
��� How to Use Parallel I�O �

� Literature Survey �
��� Parallel I�O Hardware �

����� Commercial Products � 	
��� Caching �
��� Prefetching �

����� Prefetching in Disk Caches �
����� Prepaging in Virtual Memory �

����� Prefetching in Memory Caches ��
����� Prefetching Summary ��

��� File System Workload ��
��� File System Interface ��

� Models and Assumptions ��

��� Workload ��
����� Parallel File Access Patterns ��

��� Processor and I�O Architecture �	
��� I�O Architecture �	
��� File System Control ��

� Methods ��
��� The RAPID�Transit Testbed ��

����� Cache Management ��
����� Prefetching Issues ��
����� Workload ��
����� Experimental Parameters �

����� Measures ��
����� The Ideal Execution Time ��

��� The Bene�ts of Caching Alone ��

v

vi CONTENTS

� The Potential of Prefetching ��
��� Prefetching Support for One Processor ��
��� Prefetching in Multi�process Patterns �	

����� Average Block Read Time and Hit Ratio �	
����� E
ect on the Total Execution Time ��
����� The Balance between Computation and I�O ��
����� Attempts to Improve Prefetching ��
����� The Importance of Synchronization Points ��
����� Di
erences Between the Patterns ��
����	 The High Cost of Prefetching Overhead ��
����� Balancing the Bene�ts of Prefetching ��
����� Summary of Multi�process prefetching ��

� Automatic Prediction in Local Patterns ��
��� Introduction ��
��� The Predictors ��

����� OBL � One�Block Look�ahead �

����� IBL � In�nite�Block Look�ahead �

����� PORT � Portion Recognition �

����� ADAPT � Adaptive ��
����� IOBL � IBL�OBL ��
����� IPORT � IBL�PORT ��
����	 IOPORT � IBL�OBL�PORT ��

��� Experiments and Methods ��
��� Results and Discussion for each Pattern ��

����� Choosing a General�purpose Predictor ��
����� Anomalous Cases � 	�

��� Overhead � 	�
��� The Sensitivity of PORT Predictors to the MaxDist Parameter � � � � � � � � � � � � 	�
��	 Conclusions � 	�

	 Automatic Prediction in Global Patterns 		
	�� Introduction � 		
	�� Theory � 	�

	���� Assumptions � 	�
	���� Zones of Activity � 	�
	���� Bounding the Future Zone � 	�

	�� The GAPS Predictor �

	���� The Overall Plan �

	���� Watch Mode ��
	���� Continuation Mode ��
	���� Prefetching ��

	�� Implementation of the GAPS Predictor ��
	���� Watch Mode ��
	���� Random Mode ��
	���� Determining maxjump and MaxDist ��
	���� Continuation Mode ��
	���� Prefetching ��

CONTENTS vii

	�� Other Global Predictors ��
	�� Experiments and Results ��

	���� Performance of the Global Predictors ��
	���� GAPS vs� RGAPS ��
	���� Accuracy ��
	���� Overhead ��
	���� The E
ect of MaxDist ��
	���� The E
ect of Portion Length ��

	�	 Using Both Global and Local Predictors �

	�� Conclusion �
�

 E�ect of Architectural and Workload Parameters ���
��� Varying the Record Size �
�

����� Experiments �
�
����� Results and Discussion �
�
����� Conclusions �
�

��� Varying the Cache Size �
�
����� Experiments ��

����� Results and Discussion ��

����� Conclusions ���

��� Varying the Disk�Access Time ���
����� Experiments ���
����� Results and Discussion ���
����� Conclusions ���

��� Varying the Number of Disks ���
����� Experiments and Results ���
����� Conclusions ���

��� Varying the Number of Processors ���
����� Experiments ���
����� Results and Discussion ���
����� Scaling both Disks and Processors ���
����� Conclusions ���

��� Overall Conclusions ���

� Bu�ering for Write Access ��	

��� Introduction ��	
��� Methods ��	
��� Experiments ���
��� Results ���

����� Cache�size Variation ���
����� Record�size Variation ���
����� The WriteFree Method ���

��� Conclusion ���

�� The File System Interface ��	
�
�� The Conventional Interface ���
�
�� Our Proposed Interface ��

�
���� Concepts ���

viii CONTENTS

�
���� Implications ���
�
���� Examples� Our Access Patterns ���

�
�� Additional Semantic Information ���
�
���� Types of Information ���
�
���� Mechanisms ���

�
�� Related Work ��	
�
���� Interface ��	
�
���� Hints ��	

�
�� Summary ���

�� Conclusions and Future Work ���

���� Summary of Results ���
������ Single�Process Access Patterns ���
������ Read�only Parallel Access Patterns ���
������ Write�only Access Patterns �	�
������ Interface �	�

���� Future Work �	�
������ Techniques �	�
������ Workload �	�
������ Architecture Changes �	�
������ Multiple Files �	�
������ Reliability �	�
������ Implementation �	�

���� Conclusion �	�

Glossary �	�

Biography �
�

List of Figures

��� Categories of File Access Patterns ��
��� Parallel Independent Disks ��

��� Structure of the Testbed ��
��� De�nition of Prefetch Overrun ��
��� Executions of a Parallel Computation �	

��� Change in Average Block Read Time �	
��� Change in Cache Hit Ratio ��
��� Hits and Unready Cache Hits ��
��� The Ready Hit Ratio ��
��� The Average Hit�wait time �

��� Change in Disk Response Time ��
��	 Change in Total Execution Time ��
��� Dependence of Total Execution Time on Read Time � � � � � � � � � � � � � � � � � � ��
��� Dependence of Total Execution Time on Hit Ratio ��
���
 E
ect of Computation on Read Time and Total Execution Time � � � � � � � � � � � ��

��� Local predictors � lw ��
��� Local predictors � lw with computation ��
��� Local predictors � lfp ��
��� Local predictors � lfp with computation ��
��� Local predictors � lrp ��
��� Local predictors � lrp with computation ��
��	 Local predictors � rnd ��
��� Local predictors � seg ��
��� Local predictors � seg with computation ��
���
 Local predictors � seglong �	
���� Local predictors � seglong with computation ��
���� Deviation from the best predictor � 	

���� Deviation from NONE predictor � 	

���� Local predictors � Noti�cation times � 	�

	�� The three zones of activity � 	�
	�� GAPS state diagram ��
	�� Example of slope �t in GAPS ��
	�� Global predictors � gw �	
	�� Global predictors � lw ��
	�� Global predictors � rnd ��

ix

x LIST OF FIGURES

	�	 Global predictors � gfp �

	�� Global predictors � gfp with computation ��
	�� Global predictors � grp ��
	��
 Global predictors � grp with computation ��
	��� Comparing GAPS and RGAPS ��
	��� Waste rate for GAPS and RGAPS ��
	��� GAPS noti�cation time components ��
	��� RGAPS noti�cation time components �	
	��� MaxDist variation � grp ��
	��� MaxDist variation � grp with computation ��
	��	 Portion�length variation � gfp ��
	��� Portion�length variation � grp �

��� Varying the record size � lfp �
�
��� Varying the record size � lw �
�
��� Varying the record size � seg �
�
��� Varying the record size � gfp �
	
��� Varying the record size � grp �
	
��� Varying the record size � gw �
�
��	 Varying the record size � rnd �
�
��� Varying the cache size � lfp ���
��� Varying the cache size � lrp ���
���
 Varying the cache size � seg ���
���� Varying the cache size � gfp ���
���� Varying the cache size � grp ���
���� Varying the cache size � gw ���
���� Varying the disk�access time � gfp ��	
���� Varying the disk�access time � grp ���
���� Varying the disk�access time � lfp ���
���	 Varying the disk�access time � lrp ���
���� Varying the disk�access time � lw ��

���� Varying the disk�access time � seg ��

���
 Varying the disk�access time � gfp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the disk�access time � gfp with computation� no synchronization � � � � � � ���
���� Varying the disk�access time � lfp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the disk�access time � lrp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the disk�access time � lw with computation � � � � � � � � � � � � � � � � � � ���
���� Varying the number of disks � gfp ���
���� Varying the number of disks � grp ���
���	 Varying the number of disks � lfp ��	
���� Varying the number of disks � lrp ��	
���� Varying the number of disks � lw ���
���
 Varying the number of disks � rnd ���
���� Varying the number of disks � gfp with computation � � � � � � � � � � � � � � � � � ��

���� Varying the number of disks � grp with computation � � � � � � � � � � � � � � � � � ��

���� Varying the number of disks � lfp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the number of disks � lrp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the number of disks � lw with computation � � � � � � � � � � � � � � � � � � ���

LIST OF FIGURES xi

���� Varying the number of disks � rnd with computation � � � � � � � � � � � � � � � � � ���
���	 Varying the number of processors � gfp ���
���� Varying the number of processors � grp ���
���� Varying the number of processors � lfp ���
���
 Varying the number of processors � lrp ��	
���� Varying the number of processors � lw ���
���� Varying the number of processors � seg ���
���� Varying the number of processors � rnd ���
���� Varying the number of processors � gfp with computation � � � � � � � � � � � � � � ��

���� Varying the number of processors � grp with computation � � � � � � � � � � � � � � ���
���� Varying the number of processors � lfp with computation � � � � � � � � � � � � � � ���
���	 Varying the number of processors � lrp with computation � � � � � � � � � � � � � � ���
���� Varying the number of processors � lw with computation � � � � � � � � � � � � � � � ���
���� Varying the number of processors � seg with computation � � � � � � � � � � � � � � ���
���
 Varying the number of processors � rnd with computation � � � � � � � � � � � � � � ���

��� Cache�size variation for gw write ���
��� Cache�size variation for gw write with computation � � � � � � � � � � � � � � � � � � ��

��� Cache�size variation for lw� write ���
��� Cache�size variation for lw� write with computation � � � � � � � � � � � � � � � � � � ���
��� Cache�size variation for seg write ���
��� Cache�size variation for seg write with computation � � � � � � � � � � � � � � � � � � ���
��	 Record�size variation for gw write ���
��� Record�size variation for lw� write ���
��� Record�size variation for seg write ���
���
 RU�set�size variation for WriteFree ���

xii LIST OF FIGURES

List of Tables

��� No�cache demonstration for read�only patterns ��
��� No�cache demonstration for write�only patterns ��

��� Support for one�process pattern ��
��� Results for di
erent prefetch techniques �	

xiii

Chapter �

Introduction

I�O� to disks� to networks� and to user�oriented devices� is expected to become the central
problem in future systems �Cab�
��

��� The I�O Crisis

As computers grow more powerful� it becomes increasingly di�cult to provide su�cient I�O band�
width to keep them running at full speed for the largest problems� The increasing speed and
memory capacity of the most powerful computers allow them to solve ever larger problems� requir�
ing immense amounts of data at high speeds� Disk I�O has always been slower than processing
speed� and recent trends have shown that improvements in the speed of disk hardware will not keep
up with the increasing speed of processors� This problem� the widening access�time gap� is known
as the I�O crisis �PGK����

Smith �Smi��b� argues that the widening access�time gap a
ects uniprocessors� multiprocessors�
and distributed systems� In short� his argument is that CPU speeds �and therefore I�O needs� are
doubling every three to six years� whereas disk access times are decreasing much more slowly� Thus�
the gap is widening� Patterson� Gibson� and Katz �PGK��� agree� claiming that microprocessor
speeds double every year� whereas disk seek speed has only doubled once in the last ten years� and
disk rotation speed has not changed� These trends are expected to continue�

A classic postulate of Gene Amdahl is that computers require � byte of memory and one bit per
second �bps� of I�O for every instruction per second �IPS� of CPU power �SBN���� Our ���node
BBN GP�

 multiprocessor �BBN�	� has a ����MIPS Motorola ��
�
 processor at each node� for
a total of ��� ��� � ��
 MIPS� There are ��� � � ��� megabytes of memory� which is more than
enough according to Amdahl� There should be ��
 Mbps of raw I�O bandwidth for this machine�
but in the standard con�guration the single disk controller peaks at only �� Mbps�� Thus� the
standard con�guration for this machine is far out of balance with respect to I�O �and would be
worse with more processor nodes�� Adding eight ���Mbps disk nodes would balance this system�
assuming the full disk bandwidth could be made available and usable�

Several examples of scienti�c applications requiring high�performance I�O are given in �Int����
These include �uid��ow modeling� molecular modeling� seismic data processing� and tactical simu�
lation� In general� these applications process tremendous amounts of data in a short time� Often
the working data�set size is too large for main memory� requiring large scratch �les� When the
application must run for a long time� checkpointing is necessary to enable the application to con�
tinue after an interruption such images may require gigabytes of storage� Certain applications�

�All GP���� performance �gures from BBN promotional literature�

�

� CHAPTER �� INTRODUCTION

such as seismic processing� read large amounts of raw data� on the order of ���� gigabytes� At the
National Center for Atmospheric Research� the mass storage system handles well over �

 gigabytes
of data per day� from a combined storage of �� terabytes �O�L�
�� In the future� they expect to
have more than a petabyte ��
�� bytes� of storage� and routinely transfer ���
 terabytes as part
of a single simulation� Such large data requirements require an I�O system that can handle large
data transfers quickly� or the machine quickly becomes overwhelmed by I�O�

��� I�O Parallelism as a Solution

One promising solution to the I�O crisis is a parallel I�O subsystem� The idea is to connect many
disks to the computer in parallel� spreading individual �les across all disks� This disk�hardware
parallelism has been studied extensively� particularly for application to serial processors� and more
recently for parallel computers �see Section ����� Parallel disks can provide a signi�cant boost in
performance � possibly equal to the amount of parallelism� if there are no signi�cant bottlenecks�
such as shared busses or controllers�

��� How to Use Parallel I�O

Just as parallel processors are not su�cient to guarantee high computational performance� parallel
disk hardware is not the complete answer to the I�O crisis� It is equally important to design
e
ective parallel systems software� A sequential �le system� or �le access from only one process in an
application� forms a bottleneck that reduces the e
ectiveness of parallel I�O hardware� In contrast�
a well�designed parallel �le system can help even a naive program to harness the power of parallel
disk hardware� This dissertation addresses �le system mechanisms to improve the performance of
applications on a multiprocessor with parallel disk hardware� The goal is to transparently provide
the full disk parallelism� even to applications that do not use parallel �le access methods and to
those that may not use them e
ectively�

Smith �Smi��b� acknowledges that multiprogramming is an e
ective way to mask disk latency�
but concedes that even multiprogramming will not su�ce for this purpose in the future� Indeed�
in many parallel computers the individual processors are not multiprogrammed among several user
processes� Smith�s solution to the I�O crisis is disk caching� Caching is e
ective for improving the
performance of I�O systems in conventional uniprocessor systems �see Section ����� In Section ���
we demonstrate with some experiments the importance of caching in parallel �le systems�

Cache performance can be improved by reading blocks into the cache before they are requested�
This read�ahead is known as prefetching �Smi	�c�� Prefetching is an important technique in unipro�
cessor �le systems� but the techniques for uniprocessor prefetching may not directly apply to the
problem of prefetching in parallel �le systems� Certain simple strategies� such as always prefetch�
ing the next block� may yield good prediction but may not necessarily work well with respect to
improving overall performance� Furthermore� techniques based on detecting sequential �le access
may be more di�cult in parallel due to more complex �le access patterns� In fact� the de�nition of
sequential �le access must change�

Prefetching is appropriate when reading �les� Another set of issues are involved in writing �les�
in particular timing the writes of dirty blocks to disk� The solutions to some of these problems are
treated in Chapter ��

In this dissertation we demonstrate three major points�

� Caching and prefetching can improve disk performance in parallel applications� They do this
by overlapping I�O with computation and I�O with I�O �using parallel disks��

���� HOW TO USE PARALLEL I�O �

� Prefetching can make the power of parallel disks available to single�process applications that
would otherwise use only one disk at a time�

� While caching and prefetching can deliver signi�cant I�O parallelism without requiring
changes to the �le system interface� enhancements to the interface �compatible with the
traditional interface� might make it easier to use parallel disks� and aid automatic prefetch�
ing�

In the next chapter we outline the other work in the �eld� covering parallel disk hardware� disk
caching� �le access patterns� and prefetching in CPU caches� disk caches� and virtual memory� In
Chapter � we de�ne our workload models and architectural assumptions� Our methods are discussed
in Chapter �� Experiments on read�only access patterns are covered by Chapters � through ��
Chapter � examines the potential for prefetching to improve parallel I�O performance� Chapters �
and 	 outline heuristic prefetching techniques and give experimental results� In Chapter � the e
ects
of several architectural parameters are studied� Bu
ering of disk writes is considered in Chapter ��
We propose extensions to the traditional �le system interface in Chapter �
� In Chapter �� we
conclude and present some ideas for further work� A glossary� beginning on page �	�� collects the
de�nitions of terms and acronyms used in this document�

� CHAPTER �� INTRODUCTION

Chapter �

Literature Survey

Many researchers have emphasized the importance of increasing the performance of I�O to keep pace
with ever�increasing processor performance� This is especially a problem with the advent of powerful
parallel processors� Boral and Dewitt �BD��� argue that I�O bandwidth is a crucial bottleneck for
database processing and that a signi�cant increase in bandwidth is necessary if parallel database
machines are to be e
ective� They propose two solutions� hardware parallelism using multiple
conventional disks� or a large �le cache to retain blocks that are re�used and to hold blocks that are
prefetched� Some researchers �Smi��b� PGK��� have emphasized the increasing gap in memory and
disk access times and predict large bottlenecks at the I�O system for high�performance computers�
They propose caching and prefetching �Smi��b� and parallel disk hardware �PGK��� FH��� WCM���
as near�term solutions� The �le system for the NEC supercomputer demonstrates several techniques
for boosting I�O performance� including contiguous allocation� prefetching� and optimizing for large
�les �NNI����

��� Parallel I�O Hardware

Hardware parallelism implies multiple disk drives� and possibly multiple disk controllers and chan�
nels� Traditional systems may use multiple disks for reasons of size� speed� or reliability� but they
rarely spread a single �le over multiple disks to parallelize access to that �le�

There are several ways of organizing multiple disks in a parallel fashion� The same terms are
often used by the literature in di
erent ways� To alleviate some of the confusion� we de�ne several
of these terms here� and use these de�nitions when discussing the other work below�

traditional
 the traditional �le system may use multiple disks� but places each �le entirely on one
disk� The disks may be controlled by a single controller or multiple controllers�

declustered
 the blocks of a �le are scattered among the disks� The disks are accessed inde�
pendently� though they may be connected to the same disk controller� This does not imply
interleaving �see �Pie��� for a non�interleaved declustered approach��

interleaved
 this refers to the way the blocks of the �le are partitioned among the disks� The
blocks are allocated to the disks in a round�robin fashion� the �rst block on the �rst disk� the

�We do not consider multiple�arm �see �Smi	
a�� or multiple�head disk drives in this discussion
 as they still depend
on a single controller
 something we would like to avoid� The importance of avoiding such a bottleneck is emphasized
by the results in �NLS

��

�

� CHAPTER �� LITERATURE SURVEY

next block on the second disk� and so on�� This is a special case of declustering� and does
not imply striping�

striped
 the blocks of the �le are interleaved among the disks� and the disks are controlled by a
single controller� which reads a block from all disks simultaneously� Each disk may contribute
as little as one bit at a time� There are two varieties� depending on whether the disks are
rotationally synchronous� This is a special case of interleaving�

An independent notion that may be combined with all of the above except striping is

parallel� independent disks
 the disks are completely independent� having separate controllers
and paths to memory� and presumably connected to separate processors�

A wide range of di
erent arrangements� including striping� declustering� and combinations� was
studied by Reddy and Banerjee �RB��a� RB��b�� They found that interleaved systems are more
scalable� and more appropriate for scienti�c applications� whereas synchronized striping is better
for general �le system workloads�

Much of the previous work in I�O hardware parallelism has involved disk striping� In this
technique� a �le is interleaved across numerous disks and accessed in parallel to simultaneously
obtain many blocks of the �le with the positioning overhead of one block �SGM��� Kim��a� Ng����
The performance improvement of disk striping �in uniprocessor systems with current technology�
is limited to a small number of disks �less than �ve�� according to simulations reported in �GMS����
This is due to the increasing overhead involved in the serial management of the I�O parallelism�
As the access�time gap between memory and disks increases� they predict that the performance
improvement may be extended to larger number of disks�

Mirrored or shadowed disks are another form of I�O parallelism� which are intended mostly to
improve reliability but which can also boost performance �BG��� Bit����

The RAID group at Berkeley �PGK��� PGK��� Sch��� GHK���� studied large� tightly coupled
arrays of small� inexpensive disk drives� They carefully designed their system with redundancy
in mind� since a highly parallel array of disks is too unreliable without some built�in redundancy�
Their design is experimentally evaluated in �CGKP�
�� concluding that a striped�disk system with
a rotated parity scheme �RAID level �� is better than mirrored disks �RAID level �� for workloads
with large ���� MByte� transfer sizes �e�g�� scienti�c workloads��

Another possible parallel disk architecture is based on the notion of parallel� independent disks�
using multiple conventional disk devices addressed independently and attached to separate pro�
cessors� This arrangement is di
erent than that in most distributed systems since a �le may be
spread over several disks� and thus the disks are more logically related� The �les may be inter�
leaved over the disks� but the multiple controllers and independent access to the disks make this
technique di
erent from disk striping� Systems of this sort were proposed by Flynn �FH��� and
Reddy �RBA��� for hypercube�connected multiprocessors� Both researchers propose special I�O
processors connected by a separate network� and concentrate on the processor layout to minimize
communication delays� This plan was implemented in the Intel iPSC�� multiprocessor �see page 	��

The Gamma project �DGS��
� built a database machine that incorporated parallel� independent
disks with di
erent types of declustering� The �rst version used a network of �
 VAX minicomputers
and the second version used a ���node Intel iPSC�� hypercube multiprocessor� Another database
machine that proposes the use of parallel independent disks is Bubba �BAC��
�� This machine will

�Other granularities are possible
 e�g�
 at the record
 byte
 or even bit level� Thinking Machines� Data Vault
interleaves by bit �TMC
	��

���� PARALLEL I�O HARDWARE 	

have hundreds of independent �intelligent repositories�� each with processing and storage capabil�
ity� This project is paying special attention to the placement of data in the system to minimize
communication and to balance the load between the processors� and to best take advantage of the
disk bu
ers�

Bridge �Dib�
� DSE��� is a �le system developed for the BBN Butter�y parallel computer
that interleaves individual �les over several independent �simulated� disks associated with di
erent
processor nodes� The �le system allows naive programs to access the �les as they might in a
traditional �le system� but makes no special e
orts to fully drive the available disk parallelism� An
alternative interface allows computations to take advantage of the hardware parallelism and locality
by having the �le system dole out blocks from each disk to the process running on the corresponding
processor� so all processes always operate on the �nearest� disk blocks and do not contend for the
same disk drive� Dibble �Dib�
� also discusses resiliency� maintenance� and portability�

����� Commercial Products

Several companies have added some form of parallel I�O hardware to their system� An overview
of the commercial disk�array situation is presented in �Man���� Digital Equipment has a striping
driver available for its VMS operating system �DEC���� Sun Microsystems provides a �MetaDisk�
service that can mirror or stripe across the partitions of a set of disks �Tab�
�� Cray Research o
ers
a disk subsystem that uses hardware to combine four disk spindles into one logical disk drive with a
sustained transfer rate of ��� MBytes�sec �Res�
�� Micropolis Systems makes a striped system with
� disks and one parity disk that is byte�interleaved� with ��� GByte capacity� sustained transfer
rate of � MByte�sec� and MTTF of ��
�

 hours �Mok�	�� Encore �KBK��� and Sequent �Hai���
have parallelized a traditional Unix� �le system� but their disks are limited �as are their processors�
to a single shared path to memory� Symult Systems �Sym��� has a traditional Unix �le system on
several disks accessible in parallel by attaching disks directly to processor nodes� Computer System
Architects builds a ���transputer mesh�connected multiprocessor with embedded I�O nodes �M�����
though it is not clear what �le system model will be used� Teradata builds database machines with
disks accessed through their specialized Y�net� which selects the appropriate disks and merges
results from all the disks to satisfy queries �Ter���� The IBM ���
 disk cache �MH��� is a combined
controller and cache that supports up to �� drives and up to �� channels from the processor�
Redundancy in the controller provides for reliability and increased performance� This system is
intended for uniprocessors� Maximum Strategy markets a disk subsystem that stripes ��� disks�
has up to � channels� and up to � hot spares �Mea���� The Connection Machine DataVault �TMC�	�
TR��� uses a bit�interleaved� striped set of �� disks and 	 parity disks� Up to eight DataVaults
may be attached to a Connection Machine��� each with its own controller� and each maintaining
�
 megabytes per second throughput to �
 gigabytes capacity�

Intel developed an I�O architecture for their iPSC�� multiprocessor based on dedicated I�O
nodes� each with a separate controller and Small Computer Systems Interface �SCSI� bus �Int��a�
Int��b�� The maximum con�guration is ��	 I�O nodes and ��� disk drives with ��� compute nodes�
Their Concurrent File System �Pie��� AS��� provides a transparent interface to the multiple disks�
treating them as a single logical disk� The performance of this �le system is examined in �FPD����
It automatically declusters the �le among the disks �allocating blocks to the �le from any disk� and
routes block requests to the appropriate disk� The interface is the standard Unix interface� with
a few extensions to allow asynchronous I�O and to control concurrent �le access� Other examples
of I�O architectures that are based on dedicated I�O nodes are the NCUBE �compared with the
iPSC�� in �PFDJ����� the proposed BBN Monarch �RCCT�
�� and the IBM Victor �WSB�����

�Unix is a registered trademark of AT�T�

� CHAPTER �� LITERATURE SURVEY

None of these systems have made any signi�cant e
ort �such as the use of sophisticated caching
and prefetching� to help parallel programs use parallel disks e�ciently� Intel uses simple caching and
prefetching in CFS� but it is not clear from the literature what range of workloads or performance
could be supported by their �le system �FPD����

��� Caching

Early operating systems relied on user�controlled bu�ering for high�performance disk I�O� A good
discussion of bu
ering techniques� including careful overlap of computation and I�O� is found
in �FP		� �pp� �����	��� This method depends on the user �or the run�time system� having total
control of the disks� channel� and processor for careful scheduling� Recently� it is common to use
automated caching� where blocks from the disk are kept in memory as long as they are useful� and
�ushed from the cache when room is needed for other blocks�

Alan Smith has extensively studied disk and memory caching in uniprocessors� In �Smi��b��
simulations of disk caching show that disk caching is an e
ective way to boost the performance
�as measured by the cache miss ratio� of the I�O subsystem �e�g�� an � MByte cache can service
�
��
! of I�O requests�� Smith found that an in�memory cache �as opposed to caches at the disk
devices or controllers� had the lowest overall miss ratio� Since it is also closest to the users of the
data� main memory is the most e
ective position for the cache� Due to the variety of disk �le access
patterns� he recommends that the cache dynamically monitor its own miss ratio and use caching
and prefetching only when the miss ratio remains low�

Cache management overhead is signi�cantly reduced by using memory�management hardware
to manage the disk cache without changing the interface �BRW����

Stonebraker �Sto��� discusses disk�caching support for database systems� In particular he exam�
ined replacement algorithms� recognizing that least�recently�used �LRU� is not necessarily the best
policy since much access to databases is sequential� In addition� program�controlled prefetching is
an important capability for the support of database applications� as the database manager often
knows in advance what block it will access next� even if the access is not sequentially related� It
is clear that cache management policies for random access patterns and sequential access patterns
are likely to be di
erent� and thus Stonebraker suggests that the application have some of control
over the policies� Tokunaga et al� �THY�
� implemented a disk cache with this in mind� allowing
the application to specify the type of access pattern it would use�

Modern operating systems commonly use �le caches� The Unix operating system has included
a �le cache from the start �RT	��� A non�Unix example is the IBM VM�XA disk cache �Boz����
File caching is also important in distributed systems� such as Sun�s Network File System �SGK�����
Sprite �NWO���� and Amoeba �TvRvS��
��

��� Prefetching

The central idea behind prefetching is to overlap some of the I�O time with computation by issuing
I�O requests before they are requested� Trivedi �Tri		a� points out that the best reduction one
can hope for in execution time is �
!� if all of the I�O and CPU time perfectly overlap� Thus
programs that have a good balance of CPU and I�O time have a better potential for improvement
from prefetching than those that are more CPU�bound or I�O bound� With parallel disk hardware�
however� we expect prefetching to also overlap I�O with I�O� obtaining even larger bene�ts�

Smith �Smi��b� mentions that prefetching is especially valuable for supercomputers since the
level of multiprogramming often cannot be increased to cover the idle time caused by I�O delays as in

���� PREFETCHING �

traditional multiprogrammed uniprocessor systems� This is evident in the processor�scheduling con�
cepts generally used with the operating systems for the BBN Butter�y Parallel Computer �BBN�	��
in which each processor usually has only one user process running on it�

����� Prefetching in Disk Caches

Smith has studied two simple prefetching strategies in a uniprocessor �le system� Both depend
on an assumption of sequentiality but neither studies the reference string in detail to dynamically
adjust its behavior� The �rst� One�Block Lookahead �OBL�� is described in �Smi��b� Smi��� Smi	�b�
Jos	
� BS	��� and involves prefetching block i " � when block i is accessed� if it is not already in
the cache �these block numbers are physical disk block numbers� but the concept is the same for
logical block numbers as well��� In either case it is marked as most�recently�used for the use of the
LRU replacement algorithm� This technique has been successful in reducing the miss ratio in disk
caches for batch �les and temporary �les in uniprocessor simulations by up to �
! �Smi��b��

Smith�s second technique� described in �Smi	�c�� assumes a strong degree of sequentiality� Using
knowledge about the various costs of I�O system activities� the length of the current run �a run is
a string of accesses to consecutive blocks in a �le�� and the static distribution of run lengths� the
strategy prefetches a number of blocks ahead� As the currently observed run length grows� blocks
are prefetched increasingly far into the future� He found this to be more e
ective than prefetching
a �xed amount ahead� and reduces the cache miss ratio by about �
! in a simulation on a database
workload� He has also found that prefetched blocks should be treated the same as demand�fetched
blocks with respect to LRU replacement� as variations in the replacement priority do not seem to
a
ect the miss ratio� His results are based on the assumption that fetching multiple contiguous
blocks does not take much more time than fetching a single block� which is true for �les that are
stored contiguously on the disk�

Smith�s simulations in �Smi��b� show that prefetching is more bene�cial for some types of �les
than for others� corresponding to the strength of the assumption of sequentiality for each type of
�le� The best improvements are for batch �les� batch users� and temporary �les� since they tend to
be sequentially accessed� No improvements are possible on paging data sets� since they have little
locality� Thus� Smith suggests that caching and prefetching be used selectively� depending on �le
type or� ideally� on hints from the user�

Earlier work by Ragaz and Rodriguez�Rosell �RRR	�� examined reference traces of segments in
a database system� They found strong sequentiality in the references and� in turn� that prefetching
improved the average segment access time� Their strategy prefetched several segments ahead of
each cache miss� Indeed� blocking several segments into a disk block� and then demand�fetching disk
blocks� was nearly as e
ective as prefetching at the segment level� A second strategy adaptively dis�
covered more complex sequential patterns� such as reading every other segment� but provided little
extra improvement for the e
ort� Another adaptive prefetching strategy is described by �FB	���

Prefetching is included in the design of the MPE XL Data Management System for the HP
Precision �Kon���� a memory�mapped �le system� The prefetching algorithm uses a heuristic to
determine the amount of data to prefetch that depends on the access pattern� the �le consumption
rate� the fault rate� any access hints� and memory availability� A similar heuristic is used for the
write�back algorithm�

Powell �Pow		� proposed a �le system for DEMOS� an operating system for Cray�� supercom�
puters� The �le system is oriented around a small disk cache ��
��
 blocks of � KBytes each�� and
uses two basic strategies� when reading sequentially it prefetches blocks to keep the bu
ers as full
as possible and when writing it allocates several contiguous blocks on the disk well ahead of the

�OBL on logical �le blocks was used in the original Unix �le system �RT	
��

�
 CHAPTER �� LITERATURE SURVEY

program to reduce allocation overhead and external fragmentation on the disk� The latter strategy
also tends to avoid seeks when accessing the �le sequentially�

Bennett and May �BM��� de�ne a fairly sophisticated implementation of prefetching� similar
to that in �RRR	��� in a disk controller cache� The controller they propose maintains a table
of recent disk accesses� separating the accesses into separate sequential streams� and prefetching
entire tracks when the reference stream appears to be sequential� The signi�cance of this approach
is its hardware implementation and its ability to automatically monitor several separate reference
streams�

Prefetching in a multiprocessor �le system �Intel�s CFS� was studied brie�y in �FPD���� Each
I�O node prefetches several blocks ahead when access appears sequential� This strategy gave a
��	! improvement in throughput when a single process read an �

 KByte �le sequentially from
a single disk� compared to random access to the same �le� Their study does not directly evaluate
prefetching in a multi�process� multi�disk situation� Multiprocessor prefetching was also examined
by Towsley �Tow	�� TCB	��� This study argues that multiprocessors are likely to bene�t from
overlapping I�O with CPU time more than uniprocessors� and that prefetching looks promising for
large numbers of processors� In particular� overlapping I�O and CPU time is especially useful when
the degree of multiprogramming is low� Without this constraint� adjusting the multiprogramming
level may often be used to provide the necessary overlap to keep the CPU and I�O devices fully
utilized� The emphasis of this study seems to be on multiprocessors operating on independent
tasks� whereas we study programs that use many cooperating processes to accomplish one task�

����� Prepaging in Virtual Memory

Trivedi studied prepaging in a uniprocessor virtual�memory environment in �Tri	�� Tri		b�� He
describes algorithms for prepaging that are optimal with respect to the number of page faults
incurred� with a correspondingly signi�cant reduction in execution time for programs using the
algorithms� These algorithms depend on the ability of the programmer� operating system� or
compiler to accurately predict the pages that are no longer needed and those that will be needed
in the near future� Thus� these are essentially replacement algorithms that decide which pages
to keep� which to discard� and when to prefetch� based on the predictions supplied by another
mechanism �e�g�� the compiler�� These techniques are successful for prepaging data pages in array
algorithms� In �Tri	�� he exploits this technique to attempt to reduce the number of page faults
during transitions between phases of program execution�

More generally� Smith examined prefetching with OBL in memory hierarchies �Smi	�b�� With
no hints from the compiler� as with Trivedi�s technique� prefetching is not helpful except for small
page sizes �about �� bytes�� This small size is due to the relatively small scope of sequentiality in
program instruction and data access patterns� Smith concluded that prefetching is most e
ective
for CPU cache memories� not at the level of virtual memory paging�

Baer and Sager �BS	�� attempt to improve the predictive capabilities of OBL by dynamically
maintaining an association between page numbers� That is� if page j is the �rst page to fault after
a fault to page i� then j will be prefetched whenever a fault occurs for page i in the future� �Pure
OBL associates j � i " � with i�� Their simulations showed that this technique predicts the next
page more accurately than OBL and reduces the number of page faults� They then go further by
reordering pages in a two�level memory hierarchy� grouping a few small pages of primary memory
into large blocks in the secondary memory� The grouping is based on the LRU ordering of pages at
the time of page replacement� This permits an elegant preloading of several related pages on each
fault while placing seldom used pages together in separate blocks�

���� FILE SYSTEM WORKLOAD ��

����� Prefetching in Memory Caches

Prefetching is e
ective for high�speed memory caches in uniprocessors �Smi	�b� Smi���� In this in�
stance only simple prefetching strategies like OBL are feasible� due to the hardware implementation
and the high speeds� The small line size and a relatively larger scope of sequentiality� particularly
in instruction streams� was shown by Smith �Smi	�b� to be important for e
ective prefetching� In
addition� the simplest strategy appears to be superior� initiate a prefetch on every access if the
successor is not already in the cache� as opposed to initiating only on cache misses or more complex
options� Smith also compares �� di
erent traces from � di
erent machines in �Smi��a�� and �nds
that prefetching is always successful �though to varying degrees�� reducing the number of cache
misses by about �
!�

Caching and prefetching were also studied for shared�memory multiprocessors �LYL�	� Lee�	�
Mar���� One of the key points of their research is that the miss ratio is not an adequate measure of
cache performance in multiprocessors with pipelined interconnection networks� due to the overlap
of miss service times� They used one measure based on the overall execution time �Lee�	�� and
another multiplying the miss ratio by the standard deviation of inter�miss times �Mar���� They
found that caching e
ectively counters low�bandwidth problems� and prefetching e
ectively masks
the high latency memory� The combination essentially eliminates the problem of high�latency
shared memory� The primary �aw in these works �especially �Mar���� is that they did not consider
contention at the memory modules or in the interconnection network�

����� Prefetching Summary

In short� previous work in prefetching has centered in two di
erent areas� �� prefetching instructions
and data in memory hierarchies� either between a CPU cache and main memory or between main
memory and disk �prepaging virtual memory� and �� prefetching blocks of a �le in a disk cache�
Most techniques depend on sequential reference patterns� Sequentiality is the simplest access
pattern� and choosing blocks whose size is on the same order as the sequentiality of the access
�a few tens of words for instructions and data� thousands of words for disk �les� seems to be
important� Most results have used simulation or modeling to show a reduction in the cache miss
ratios of roughly �
��
!� which occasionally extend to increases in system performance of about
�
��
!�

��� File System Workload

In order to design caching and prefetching techniques for parallel �le systems� we must have an
idea of the workload expected in such a �le system� This is necessary to tailor the design to the
workload and to generate synthetic workloads for simulation� In addition� to do prefetching� we
must be able to predict future accesses� which requires a good understanding of access patterns�
Smith has studied the e
ect of the choice of workload when evaluating memory caches and prefetch�
ing �Smi��a�� and found a wide variation in the miss ratios and prefetching e
ectiveness depending
on the workload and architecture generating the trace for the simulation�

A common way to view �le system workloads is to break them down into three classes �OD����

scienti�c
 This workload is characterized by sequential access to large �les� High transfer rates
for relatively few large transfers is important here�

transaction processing
 Including database systems� this workload typically involves a large
number of short requests to independent portions of the database� Individual transactions
are limited by disk latency� so the overall I�O throughput �in accesses per second� is an
important metric�

�� CHAPTER �� LITERATURE SURVEY

engineering�o�ce
 This workload �which might also be called general purpose� is comprised of
programs that make a large number of small requests� but with less concurrency than in
transaction systems� Here� the speed of the individual application is important� emphasizing
the latency of individual disk operations�

We expect the �rst two to be the most likely candidates for parallel �le systems� and these are the
workloads emphasized by other researchers �PGK��� PGK��� RB��a�� We concentrate on scienti�c
workloads�

File access patterns have been studied extensively for uniprocessors �Flo��� OCH���� FE����
Floyd �Flo��� studied �le access patterns in a Unix system� and found that ��! of �les opened for
reading are completely read� usually sequentially� Over �
! of all �les opened are opened read�only
or write�only� A classic Unix �le system study ��OCH����� found that �
! of all �les are processed
sequentially� either through the whole �le �	
! of all accesses� or after only one seek� A survey of
�	 large IBM mainframe installations found that �	! of the �les in the �le system were sequential
�les� although these accounted for only ��! of the disk space ��BSTY	��� summarized in �Smi��a���
A study done by Powell �Pow		� on a Cray�� �le system found a similar pattern� with most �les
small� but the large �les occupying most of the disk space� Powell�s data and the IBM survey re�ect
a static �le system and do not include the frequency of use or any other dynamic measure of �le
usage�

Parallel �le access is discussed more generally by Crockett �Cro���� No actual workload was
studied� Instead� �le access patterns are related to possible storage techniques� He de�nes a few
basic �le access patterns� which are either sequential or random in nature� There are four sequential
patterns� pure sequential �no parallel access�� partitioned� in which each process reads a separate
portion of the �le� interleaved� in which the processors read the �le in a globally sequential fashion
but individually read single blocks with regular stride� and self�scheduled� similar to the interleaved
pattern but with an unpredictable stride �i�e�� the processes each read the next unread block��
The random access patterns are either truly random or partitioned� with each process working in a
separate area of the �le�

Despite the lack of any parallel �le access study� we expect there to be enough sequential access
in the parallel �le access patterns of scienti�c applications for prefetching policies that assume
sequential access to be successful� The nature of parallel �le access patterns is di
erent than that
of uniprocess access patterns� and thus we must sometimes look for sequential access in di
erent
ways� We further describe our expectations for parallel �le access patterns in Section ����

��� File System Interface

Several researchers have discussed parallel I�O interfaces for MIMD multiprocessors� The Bridge
�le system �Dib�
� has three interfaces that range from a sequential compatibility interface to
a highly�parallel low�level interface that emphasizes locality� Intel�s �le system for their iPSC��
multiprocessor supports both the standard sequential interface and two types of simple parallel
access patterns �AS���� Crockett �Cro��� has a standard sequential interface� support for self�
scheduled patterns� and independent parallel access by all processes� The CUBIX �le system �for
hypercubes� connects a sequential �le server to a parallel application program �FJL�����

Some systems provide hints to the �le cache based on �le type� which is determined from the
�le name �Kor�
�� access mode �THY�
�� or system administrator �Gro���� Some systems allow the
user to provide hints� An example is �le preallocation in Intel�s CFS �AS����

For more details on related work in �le system interfaces� see Section �
���

Chapter �

Models and Assumptions

In this chapter we present some basic assumptions that underlie our work� along with the models we
have chosen for the workload� processor and I�O architectures� and �le system control� The bulk of
the chapter de�nes the type of workload we expect in a parallel �le system� since its understanding
is critical for caching and prefetching policies� Chapter � describes our testbed and the details of
its policies� implementation� and experimental parameters�

��� Workload

Our e
orts are geared toward high�performance multiprocessor computers running scienti�c appli�
cations� In other words� we do not consider general�purpose or transaction�processing workloads�
We use the model of a single parallel program running on an MIMD parallel processor and consisting
of a set of separate processes� each with a dedicated processor node� There is no multiprogram�
ming within a particular processor node �except perhaps with operating system processes�� The
processes cooperate to access huge data sets� one �le at a time�

����� Parallel File Access Patterns

We must be able to predict the future �le access patterns in order to successfully prefetch disk
blocks� To predict �le access patterns we must �rst understand the patterns we may encounter� In
our study we choose to examine the access pattern within each �le accessed by a particular parallel
program� rather than the access pattern to a particular disk or other system�wide alternatives� We
feel that the sequentiality of access is most evident at the level of the individual �le� particularly if
the �les are not stored contiguously on the disk� Thus our techniques examine sequentiality in the
accesses to the �logical� blocks of a particular �le� rather than to �physical� blocks on a particular
disk� This is in sharp contrast to most previous work on prefetching and disk caching� which expects
to �nd sequentiality at the physical block level� This policy a
ects the structure of our disk cache�
Most disk caches are oriented to caching physical disk blocks and have little or no understanding
of the underlying �le system or process activity� Our system will employ a separate cache for each
open �le� which is shared by several cooperating processes� The caching �and prefetching� decisions
depend on the activity of that set of processes alone�

We assume that the programmer uses a conventional open� close� read� write� and seek interface
to interact with the �le system� The front�line interface converts application read and write requests
into requests for individual blocks of the �le� Note that we distinguish between �le blocks� which
correspond to the storage of the �le in �xed�size units usually related to the disk�s sector size�
and records� which are the logical units used by the application� We assume that the �le�system

��

�� CHAPTER �� MODELS AND ASSUMPTIONS

internals see only the block access pattern from an application� and thus all caching� prefetching�
and I�O is done in blocks�

The �le access patterns we see in a multiprocessor �le system are likely to be di
erent from
uniprocessor �le access patterns� Although �le access patterns in uniprocessor systems are well�
understood �Flo��� OCH���� KD��� FE���� it is not clear that similar patterns will be found in
parallel environments� for a variety of reasons� We expect that the basic function of the �le system
is to provide a long�term repository for data growing main memory capacities will reduce the need
for most temporary �les to be placed on disk� The nature of parallel scienti�c applications tends to
be di
erent than uniprocess� general�purpose workloads� Thus� the �les stored on a multiprocessor
should tend to be larger than on general�purpose interactive systems where most of the referenced
�les have been found to be quite small �e�g�� text �les and program sources�� Parallel �le systems
and the applications that use them are not su�ciently mature for us to know what patterns might
be typical� Parallel applications may use patterns that are more complex than those used by
uniprocess versions of the same application� However� a few basic patterns may be de�ned and we
shall see that many likely parallel algorithms using disk I�O �t into these patterns�

Types of Access Patterns

In our research we consider only read�only and write�only access patterns� We do not investigate
read�write �le access patterns� because we believe that most �les are opened for either reading
or writing� with few �les updated �Flo��� OCH����� We expect this to be especially true for the
large �les used in scienti�c applications ��Pow		� Ber�
��� one or more large input �les are read�
and one or more large output �les are written� There may also be intermediate �les that are
written and then later read� When a �le is only written� it is conjectured that it is usually either
completely written or appended �Flo���� In either case� the writes are to a �new� part of the �le�
not overwriting old information� This is important when the application process writes only part
of a block� If the block already exists on disk� the block must be read into the cache before the
bu
er can be written� If it is a �new� block� not on disk� then the bu
er can be initialized with
zeroes� avoiding the disk read� These disk reads can also be avoided when the application makes
many small writes that eventually overwrite an entire block� This is easy on uniprocessors� but
parallel access patterns make this more complicated� In all of our experiments� we assume that the
�le being written is truncated to zero length and re�created when opened� so no disk reads should
be needed to write the �le�

Read�only access patterns
 We assign all read�only �le access patterns to one of two categories�
random and sequential �see Figure ����� Random patterns are de�ned to be those that do not �t
into the sequential models�

All sequential patterns consist of a sequence of accesses to sequential portions �runs in �Smi	�c���
A portion is some number of contiguous blocks in the �le�� Note that the whole �le may be
considered one large portion� The accesses to this portion may be sequential when viewed from
a local perspective� in which a single process accesses successive blocks of the portion� We call
these locally�sequential access patterns� or just local access patterns� This is the traditional notion
of sequential access used in uniprocessor �le systems� The sequential portions of the individual
processes may or may not overlap each other any overlap has implications for the cache replacement
algorithm� as the blocks in common are used more than once each�

�Actually
 a portion is originally some number of contiguous records
 as read by the application� The �le system

however
 works with the resulting block access pattern
 rather than the original record access pattern� We thus de�ne
portions here from the perspective of the �le system
 in terms of blocks rather than records�

���� WORKLOAD ��

Read�only

IrregIrreg RegRegIrregReg

DisjointOverlapped

DisjointOverlapped

Global�only�Local

SequentialRandom

Parallel File Access Patterns

Figure ���� Categories of File Access Patterns

Alternatively� the pattern of accesses may only look sequential from a global perspective� in
which many processes share access to the portion� reading disjoint blocks of the portion� We call
these globally�sequential access patterns� or just global access patterns� In this view each process
may be accessing blocks within the portion in some random or regular but increasing order� If the
reference strings of all the processes are merged with respect to time� the accesses follow a �roughly�
sequential pattern� The pattern may not be strictly sequential due to the slight variations in the
global ordering of the accesses it is this variation that makes global patterns more di�cult to detect�
If the nature of the sequentiality of a local or global pattern can be detected� more sophisticated
prefetching than just blindly prefetching the next block may be possible�

In addition� the length of portions �in blocks� may be regular� so the �le system may be able to
predict the end of a portion and not prefetch past it� The di
erence between the last block of one
portion and the �rst of the next may also be regular �a stride�� allowing the system to prefetch the
�rst block of the next portion� In the chart we refer to these as regular sequential portions ��Reg��
and others as irregular ��Irreg���

The record size or bu
ering at levels above the �le system can transform one pattern into
another� For example� a globally�sequential whole��le access pattern with a �xed record size may
appear to be an interleaved pattern� if the accesses are regular� An interleaved pattern �not to
be confused with interleaved disks� is a special case of a local pattern with regular portions� A
globally�sequential whole��le pattern may also appear to be a locally�sequential whole��le pattern�
if the record size is much smaller than the �le system�s block size� To the �le system� it appears

�� CHAPTER �� MODELS AND ASSUMPTIONS

that each process is accessing every block� Although one pattern is similar to another� the patterns
are not the same� First� self�scheduled access patterns may sometimes seem interleaved� but due
to variations in record size� computation time� contention� etc�� strict interleaving may not last for
long� Second� a higher�level understanding of the pattern allows for more successful prefetching�
Thus� it is important for the �le system to understand both local and global patterns�

Note that each of Crockett�s proposed access patterns ��Cro���� may be described by our model�
He gives two random access patterns that are exactly represented by our random categories the par�
titioned random pattern� as a re�nement of the random pattern� has little implication for prefetch�
ing� It may� as he points out� determine the layout of the �le on the disks� His pure sequential
and partitioned sequential are special cases of sequential portions� as a sequential portion may be
any part of a �le� including the entire �le� The interleaved pattern is a case of regular sequential
portions that happen to be non�overlapping and cooperating to form a larger global sequential
portion� Finally� the self�scheduled access pattern is essentially our globally�sequential whole��le
pattern� Our categorizations go a step further by generalizing to the concept of sequential portions
and to the concept of local and global views of the access pattern�

Write�only access patterns
 We expect the class of parallel write�only access patterns to be
more limited than parallel read�only access patterns� For example� we expect that every byte of
the �le is written exactly once� whereas in a read�only pattern some bytes may never be read and
some may be read many times� For the sequential patterns we expect to be most common� it is
unlikely that some parts of the �le are not written �i�e�� written zero times� or that some parts are
rewritten �i�e�� written more than once�� As with read�only patterns� we expect to see both local
and global sequentiality�

Examples of Parallel File Access Patterns

We claim that our basic de�nitions of access patterns are su�cient to describe all read�only and
write�only �le access patterns� Later we show the implications of these patterns on prefetching
decisions� First we examine some reasonable scenarios and some examples from the literature
that support our claim that these categories are interesting ones that may actually be seen in real
programs�

It is not hard to imagine programs that read an entire �le sequentially in fact we expect this
to be the common case� In parallel programs� however� there are many variations on this activity�
in addition to one processor reading the whole �le by itself� Each processor may read the �le
entirely on its own� perhaps performing di
erent computations on the data in the �le� Both this
pattern and the single�process pattern are special cases of overlapping local sequential portions�
Alternatively� all processors may cooperate to read di
erent portions of the �le in some manner�
This might be done when the �le consists of a set of records that may be processed in parallel�
perhaps selecting some subset of records that match some criteria� If the processors sequentially
read separate partitions of the �le� it is an example of disjoint local sequential portions if they
intermingle in the whole �le� it is a global sequential portion�

The processes may read only a part of the �le� perhaps a single row or set of rows of a large
matrix mapped into the �le� In this case� they are accessing some sequential portions of the �le�
either randomly or at regular intervals depending on the algorithm� If the matrix is stored as a
dense matrix� the portions are equally long if stored as a sparse matrix� the portions tend to be of
di
erent lengths� Both of these patterns would be used by a local researcher �Pan���� given access
to parallel I�O�

���� PROCESSOR AND I�O ARCHITECTURE �	

Three papers �BBW��� BKZS��� DO��� regarding parallel external sorting and merging of
extremely large �les show that these types of operations use sequential access to �les� usually in
non�overlapping local sequential portions�

In her thesis� Kim �Kim��b� describes a parallel method for computing large �larger than main
memory� Fast Fourier Transforms �FFT� using a synchronously striped disk system� The data is
stored and accessed in sequential portions that are optimized for use with her striped disk system�

One supercomputer program for calculating the electronic structure of molecules requires several
gigabytes of scratch �les �Ber�
�� Several di
erent access patterns appear in the use of these �les�
All writing is sequential� Some of the �les are read sequentially from start to �nish� sometimes
by a single process and sometimes by several processes in cooperation� Some �les involve locally�
sequential portions� with all processes reading random portions of the �le� Finally� some of the
patterns are purely random� The record size varies from �� bytes to more than �� KBytes� All of
these access patterns are represented in our categorization�

Local developers of VLSI tools note that VLSI applications often use large data �les� The �les
tend to be read sequentially and completely into data structures in virtual memory� where the data
is manipulated and then sequentially written back to disk �ABS��

A program for pattern matching in a gene database matches a given gene against every gene
in the database �Die���� The database is about �
 MBytes compressed� The order of the search
is irrelevant� but the record length varies� This is a global pattern with variable record size� or a
locally�sequential pattern with variable�length portions�

In light of these examples it appears that parallel �le access �ts into a few basic categories�
several of which may facilitate prefetching�

��� Processor and I�O Architecture

The architecture on which we base our research e
orts is a multiple instruction stream� multiple
data stream �MIMD� multiprocessor� In addition it is a non�uniform memory access �NUMA�
architecture� in which each processor has its own memory that is also accessible by all other proces�
sors �see Figure ����� The shared memory assumption is not a key component of our architectural
model� but is critical for our testbed implementation� We believe that this class of architecture
e
ectively scales to a large number of processors and disks�

��� I�O Architecture

We represent the disk subsystem with parallel� independent disks �Figure ����� There are multiple
conventional disks� each connected via a separate controller and channel �or bus� to a separate
processor� allowing each to be independently addressed� Indeed� with the NUMA architecture
each disk has an independent path to memory� This allows for completely parallel access to all
disks� Thus the time for a disk access is strictly dependent on the state and activity of that disk
and memory alone� This is in contrast to a conventional uniprocessor where many disks may be
connected to one processor� sharing some channels� disk controllers� string controllers� and memory
for bu
ers� It also contrasts with striping systems where parallel disks are joined by a single
controller�

We de�ne the access time of a single disk request to be a combination of the physical access
parameters of the disk and any contention for the disk� For simplicity� we use a constant physical
access time for each disk� allowing us to ignore the details of the layout on each disk� In other
words� we do not assume that the blocks of the �le are contiguous� which typically reduces seek

�� CHAPTER �� MODELS AND ASSUMPTIONS

Network

Memory

Processor

Processor

Memory

Memory

Processor

Disk

Disk

Disk

Figure ���� Parallel Independent Disks on a NUMA�MIMD Architecture

time for sequential access� A given disk access only contends with other accesses to the same disk�
re�ecting the physical independence of the disks� The assumption that every processor has a disk
is used for the bulk of our experiments� but we vary this in Sections ��� and ����

There are several possible ways of mapping �les to multiple disks� including placing each �le
entirely on one disk� partitioning each �le among disks �by placing a contiguous segment of the �le
on each disk�� or declustering each �le among disks �by scattering blocks or bytes of the �le across
the disks in some manner�� We assume an interleaved structure� with blocks of the �le allocated
round�robin to all disks in the system� This is a straightforward declustering technique that is easy
to calculate� distributes the blocks of the �le roughly evenly� and allows easier extension of the �le
than a partitioned layout�

��� File System Control

The �le system manager is the entity� perhaps part of the operating system or perhaps a separate
process �or processes�� that manages the disks and all requests for I�O� We often refer to the �le
system manager as simply the ��le system�� considering the control software as a part of the �le
subsystem� This may be multiprogrammed on the same processor with the application program�
stealing cycles and thus a
ecting the execution pattern of the process� or it may run separately on
a dedicated I�O processor� independent of the original process� The latter model is used by several
proposed systems �DHS��� FH��� WCM��� Int��b� Pie��� RBA���� Our model is based on the

���� FILE SYSTEM CONTROL ��

multiprogrammed approach� with a �le system manager on each processor� handling all the I�O
requests for that processor� This spreads the I�O overhead over all processors and allows the use
of all processors for computation� rather than reserving a set of processors exclusively for I�O� In
either case the application is only detained �blocked� by demand fetches� when it requires the data
in order to continue� Prefetching I�O requests are serviced while the application continues to run�
The next chapter gives more details about the �le system manager�

�
 CHAPTER �� MODELS AND ASSUMPTIONS

Chapter �

Methods

Our methodology is experimental� using a mix of implementation and simulation� We implemented
a �le system testbed called RAPID�Transit ��Read�Ahead for Parallel Independent Disks�� on an
actual shared�memory MIMD multiprocessor �BBN GP�

�� Since the multiprocessor does not
have parallel disks� they are simulated� Without access to a real workload �parallel applications
using parallel I�O� we chose to use a synthetic workload� The synthetic workload captures such
nuances of real workloads as sequentiality� regularity� and inter�process interactions� These charac�
teristics� all important to caching and prefetching� are easy to incorporate in a synthetic workload
but would be di�cult to include in an analytical model� Thus� we have simulated disks and a
synthetic workload� and a real implementation of the �le system on a real multiprocessor� We run
our synthetic workload through the testbed� measuring the elapsed real time and other signi�cant
statistics� This implementation of the policies on a real parallel processor� combined with real�
time execution and measurement� allows us to directly include the e
ects of memory contention�
synchronization overhead� inter�process dependencies� and other overhead� as they are caused by
our workload under various management policies� Because of the wide variation in multiprocessor
architectures� we cannot claim that this architecture �or its overhead� is typical in any way� It
is� however� a direct measure of real overhead� which is better than simulated overhead� since it
responds dynamically to di
erent conditions and does not mistakenly avoid unexpected sources of
overhead� This is important when beginning to study an area that is not well understood� such as
parallel �le systems� since there are many of these unexpected sources of overhead� An implemen�
tation helps to explore the new area without missing these unexpected e
ects� In this case� it also
evaluates whether practical prefetching policies can be implemented e�ciently�

In some cases� we compare the measurements with trivial analytic performance models to gain
an insight into the behavior of the system� and the overhead imposed by the system� These models
work well for this purpose�

��� The RAPID�Transit Testbed

The RAPID�Transit testbed is a parallel program implemented on a BBN Butter�y GP�

 parallel
processor �BBN�	�� originally derived from the BBN RAMFile system �BBN���� The Butter�y
GP�

 is a NUMA MIMD machine in which all memory resides with the processor nodes �see
Figure ����� but is accessible from all other processors through a form of a log�depth Omega
��butter�y�� network�

The testbed is a set of software routines designed to provide a simple �le system interface to
a set of �simulated� disks� allowing us to experiment with di
erent techniques for caching and

��

�� CHAPTER �� METHODS

prefetching� The testbed is heavily parameterized and fully parallelized� It incorporates both the
synthetic workload �the application� and the �le system �interface and manager�� The �le system
allocates and manages a bu
er cache to hold disk blocks� attempting to prefetch blocks while the
application is blocked� Finally� the testbed gathers statistics on many aspects of the performance
of the �le system�

Figure ��� outlines the basic structure of the testbed as a collection of software modules� The
application reads or writes records of the �le by making requests through the �le system interface�
The interface breaks record requests down into requests for disk blocks� It requests each block� in
order� from the cache manager� The cache manager either �nds the block in the cache �a cache
hit�� or must read the block from the disk into a free bu
er �a cache miss�� If necessary� a block
may be removed from a bu
er in the cache� �rst being written back to disk if it is dirty� Writes
into the cache need not immediately trigger a disk write� Section ����� gives more details about
cache management�

Disk Manager

Predictor

Cache Manager

Cache

Replacement

Policy

File System

Interface

Application

File System Managerblocks

Free List

Prefetch Module

records

RAPID�Transit

Figure ���� The modular structure of the �le system testbed� The boxes represent software
modules� not threads or processes� Communication is therefore by function calls� not messages�

Prefetching is attempted by a processor node whenever the local application process is idle� The
prefetch module running on the same processor repeatedly considers prefetching� releasing control

���� THE RAPID�TRANSIT TESTBED ��

after each action� Each time� it calls a predictor� which encapsulates a particular pattern�prediction
heuristic� The predictor makes its predictions based on the reference history of the application�

The block number of each access is provided to to the predictor as it happens� We call this
noti�cation� since the cache manager noti�es the predictor� The time required for the predictor to
process the noti�cation is the noti�cation time� These noti�cations are the mechanism for supplying
the reference history to the predictor� When asked for a prediction by the prefetching mechanism�
the predictor provides either a one�block prediction based on the reference history� or chooses to
make no prediction �sometimes the best action is no action�� If the predicted block is not already
in the cache� the prefetching mechanism obtains a free bu
er and prefetches the block �issues a disk
request�� The prefetch action is successful if and only if it issues a disk request� A prefetch action
is unsuccessful when there is a surplus of prefetched but unused blocks already in the cache� when
there is a lack of blocks to prefetch �if the predictor refuses to predict any further�� or when the
block chosen for prefetch is already in the cache� Section ����� gives more details about prefetching�

Although the RAPID�Transit testbed was somewhat tuned during its development� it was not
a fully tuned system� Our strategy was always to develop mechanisms and policies� tune through
preliminary testing and experiments� and �nally run a full set of experiments for interpretation�
An iterative development would use the full results to re�tune and re�run the experiments� perhaps
several times� We compare our policies and mechanisms as they performed on our workload� rather
than tuning them to their best performance on this particular workload� We are looking for general
trends and conclusions about the ability of prefetching� not the precise optimized performance of
these policies on these workloads on this architecture�

����� Cache Management

The idea of a disk cache is to retain frequently� or recently�used blocks from the disk� reducing the
number of actual disk accesses� We attach the cache to a particular open �le� caching the logical
blocks of the �le rather than the physical blocks of the disk� This distinction becomes important
when the blocks of a �le may not be stored contiguously on the disk� since any sequentiality in
accesses to the �le may not be evident in the pattern of physical accesses to the disk� It is also
important when �les are accessed by multiprocess applications� The bu
ers are managed in a
way that depends on all accesses to the �le� not just those made by a single processor� so parallel
data structures �shared by all cooperating processes� and algorithms are used instead of standard
uniprocessor cache management algorithms�

The e
ectiveness of the cache depends on the nature of the �le�access patterns in the application
and on the management policies of the cache� This includes an implied dependence on one or
more forms of locality� Spatial locality implies that the various bytes of a block tend to be used
together� Temporal locality implies that blocks tend to be re�referenced shortly after use� In a
parallel environment� there is another form of locality� inter�process locality� This implies that a
block referenced by one process may tend to be referenced by another process� It is wise for cache
policies to consider this form of locality as well�

Common �le reference patterns involve sequential access to the contents of the �le� Sequential
access leads to strong temporal and spatial locality� since all bytes in a block are used �access to
a sequence of records within a block appears as block re�use�� followed by the bytes of the next
block in the sequential order� and reasonably soon �at least� before any other bytes of the �le��
Note� however� that once access has moved on from one block to the next� the �rst block is not
re�referenced by the same process� Thus the spatial and temporal locality applies to the bytes
ahead of the current access� It is thus helpful to prefetch blocks of the �le into the cache before they
are requested� so that the data is in the cache when requested� Without prefetching� the block is

�� CHAPTER �� METHODS

only read into the cache upon a cache miss� forcing the process to experience a delay equal to the
physical disk access time� plus any queuing delays�

The replacement strategy used to manage the cache is completely dependent on the idea of
locality for its e
ectiveness� Smith �Smi��b� found that LRU is su�cient for disk caching operations�
LRU is not necessarily a good policy� however� for sequential access� Since the blocks are not used
after the application moves on to the next block� a �toss�immediately� strategy �Sto��� makes more
sense�

There are a variety of possible caching and replacement strategies� responding to the di
erent
issues of access patterns� physical disk model� multiprocessor architecture� and so on� In this study
we concentrate on a single mechanism� We use an algorithm that is based on least�recently�used
�LRU� algorithms and is speci�cally designed for a shared�memory multiprocessor system� In
addition� it is �exible enough to handle sequential access� when LRU alone is not the best policy�
A separate list is maintained for each process recording the last few blocks accessed� ordered by the
most recent access to each block� This list is called the local recently�used�set� or local RU�set� and
is �xed in size� The global RU�set is the union of all local RU�sets� but is unordered� This is easily
maintained� a counter for each bu
er containing a block of the �le indicates the number of local
RU�sets containing that block� A zero count implies that the block is not in the global RU�set� and
is subject to replacement� No block in the global set may be replaced this is satisfactory as long as
there are enough bu
ers to hold the maximal global RU�set �its size being the sum of the local set
sizes�� We therefore require the number of bu
ers to be at least that large� When a process accesses
a block already in its local RU�set� the RU�set is reordered so that block is the most recent� If the
block being accessed is not in its local set� the least�recently used block from its set is removed from
the set� and the new block becomes the most recent member� In addition� the count of the removed
block is reduced by one and the count of the added block is increased by one� This scheme has the
advantage that the more complex data structure �the ordered list� is maintained completely locally
and without concurrency� whereas the shared data structure �an array of counters� is simple and
is accessed less often� The overall data structure promises low contention and high concurrency�

As blocks leave the global RU�set they become available for replacement that is� the bu
er
containing that block may be allocated to another block� These bu
ers are kept in a global free
list� Any bu
er removed from this list containing a block that has re�entered the global RU�set
is not considered for replacement� and another bu
er is chosen from the list� In some situations
a bu
er in the free list may be involved in a current disk activity� It may be a disk read into the
bu
er� started by a prefetch decision that was later deemed to be a mistake �page ���� or it may be
a disk write used to �ush a dirty block back to the disk �Section ����� To avoid forcing processes
to wait for I�O when they need free bu
ers� we split the free list into two queues� one for ready
bu
ers� and one for unready bu
ers� A bu
er is put on the appropriate queue when it is freed�
Processes remove bu
ers from the ready queue as they are needed� If the bu
er removed is dirty
�contains data not yet written to disk�� the disk write is initiated� the �now clean but unready�
bu
er is placed on the unready free queue� and another bu
er is chosen from the ready queue� If
the ready queue is empty� and the unready queue contains some ready bu
ers� the unready queue is
scanned� moving ready bu
ers to the ready queue� and the process tries again� Unnecessary scans
are avoided by recording the earliest time when a bu
er on the unready queue is expected to be
ready� If there are none ready� a process in demand fetch waits �completely idle�� and a process
attempting a prefetch gives up and tries again later� Thus� a prefetching action never waits for
I�O� although it may scan the unready queue �which is to the bene�t of all processes��

The choice of the local RU�set size depends on the access pattern� if known� For sequential
access patterns� a size of one is all that is needed� implementing �toss�immediately�� In fact�
the RAPID�Transit testbed treats an RU�set size of one as a special case� using a toss�immediate

���� THE RAPID�TRANSIT TESTBED ��

mechanism directly� In this case the global RU�set is the set of bu
ers currently in use by all
processes� For some random access patterns� where a block may be used again within a reasonable
amount of time� the local set size may be larger �implementing LRU within each process�� to take
advantage of any temporal locality�

Thus� with p processes and an RU�set size of one� the minimum cache size is p bu
ers� This
ensures that all processes may do I�O simultaneously without competition for bu
ers� A larger
cache is needed when prefetching� However� we limit prefetching in two ways� �rst� a block that
is prefetched into the cache cannot be removed from the cache until it is used �or recognized as a
mistake� second� the number of these as�yet�unused prefetched blocks is restricted so that there are
always some replaceable blocks in the cache� The former ensures that a prefetched block remains
in the cache long enough to be used� The latter restriction requires that there are p replaceable
blocks� again ensuring a bu
er for every process �to be used for demand fetches�� The limit on the
number of as�yet�unused prefetched blocks in the cache is called the prefetch limit� The cache size
is thus de�ned to be

p� �RU�set size� " prefetch limit�

����� Prefetching Issues

Note that by reading blocks of data into �xed�size bu
ers in memory we are already implicitly
prefetching adjacent bytes� If the application sequentially reads single bytes from a �le� it is
standard practice for the �le system to read a block at a time and parcel out bytes to the application�
paying the cost of the disk access only once� This dissertation considers prefetching on a higher
level� reading blocks into memory before any byte of the block is needed by a process� To do this
we must be able to predict future accesses to the �le� Before we describe how this prediction is
done� we must determine whether the �le system has enough spare time to prefetch�

When to prefetch� There are two general situations when a process may have to wait before
continuing� First� most multiprocessor algorithms involve some sort of synchronization between
processes� An example is a barrier where each process waits until all processes have arrived�
This time may be long� Second� a process may need to wait for a demand�fetched block �cache
miss�� In a uniprocessor� multiprogramming is often used to take advantage of these idle times
in many multiprocessors� however� the individual processors may not be multiprogrammed among
user computations� Instead� while the process is idle� the �le system manager may perform the
necessary computation to prefetch blocks it expects the process to need in the future�

Another possibility is to issue prefetch requests while the process is running� With a multipro�
grammed �le system control� this requires interrupting the process and may perturb the execution
sequence of the application process� a possible detriment to carefully tuned parallel programs�

At a synchronization point� it may be that the time spent making a prefetching decision and
issuing a read request may delay this process from leaving the synchronization point� if all other
processes arrive during this time �see Figure ����� This is called prefetch overrun� Similarly� if
prefetching while a demand fetch is processed� it may not return immediately after the required
block becomes available� If the prefetching decision was correct� however� the prefetched block will
be requested by some process in the near future� Any amount of the access time of that block
�both overhead and I�O� that may be �nished before it is requested by any process is a possible
reduction in the overall completion time of the program� Notice that it makes no di
erence which
process uses the prefetched block� as long as the block is used by some process�

Simply reducing the time of individual read operations may not be su�cient to shorten the
overall execution� If one process of a parallel computation gains from some optimization such

�� CHAPTER �� METHODS

time

Wait time

Wait time

Overrun

Prefetching actions

�Ideal�

Prefetching actions

�Realistic�

Figure ���� Prefetching actions may run past the end of the idle time available due to disk or
synchronization waits�

as caching while another waits on disk I�O for every request� the overall bene�t might be much
smaller than if the advantages of caching could be spread over all the processes� Actual reductions
in the overall completion time depend on our ability to reduce the disk access time so that some
synchronization point �including the end of the program� occurs earlier than it would have without
prefetching� For this to occur� the process that would have been last to arrive at the synchronization
point must arrive earlier� This is demonstrated by the example in Figure ����

This example shows three di
erent executions of a three�process parallel computation� Each
process makes several read requests and there are periodic synchronization points where all three
processes must meet� In case a� every read issued by the program results in a demand fetch from
disk� delaying the process making the request relative to the other processes� In case b� three of
the read requests are hits on the block cache �which has been �lled by some unspeci�ed mechanism
with the needed blocks�� For now� we allow the �generous� assumption that these cache hits result
in major time savings for the a
ected read requests� Unfortunately� the bene�ts are experienced
by only one of the threads of the computation and it waits longer at the synchronization points for
everyone else to catch up� There is no improvement in completion time of the computation from
case a to case b� although both the miss ratio and the average time to service a read request have
been reduced� The savings due to avoiding disk I�O are absorbed into increased synchronization
time� Case c has exactly the same number of hits as case b� but in this case they are distributed
more evenly over the processes� The interval between the two synchronization points becomes
shorter as a result�

���� THE RAPID�TRANSIT TESTBED �	

Speedup

P�

P�

P

P�

P�

P

P

P�

P�

Synchronization Wait

a� All I�O done by demand fetch�

Bu
er Hit �No I�O�

Disk I�O

Legend

Computation

Time

Time

Time

b� Three hits� poorly distributed�

c� Three hits� better distributed�

Figure ���� Executions of a Parallel Computation

�� CHAPTER �� METHODS

The �le system must be careful when it chooses to do prefetching and how many requests
it issues� It is possible� in fact� that prefetching may actually increase the execution time of a
program� A processor that does prefetching may arrive at �or leave from� a synchronization point
later than it would without doing the prefetch� In addition� the I�O for the prefetched block
may con�ict with I�O for data needed immediately� thus slowing down some process that is later
waited for by all other processes� In either case the execution of the program as a whole may
be slowed as well� Finally� in an imperfect prefetching strategy some blocks may be read in that
are never used� occupying valuable cache space for a period of time �Smith terms this �memory
pollution� �Smi	�c��� and of course using valuable disk and channel time� We call these prefetch
mistakes�

Prefetch Mistakes� Recall that the predictor module in the �le system is responsible for tracking
the access patterns and providing a prediction to the prefetch module when requested� Many
predictors are likely to make mistakes� and predict the incorrect block reference sequence� If
a mistaken prediction is supplied to the prefetcher� the block may be prefetched� wasting disk
bandwidth and cache space� If the prediction is indeed incorrect� the block is never used� Our
replacement policy removes blocks from bu
ers only after they are used by at least one process�
Since a block may be prefetched into a bu
er and never used� we supply a mechanism for predictors
to explicitly free a bu
er containing a mistakenly�prefetched block� They may recognize a mistake�
for example� when the next block access occurs and proves the last prediction incorrect� A freed
bu
er may not be immediately available for re�use� since the disk read from the prefetch operation
may not yet be complete� The bu
er can not be used for another purpose until this I�O is complete�
so it is put on the unready queue of the free list �page ���� Forcing blocks to remain in their bu
er
until all read I�O is complete is a conservative simulation choice� An alternative is to consider
all I�O to be completely abortable� allowing the un�nished I�O to be ignored� Another is to
consider I�O that is queued� but not yet started� to be abortable� Both of these alternatives
require some optimistic assumptions about the way the I�O subsystem works� For generality� we
use the conservative approach�

Prefetching can fail to get a free bu
er when no free bu
ers are ready� Thus� it can fail
after getting a block number from the predictor� without the block being fetched somehow� Each
predictor accepts a block number back in order to undo the recommendation� This block number
can then be predicted again�

����� Workload

Due to a lack of actual applications using parallel I�O� we use synthetic applications to drive
our testbed� Each synthetic application is described by the combination of an access pattern and
the values of various parameters� This allows us to generate a wide variety of conditions with
well�known controls� and to repeat the same experiment with di
erent prefetching policies and
algorithms�

An application is represented as a partially ordered list of the records to be accessed� along with
an amount of computation for each record� This list of records is directly related to the block access
pattern� with each record reference expanded into the blocks it references� The list is either a set of
local reference strings� for which the local order is exact but the global interleaving is determined
at run time� or a single global access pattern that is followed in a �self�scheduled� manner by the
processes� Due to natural� run�time �uctuations in the relative timing of parallel processes� the
order of the references cannot be known in advance� but roughly follow the order given�

���� THE RAPID�TRANSIT TESTBED ��

The Access Patterns

Read�only access patterns� We use access patterns describing eight basic application types�
one for each of eight representative parallel �le access patterns� Four of these are local patterns�
three are global patterns� and one is random�

lw Local Whole �le� in this local sequential pattern� every process reads the entire �le from
beginning to end� It is a special case of the overlapped local sequential pattern with a single�
fully overlapped portion�

lfp Local Fixed�length Portions� in this local pattern� each process reads many sequential portions�
The sequential portions have regular length and spacing� although at di
erent places in the
�le for each process�

lrp Local Random Portions� this local pattern uses portions of irregular �random� length and
spacing� Portions may overlap by coincidence�

seg Segmented� in this local pattern� the �le is divided into a set of non�overlapping contiguous
segments� one per process� Each process thus has one sequential portion� This is a special
case of the non�overlapped local sequential pattern�

gw Global Whole �le� this global pattern reads the entire �le from beginning to end� The processors
read distinct records from the �le in a self�scheduled order� so that globally the entire �le is
read exactly once� but locally each processor only reads some small subset of the �le with no
discernible portions�

gfp Global Fixed�length Portions� �analogous to lfp� in this pattern� processors cooperate to read
what appears globally to be sequential portions of �xed length and spacing�

grp Global Random Portions� �analogous to lrp� processors cooperate to globally read sequential
portions with random length and spacing�

rnd Random� this pattern accesses records at random�

Note that these patterns are not necessarily representative of the distribution of the access
patterns actually used by applications� We feel that this set covers the range of patterns likely to
be used by scienti�c applications�

Write�only access patterns The following are the write�only access patterns that seem intu�
itively likely and that we use for our experiments�

lw�
 A single process writes the entire �le from start to �nish�

seg
 This pattern divides the �le into segments� one per process� and each process writes its segment
from start to �nish�

gw
 Like its read�only counterpart� this pattern writes records of the �le in an arbitrary order�
roughly sequentially from start to �nish� with all processes cooperating to write the �le�
Some �external� synchronization method determines which processes write which records�

Except below in Section ���� we only use these access patterns in Chapter ��

�
 CHAPTER �� METHODS

Synchronization Points

One of the opportunities for prefetching occurs at points in the program when the processors
synchronize� A processor may take advantage of the time it spends waiting for the other processors
by doing prefetching� We use four di
erent types of synchronization points� The �rst type is
no synchronization at all� and we call it none� There are two types of barrier synchronization�
the processors synchronize after reading x blocks each �each�x	�� or after reading x blocks total
�total�x	�� The �nal type is pairwise synchronization� in which each process must synchronize
with each of two �neighboring� processors before continuing� We expect this style to be common
in many scienti�c applications� when processors are each assigned a contiguous set of rows in a
matrix� In this case� each processor synchronizes with its neighbor after reading x blocks� and we
call it neighbor�x	�

����� Experimental Parameters

We �x most parameters for our initial tests in Chapters �� �� and 	� Chapter � explores param�
eter variations� These experiments are all for read�only patterns Chapter � considers write�only
patterns� The parameters described here are the base from which we make other variations�

All tests were run with �
 processes on �
 processors� each running the same application with
the same set of parameters� Each experiment was repeated �ve times and the average of each
measure was used for the data point� The patterns all contained exactly �

 record accesses�
where the record size was one block� In local patterns this was divided up as �

 references per
process� Note that in most patterns this translates to �

 blocks read from the disk� but in lw

only �

 distinct blocks are read since all processes read the same set of �

 blocks�
After each record was read� delay was added in some tests to simulate computation this delay

was exponentially distributed with a mean of �
 msec except where noted� All other tests had
no delay after each read� simulating an I�O�intensive process as an example of one extreme in
the computation spectrum� Although this represents one extreme� we believe that it is common
for many applications to cluster much of their I�O into small� I�O�intensive periods� such as at
initialization�

The �le was interleaved over �
 disks� at the granularity of a single block� The disk I�O
performed in all of the tests was simulated using arti�cial delays to approximate disk access times�
The delay� as with all measures of time in the testbed� was in real time� Each disk had a constant
access time of �
 msec� a reasonable approximation of the average access time in current technology
for small� inexpensive disk drives of the kind that might be replicated in large numbers on a
multiprocessor system�

The processes synchronized after reading �
 records on each processor �each�
�	�� after �

 total
�total����	� which is about �
 each�� pairwise after �
 each �neighbor�
�	�� or not at all �none��
The type of synchronization in any given test was the same across all processors� Prefetching was
done both at synchronization points and while waiting for disk fetches �whether demanded by this
process� demanded by another process� or prefetched by the �le system��

The RU�set size of each processor was one block� totaling �
 blocks� implementing the �toss�
immediately� version of our replacement algorithm� The prefetch limit was �
� making the total
cache size �
 blocks� Because of the sequential nature of the access patterns� the additional �

bu
ers were not generally useful without prefetching� but were included for fair comparison with
the prefetching experiments� We chose this �
�block prefetch limit based on preliminary results
that showed it to be a good compromise� We evaluate the actual e
ect of the prefetch limit �cache
size� in Section ����

���� THE BENEFITS OF CACHING ALONE ��

����� Measures

The RAPID�Transit testbed records many statistics intended to measure and interpret the perfor�
mance of prefetching� The primary metric for measuring the performance of an application is the
overall completion time� This� and all time measures� is real wall�clock time� including all forms of
overhead� We also record the average time to read a block� the average e
ective disk access time
�the time from enqueuing a disk request to completion of the request�� the total synchronization
time� the cache hit ratio� prefetch overrun time �Figure ����� prefetch noti�cation time� the number
of mistakes� and many others�

A note on the data
 In almost all cases� every data point in each experiment represents the
average of �ve trials� The coe
cient of variation �cv� is the standard deviation divided by the
mean �average�� Except for a few wildly variable data points �which are all noted�� the cv was
usually much less than
�
�
� meaning that the standard deviation over �ve trials was less than
�
! of the mean� In most places we just give the maximum cv for a given data set�

����� The Ideal Execution Time

To help in interpreting the results� we compare the experimental execution time to a simple model
of the ideal execution time� The total execution time is a combination of the computation time�
the I�O time� and overhead� In the ideal situation� there is no overhead� and either all of the
I�O is overlapped by computation or all of the computation is overlapped by I�O� Thus� the ideal
execution time T is

T � max�I�O time� comp time��

With this workload� architectural model� and parameter values� the ideal I�O time is � seconds��

�

 blocks

�
 disks
�

�
 msec

block
�

� second

�

 msec
� � seconds

Essentially this represents the minimum physical disk time that is necessary to complete the syn�
thetic program� This assumes that the workload is evenly divided among the disks and that the
disks are perfectly utilized� The ideal computation time is also � seconds� since there are �

records with an average computation time of �
 msec each� spread over �
 processors� Thus� the
ideal total execution time� assuming I�O and computation perfectly overlap and there is no over�
head� is also � seconds� Keep this ideal in mind while examining the data� No real execution of the
program can be faster than the ideal execution time� In Chapter � we return to the ideal execution
time when we vary the number of disks� number of processors� and disk access time�

��� The Bene	ts of Caching Alone

Before we examine the bene�ts of prefetching in detail� we �rst reinforce the importance of caching�
Certainly� prefetching is only possible with some form of cache or bu
er to hold the prefetched
information� But caching has signi�cant performance bene�ts of its own� A cache is useful as long
as the access pattern has either temporal locality� in which data in the cache tend to be referenced
again� or spatial locality� in which future data references are close to past data references �e�g�� in
the same block�� As a demonstration� we ran all of our access patterns with and without caching�

�The ideal time for lw is shorter
 only ��� seconds
 since it only needs ��� disk reads�

�� CHAPTER �� METHODS

The cache� when used� contained �
 one�block bu
ers� Other parameters were as follows� no
computation� no synchronization� �
 disks� �
 processes� and � KByte blocks�

Table ��� shows the results of experiments on our full set of read�only access patterns� We
also include a preview of the prefetching results� With one�block records �Table ���a�� there was
actually a slight performance degradation due to caching overhead� There was no improvement
because most of these patterns did not rereference data in the cache� Some patterns �lrp� grp and
rnd� made some rereferences� but so rarely that they were insigni�cant� The lw pattern had many
�inter�process� rereferences� but execution time did not improve with caching because all processes
read the same block simultaneously� and thus did not use the available I�O parallelism� The third
column previews the prefetching results� Prefetching was able to use the sequential locality to
improve the execution time for all access patterns except rnd� The dramatic improvement in lw

was due to the use of all �
 disks in prefetching�

Table ���� Total execution time� in seconds� with and without caching� and with caching and
prefetching� Read�only patterns� �cv �
�
���

a� One�block records� Read�only patterns

Pattern No caching Caching Prefetching

lfp ��� ��	 ���
lrp ��� ��� ��	
lw ��� 	��
�	
seg ��� 	�� ���
gfp ��� ��� ��

grp ��� ��	 ���
gw ��� ��� ��

rnd �
�� �
�	

b� Quarter�block records� Read�only patterns

Pattern No caching Caching Prefetching

lfp ���� 	�� ���
lrp ���
 ��� ��	
lw ���� 	�� ���
seg ���� 	�� ��	
gfp �
�� ���� ���
grp �
�� ���� ���
gw �
�� ���� ���
rnd ���� �
��

The situation changed signi�cantly when the record size was less than one block �Table ���b��
Except in the rnd pattern� each block was referenced four times� once for each quarter�block record
in the block� Without a cache� the block was read four times from the disk� The cache avoided
this wasted disk bandwidth� but could not use the full disk parallelism in the global access patterns
�four processes waited for each block to be read from the disk� and thus only one�fourth of all disks
were in use at any time�� With prefetching and caching� the disks were well utilized� Note that the
bene�ts would be larger for smaller record sizes� and signi�cant for all non�integral record sizes�

���� THE BENEFITS OF CACHING ALONE ��

Table ��� shows the results of experiments on our write�only access patterns� Here we compared
a simple write�back caching policy �see Chapter �� with not caching� Caching was faster in gw�
since the delayed write allowed some overlap between overhead and I�O� The lw� pattern was
most improved because� with caching� this one�processor pattern was able to use more than one
disk� Experiments with quarter�block records� shown in Table ���b� demonstrate the real power of
caching� without a cache� all writes to a disk block after the �rst write had to read the block from
the disk� update the block� and write the block back to disk� With n records per block� a cache
reduces the �n�� disk accesses per block to one per block� The cache also allows concurrent access
to blocks without a cache� all access was serialized� This is evident by comparing the non�cached
results for gw �where four processes used each block� with those for seg �where only one process
used each block��

Table ���� Total execution time� in seconds� with and without caching� Write�only patterns� �cv �

�
���

a� One�block records� Write�only patterns

Pattern No caching Write�back caching

lw� ��	�� ����
seg ��� 	��
gw ��� ���

b� Quarter�block records� Write�only patterns

Pattern No caching Write�back caching

lw� ����� ���	
seg ���� 	�	
gw �
��
 ��	

�� CHAPTER �� METHODS

Chapter �

The Potential of Prefetching

Our strategy is to �rst determine the potential for prefetching to improve �le system performance
on our read�only patterns� To do this� we make the unrealistic assumption that the entire access
pattern is known in advance� This is the basis for the experiments in this chapter� In the next
two chapters� we de�ne and evaluate heuristic prefetching methods that make real�time predictions
based on the accesses as they occur�

Here we use the EXACT predictor� which is provided with the entire access pattern in advance�
This makes it a perfect predictor� since it makes no mistakes and requires little overhead� but not
realistic� since a real predictor does not know the entire access pattern in advance� Nonetheless�
EXACT gives us a rough upper bound on the potential of prefetching�

EXACT does have some limitations� however� in the lrp and grp patterns� It is reasonable to
expect prefetching success within but not between sequential portions� Thus� EXACT does not
prefetch past the end of a portion until a demand fetch has established the location of the next
sequential portion �i�e�� it chooses not to use information it has in its supplied reference string that
would be impossible to predict�� In addition� no prefetching is possible in the rnd pattern� so we
do not consider it further in this chapter�

We measure the potential for prefetching in terms of its ability to improve some performance
measure over the value obtained without prefetching� The combination of several factors contributes
to the general success of prefetching as determined by one of the following measures�

� reduced average block read time

� increased cache hit ratio

� reduced overall execution time

Although the �nal goal may be the ultimate measure of prefetching success� the others are important
to consider� Change in the overall execution time may depend more strongly on the characteristics of
our workload than the other two measures may� whereas the �rst two goals may be more signi�cant
in other workloads� In addition� the average block read time and the cache miss ratio are the
measures most commonly used in the literature to evaluate the performance of prefetching and
caching techniques� As we noted on page ��� however� an improvement in the block read time or
hit ratio does not necessarily translate directly into an improvement in the overall execution time�
We examine this relationship further in Section ������

Our test set for each access pattern used all four synchronization styles� both without com�
putation and with �
 msec of computation� Each of these eight combinations represents one test
case� Each test case was run for seven patterns �all except rnd�� producing �� combinations� Each
combination was run with and without prefetching to produce one data point�

��

�� CHAPTER 	� THE POTENTIAL OF PREFETCHING

A note on the graphs
 In many of the graphs that follow� the distribution of a set of values
is shown as a cumulative distribution function �CDF�� with the fraction of the points having less
than or equal to a particular value plotted against that value� The actual data values are plotted
and connected by lines� This allows easy location of the median �at
��
�� upper �
�	�� and lower
�
���� quartiles� and a general view of the distribution� In other graphs� pairs of values �e�g�� one
with prefetching and one with no prefetching� are compared in a scatter plot� Other graphs plot
the percent reduction due to prefetching of some measure� which is simply the change caused by
prefetching as a percentage of the value measured without prefetching�

��� Prefetching Support for One Processor

Most existing programs� both for uniprocessors and multiprocessors� do not make use of any form
of parallel I�O� The usual paradigm for parallel programs that need to read or write �les is to have
one controlling process open and read the input� then use parallelism for processing� and then use
a single process to write the output �le� In our execution model� there are several idle processes
when this single process is reading or writing� A single reader process may speed up using parallel
disks� but may speed up more if the otherwise idle processors are used to prefetch for the reader
process� Additional speedup is possible if all processes are used to read the �le in parallel� as in
the experiments described in the next section�

The following experiment demonstrates the potential for prefetching to improve I�O perfor�
mance in parallel computations� The experiment involved a �
�process computation on �
 proces�
sors with �
 disks� The �le was �

 blocks long and block�interleaved over all disks� First� a single
process was used to read the �le� Then one process was used to read� and all �
 processes �both
the reader and the �� otherwise idle processes� did prefetching� Finally� all �
 processes read the
�le as in the gw pattern� The results are shown in Table ���� The speedup values are relative to
the �rst case�

Table ���� Speedup attained by prefetching and reader parallelism�

Experiment
Execution time
�sec�

Speedup

One reader� no prefetch ����
 ��

One reader� �
 prefetch ��	 ����
�
 readers� no prefetch ��� ���	
�
 readers� �
 prefetch ��
 ���

Execution was greatly speeded by the use of the other �� processes� for reading� prefetching�
or both� The �rst case simply did not use the available disk bandwidth� reading from one disk
at a time� Since this example involved an I�O�bound computation� its execution was speeded
signi�cantly when the full parallel bandwidth was used� A perfect speedup of �
 is possible by
parallelizing the I�O requests over �
 disks and the overhead over �
 processors� The third case
closely approached this perfect speedup of �
� In the last case� the additional speedup came from
overlapping the I�O and the read operations through prefetching� In this case� the execution time
matched the ideal � seconds� There are two lessons from this experiment�

� Parallel disk I�O� if used� can greatly improve disk bandwidth�

	��� PREFETCHING IN MULTI�PROCESS PATTERNS �	

� Prefetching alone �as in the second case above� can be provided transparently by the �le
system to attain signi�cant speedup ������ on an otherwise sequential part of the computation�

��� Prefetching in Multi�process Patterns

In this section� we experiment with prefetching on a wide variety of workloads �see Section �������
intended to explore a broad range of possibilities� The results are presented in graphs with each
workload represented by a single data point� Thus the graphs represent our particular workload
mix� Remember that the performance of a real system depends on its particular workload mix�

����� Average Block Read Time and Hit Ratio

The average block read time is the average time necessary to read a block from the �le� If the block
is in the cache� the read time is much lower than when a disk operation is necessary� Prefetching
is an attempt to �ll the cache with the right blocks� so that more read requests may be satis�ed
quickly� A lower average block read time is one measure of the success of this attempt� As shown in
Figure ���� the average block read time was signi�cantly reduced through the e
orts of prefetching
in all cases we studied� In this �gure� the read time with prefetching for a given set of parameters
is plotted against the read time without prefetching for the same set of parameters� The line y � x
is plotted as a reference� Since all of the points lie under this line� the average read time for each
instance was reduced� The improvement in the average read time exceeded �
! for ��! of the
experiments� had a median of ��!� and reached as high as ��!�

�

�

��

�

��

�

��

�

��

�� �
 �� �
 �� �
 �� �
 �� 	

With
Pref�

Without Prefetching

Average Block Read Time �msec�

line of no change�

Figure ���� Prefetching consistently lowered the read time�

A possible reason for the improvement in the block read times was the high cache hit ratio�
shown in Figure ���� The hit ratio for all prefetching experiments was over
�	�� with more than
a third of them over
���� Due to the sequential nature of the accesses� most of the corresponding

�� CHAPTER 	� THE POTENTIAL OF PREFETCHING

experiments without prefetching had a hit ratio of
�

 �those that did not had some measure of
inter�process locality� as in the lw pattern��

��

��

��

��

�

��
��
��
�� �

CDF

Hit Ratio

Cache Hit Ratio with and without Prefetching

No Prefetching

Prefetching

Figure ���� The cache hit ratio with prefetching was consistently over
�	�� with more than a
third of the points over
����

A strong improvement in the hit ratio was not enough to lower the average read time� however�
since even a block that was found to be in the cache �perhaps due to a prefetch action or the demand
request of another process� may still have had a large proportion of its I�O time outstanding� The
process had to wait for the I�O to complete� so we call this the hit�wait time� The hits with a
non�zero hit�wait time were unready cache hits �ready cache hits had a zero hit�wait time� and
often represented a signi�cant portion of all cache hits� In Figure ��� the hit ratio �as in Figure ����
is compared with the ratio of unready cache hits� These unready cache hits may be construed as
misses and so we examine the hit ratio that includes both types of misses in Figure ���� Prefetching
still has a clear advantage over not prefetching�

Although the unready cache hits may be construed as misses� they did not have the same impact
as true misses �see Figure ����� In general �	�! of all cases�� the average hit�wait time was less than
the disk access time of �
 msec� Of course� the e
ect of the hit�wait time on the average block read
time also depended on the hit ratio and the unready hit ratio� A small hit ratio would virtually
eliminate the e
ect of hit�wait time� whereas a high hit ratio could be accompanied by either a large
or small average hit�wait time depending primarily on characteristics of the benchmark program
�e�g�� access pattern and computational intensity�� Our results show that the hit�wait time was
usually smaller than the time required for a miss but was large enough �when combined with a high
number of unready hits� to be a contributing factor in the time required to read a block� While
there seems to be a fuzzy relationship between the average block read time and the hit�wait time�
no obvious relationship has been found between the read time and the hit ratio measure over the
full range of experiments�

One factor contributing to the average block read time �when prefetching� was the cost of the
prefetching overhead� Prefetching incurs overhead both directly� due to overruns �page ���� and

	��� PREFETCHING IN MULTI�PROCESS PATTERNS ��

��

��

��

��

�

��
��
��
�� �

CDF

Fraction of all reads

All Hits

Unready cache hits

Figure ���� The unready cache hits represented a signi�cant fraction of all reads�

��

��

��

��

�

��
��
��
�� �

CDF

Ready Hit Ratio

Prefetching

Not prefetching

Figure ���� If the unready cache hits are considered misses� the hit ratio was lower� though still
much improved with prefetching�

�
 CHAPTER 	� THE POTENTIAL OF PREFETCHING

��

��

��

��

�

 �
 �
 �
 �
 �
 �

CDF

Time �msec�

Average hit�wait time

Minimum
demand�fetch time

Figure ���� The average time spent waiting for un�nished disk I�O can be large� Nonetheless� the
wait for a cache hit was usually less than the minimum disk response time of �
 msec�

indirectly� due to increased contention for the disks and internal data structures� Long prefetching
times contribute to long overrun times and� of course� reduce the number of prefetches that are
initiated during a given period of idle time� A prefetching overrun causes a direct slowdown to
one process� as it delays the process from continuing its computation when it is otherwise ready�
Clearly� for prefetching to be a successful technique� these costs must be kept to a minimum� The
prefetching time in our experiments was usually low� keeping the average overrun time near ���
msec in most cases �although certainly some overruns were much longer than the average��

Contention for the disks was measured by the disk response time� the time from the entry of the
request on the queue of the appropriate disk to the completion of the I�O� The disk response time�
and therefore the hit�wait time� for a block was sometimes larger than the physical disk access time
when contention for the disks forced disk requests to be queued for service� Since the physical disk
access time was �xed at �
 msec for our experiments� this was really a measure of the disk queuing
delay� The disk response time slowed as contention for the disks increased� Prefetching increased
the contention for the disks as it �lled the queues with read requests� shown in Figure ����

Note that the disks serviced no more requests under prefetching than they did without prefetch�
ing� since the EXACT predictor fetched no unnecessary blocks� The extra disk load arose from the
same number of requests issued in a smaller amount of time� This is clear when the total execution
time was reduced� Even when the total time was not reduced� the disk reads tended to be issued
non�uniformly in time� creating periods of high disk contention� In general� an experiment that
had high disk utilization even without prefetching experienced sharp increases in the disk response
time as prefetching �lled the disk queues� This e
ect can be seen for several points in Figure ����
Because of prefetching� however� the longer disk operations were overlapped with other I�O� with
computation� and with �le system overhead� resulting in faster average block read times�

	��� PREFETCHING IN MULTI�PROCESS PATTERNS ��

�

�

�

�

��

��

�
 �� �
 �� �
 �� �
 ��

With
Pref�

Without Prefetching

Disk Response Time �msec�

line of no change

Change in response time

�

�

Figure ���� Increased contention for the disks lengthened the disk response time�

����� E�ect on the Total Execution Time

Our primary measure of prefetching e
ectiveness is the total execution time of the program� We
have found that prefetching reduced the total execution time� often signi�cantly� for most of the
cases we studied �see Figure ��	�� The biggest improvements� up to �
!� were in the lw pattern
where all �
 processes could bene�t from each prefetched block�

Occasionally� prefetching increased the execution time� Two of the lfp pattern experiments
slowed down as much as �
!� despite solid improvements in the hit ratio and the average block
read time� This was due to an uneven distribution of the bene�ts of prefetching� as outlined in
Figure ���b� In local patterns� including lfp� the processes prefetched only for themselves� Thus�
any prefetching completed by a process bene�ted only that process� in the form of hits and shorter
read times� It appears that� due to subtle timing issues� some processes grab several bu
ers and
prefetch for themselves� leaving few bu
ers for other processes� Their time was improved� but
they had to wait at the next synchronization point for the less fortunate processes� Those other
processes� in their own attempts to do prefetching �often unsuccessful due to the lack of free bu
ers��
wasted some time in prefetching overruns� lengthening the interval and hence the total execution
time� This issue� and a solution� is discussed further in Section ������ Another solution was an
increased cache size �Section ����� where lfp had a �
! speedup due to prefetching�

The lrp pattern� which had reasonable improvements in the total execution time� did not exhibit
this e
ect as strongly� Recall that with random portions we restricted the prefetching of any one
process to its current portion� which was usually short� Thus� it was di�cult for one process to use
many prefetch bu
ers�

Synchronization delays� the time between arrival of a process at a synchronization point and the
moment all processes achieve synchrony� were a
ected in other patterns as well� This was another
factor that a
ects the total execution time� The synchronization delays often increased as some
of the savings on I�O operations were converted into longer synchronization waits� Prefetching
increased average synchronization time in about half of our test cases� In half of those cases the

�� CHAPTER 	� THE POTENTIAL OF PREFETCHING

��

��

��

��

�

��

 �
 �
 �
 �
 �

CDF

Percent Reduction

Change in the Total Execution Time

Maximum� �	�

Median� ���

Minimum� ���� �slowdown�

�

�

Figure ��	� Prefetching improved the total execution time in most cases�

increase was less than �

!� but in some cases the synchronization delay increased by almost
�

!�

Without some way to distribute the primary bene�t of prefetching �a lower block read time�
among the processes� any reduction in the average block read time did not necessarily translate
into a reduction in the total execution time� Figure ��� plots the reductions measured in our
experiments� demonstrating at best only a fuzzy relationship� Figure ��� plots the reduction in
total execution time against hit ratio�

For these experiments� neither the hit ratio nor the average block read time were strong pre�
dictors of overall success� Nonetheless� some signi�cant improvements in both measures �read time
and hit ratio� were obtained with prefetching�

����� The Balance between Computation and I	O

The preceding results have looked at the data for all data points� from all of the parameter com�
binations we used in our experiments� Many of these runs simply read one block after another
with no time spent processing each block and represent one endpoint of the workload spectrum�
When the processors devote all of their time to I�O� there was an increased likelihood that they
contended for access to the disks and internal data structures� To simulate programs with some
computation� we associated computation time with each block fetched in many of the runs� as
described in Section ������ These runs are included in the preceding �gures� but it is valuable to
examine the e
ect of this variable separately�

We chose one access pattern and one synchronization style and varied the average computation
time per block over a wide range of values� The experiments in this section all use the gw pattern
and each�
�	 synchronization� The computation time is exponentially distributed about a given
mean� The idea was to study the e
ects of prefetching on various measures as the program changed
from I�O�bound to compute�bound�

	��� PREFETCHING IN MULTI�PROCESS PATTERNS ��

��

�

�

�

�

�

 �
 �
 �
 �
 �

Percent
Reduction

in
Total Time

Percent Reduction in Average Read Time

Dependence of Total Time on Average Read Time

Figure ���� Reducing the average block read time does not necessarily imply a reduction in the
total execution time�

��

�

�

�

�

�

��
��
��
�� �

Percent
Reduction

in
Total Time

Hit Ratio

Dependence of Total Time on Hit ratio

Figure ���� Increasing the hit rate does not necessarily imply a reduction in the total execution
time�

�� CHAPTER 	� THE POTENTIAL OF PREFETCHING

The results obtained were as might be expected� As the character of the program switched from
I�O�bound to compute�bound� prefetching bene�ted from overlapping the I�O and the computation�
Indeed� Figure ���
 shows that the total execution time improved more when the program spent
some time in computation� but this tailed o
 as the bulk of the program�s time was spent in
computation �which did not improve with prefetching� and the e
ect of the I�O time improvement
became less signi�cant� The improvement was due to an increasingly large reduction in the average
block read time� which dropped to �! of its value without prefetching�

��

�

	�

�

 �
 �
 �
 �
 �
 �
 	
 �
 �

Percent
Reduction

by
prefetching

De�ned average computation time per block �msec�

E�ect of Computation on Prefetching

Block read time

Total execution time

Figure ���
� Larger improvements in the block�read time and some improvements in the total
execution time are obtained when the processes are less I�O�bound�

The primary reason for the reduced average block read time was the overlap between compu�
tation and I�O� When prefetching� most or all of the I�O delay was �nished during periods of
computation� leaving shorter hit�wait times� Another reason the average block read time improved
was the reduced response time of the disk� When the processes were I�O�bound� there was a great
deal of contention for the disks and internal data structures� This contention decreased steadily as
more time was spent processing each block� although the disk response time when prefetching was
still higher than the response time when not prefetching�

The generality of these results� which were based on a single access pattern� is supported by
the di
erence between the I�O�bound �no computation time with each block read� and balanced
�some computation time on each block� runs in our full set of experiments� Indeed� the average
block read time was always increased signi�cantly when the process was I�O�bound rather than
balanced� Correspondingly� the total execution time generally improves less with prefetching in the
I�O�bound processes than in their balanced counterparts�

����� Attempts to Improve Prefetching

Given what we learned about prefetching and the e
ect of various measures on the average read
time� we explored a change to the prefetch strategy that could improve performance� Although a

	��� PREFETCHING IN MULTI�PROCESS PATTERNS ��

high cache hit ratio was important to lower the block read time� we found that a low hit�wait time
was also an important component� It seems that the blocks that were prefetched were needed soon
after the prefetch had been initiated� A possible improvement to the strategy is to avoid prefetching
blocks that would be used soon� and instead to prefetch well ahead of the current activity in the �le�
In other words� to have the prefetch activity �lead� the demand�fetch activity by some distance�
We tried this strategy with a varying amount of minimum prefetch lead for several patterns� For
space reasons we do not include any plots of the data�

As hoped� the hit�wait time was reduced considerably by increasing the minimum lead� except
for the lw pattern� whose hit�wait time decreased only slightly� In sharp contrast� however� the cache
hit ratio dropped signi�cantly� Unfortunately� the signi�cant decrease in the hit ratio diminished
the e
ect of the improvements in the hit�wait time on the the average block read time� and the
average block read time increased for most patterns �it improved slightly for gfp��

It was therefore no surprise that most patterns slowed down overall� The total time for lfp was
slightly improved� and then only for large values of the minimum prefetch lead� It is unlikely� how�
ever� that prefetching leads of more than �
 or �
 would be workable in an automated prefetching
system� due to the inaccuracy of many prefetching decisions� In any case� the result was that no
satisfying improvements were obtained by using a minimum prefetch lead�

����� The Importance of Synchronization Points

A portion of our experiments used no synchronization points at all� synchronizing only at the end of
the program� These experiments give us an indication of the importance of synchronization points
and of the prefetching that occurs during synchronization points� Interestingly� not synchronizing
at all produced the largest read times for many patterns� though the improvements in both block
read time and total execution time were similar to other synchronization styles� One reason for
the higher read times was the disk contention� synchronization was often a respite for the �le
system� as processes stopped reading blocks� Synchronization points also provided a chance for
prefetched I�O initiated before or during the synchronization point to overlap with the idle time of
the synchronization period� and to be completed �or more nearly completed� before the block was
requested by some process after synchronization� Without synchronization points� processes spent
more time waiting for I�O�

����� Di�erences Between the Patterns

Most of the preceding discussions make no distinction between the data points based on the ac�
cess pattern� In fact� the access pattern often accounts for many interesting di
erences between
experiments� For example� the lw �local whole��le� pattern gained the most bene�t from prefetch�
ing� This pattern is represented in most of the preceding graphs as the most�improved points�
with improvements in the total execution time of about �
��
! whereas the other patterns had
improvements of
���! with some slowing down by up to �
!� The pattern that slowed down was
lfp� as described in Section ������ This slowdown is discussed further in Section ������

Even without prefetching� lw had a hit ratio of
��� since all �
 processors read only �

 blocks
of the �le �chosen so the total number of accesses was �

� for consistency with the other patterns��
Therefore� as long as the processes maintained inter�process locality� there were �� cache hits for
each block fetched� With prefetching� the number of misses was often reduced to a single block�
the �rst one� This meant a hit ratio of
����	�� or nearly �� Because �
 processes bene�ted from
each prefetched block� the bene�ts of prefetching were enormous compared to the other patterns�
which had little �if any� inter�process locality� It was this aspect of lw that made it unique among

�� CHAPTER 	� THE POTENTIAL OF PREFETCHING

the other patterns and that makes its data stand out�
The parameters were chosen to make all of the experiments similar� so that the actual total

execution time could be compared� The lw pattern had a much lower total execution time than
all of the others� due to the reduced number of disk fetches� Most of the others were similar to
each other� Otherwise� total����	 synchronization rather than each�
�	 added a measure of load�
balancing that generally reduced the execution time� Furthermore� not synchronizing at all �none�
usually gave the lowest execution time of all�

����
 The High Cost of Prefetching Overhead

A prefetch action was sometimes complex� requiring several milliseconds to complete� To prefetch
a block� a number of parameters and indicators were checked� such as the number of bu
ers �lled
with unused prefetched blocks� Then a block number to prefetch was obtained from the predictor
�which in EXACT meant checking the provided reference string�� possibly contending with other
processors for access to the predictor�s data structures� Following this� a bu
er was found for the
prefetched block� and any block resident in the bu
er was removed �although no disk operation
was necessary since these patterns are read�only�� Then the I�O request was placed on the correct
disk queue� and the status of the prefetched block updated�

Much of the activity involved in prefetching required several accesses to data structures in
shared memory� which �on the Butter�y� were signi�cantly slower than local memory accesses�
particularly with memory contention� Programs that spent more time processing and less time
doing I�O had lower prefetch times due entirely to reduced memory contention� We expect that
although extremely compute�intensive programs might have smaller hit�wait times� leaving less time
to prefetch� they would be able to prefetch more blocks due to a substantially reduced prefetch
action time�

In our experiments we found the prefetching overhead to be high at �rst� The most signi�cant
indication of this was extremely high ��
 msec� prefetch times and overruns� It was necessary to
optimize the paths through the I�O subsystem� both for prefetch actions and demand fetches� Data
structures were replicated where possible to reduce the number of remote memory references and
the amount of memory contention� and local pointers to remote data structures were maintained
for fast access� Expensive operating system calls to map bu
ers in and out of the �le system�s
virtual memory space were avoided� keeping bu
ers mapped in as much as possible� Statistics were
gathered in data structures kept completely in local memory� We used atomic memory operations
�such as fetch�and�add� in the place of critical sections maintained by locks� The locks that were
used on the data structures were held for short periods only and each lock was designed to a
ect
only a small piece of the data structure� In short� our experience with the implementation of a
simulated system implies that any practical implementation of prefetching must pay a great deal
of attention to optimization�

����� Balancing the Bene�ts of Prefetching

In Section ����� we note an unexpected slowdown in the lfp pattern caused by prefetching� In local
patterns� each process chose blocks for prefetching exclusively from its own list� ignoring the access
patterns of other processes� All processes shared the same set of prefetching bu
ers� If one process
moved more quickly than the others� it could �ll many bu
ers with prefetch requests from its own
reference list� This restricted the ability of other processes to prefetch for themselves� since the
number of bu
ers was limited� Thus the more aggressive process bene�ted more from prefetching
than the others� and �nished its work more quickly� The other processes did not improve as much�

	��� PREFETCHING IN MULTI�PROCESS PATTERNS �	

and the quick process waited for them at the next synchronization� Thus� there were improvements
in the block read time� but they were lost to synchronization delays� The slowdown arose from
the overhead expended by the prefetch manager attempting �and failing� to prefetch for the slower
processes� We call this the greedy�process problem�

The ultimate goal of any solution to the greedy�process problem is to more e
ectively balance
the bene�ts of prefetching in order to lower the overall execution time of the application� We
examine two solutions to the problem here� Other mechanisms that solved the problem include a
restriction on prefetching �Section ���� or a larger cache size �Section �����

Private Prefetch Limits� A direct solution to the greedy�process problem is to limit in some
way the amount of prefetching done by any one process� This may be done by placing a per�
process� rather than global� limit on the the number of bu
ers used for prefetched blocks� In our
experiments� this meant limiting each of the �
 processes to three unused prefetched blocks� rather
than limiting the group of �
 processes to a total of �
 unused prefetched blocks� The number of
bu
ers allocated for prefetching was the same in each case� but in this solution no process could use
bu
ers intended for another process� Inter�process cache hits �due to opportune portion overlaps in
the lrp access pattern� were still permitted� This solution is called Private Prefetch Limits �PPL��

Prefetching For Others� In our prefetching model� the blocks prefetched by the �le system
prefetch manager during the idle time of any given process were chosen from the reference list of
that process� In the greedy�process problem� more blocks were prefetched for an ambitious �greedy�
process than for the others� The Prefetching For Others solution� called PFO� forced every prefetch
manager to choose prefetch candidates from all reference lists� This solution used a self�scheduled
selection of prefetching candidates from the various lists by all prefetch managers�

Table ���� Percent improvement of prefetching over not prefetching� for di
erent prefetch tech�
niques�

Pattern Normal PFO PPL

�
�� �
�� �
��
���� ���� ����
��� ���� ���

lfp ��� ��	 ��	
���	 ���� ����
���
 �
�� ����
���� ���� ����
�	�� ���� ���

���� ���
 ����
��� �
�
 ����

���� ����
�	
lrp ���� ���� ��
��

���� ���� ���
���� ���� ���
���� ���
 �	��
���� ���
 �
��

�� CHAPTER 	� THE POTENTIAL OF PREFETCHING

We compare our prefetching techniques in Table ���� The measure used for comparison is the
percent improvement due to prefetching� as compared to not prefetching� This result is given for
each of the three prefetch techniques� our normal prefetch algorithm� prefetching for others� and
private prefetch limits� A negative improvement represents a slowdown caused by prefetching�
There are eight variations for each pattern� representing di
erent combinations of the synchroniza�
tion style and computation parameters� These results show that PFO was always faster than �or
as fast as� the normal prefetching method� The PPL technique was not as successful� especially on
the lrp pattern� It solved the greedy�process problem as well as PFO did� but was over�restrictive
in cases where the greedy�process problem was not an issue�

The primary reason for the improvements in the lfp pattern was an improvement in the load
balance at each synchronization point �data not shown�� Thus� these techniques had the desired
e
ect� to balance the bene�ts of prefetching� These techniques� however� are not general�purpose�
since they work well only on patterns that have inherently balanced amounts of computation and
of I�O� More sophisticated techniques might be necessary if a load imbalance already exists within
the application� On the other hand� increasing the cache size �and thus reducing the competition
for bu
ers� is a simple solution that was also e
ective �Section �����

����
 Summary of Multi�process prefetching

The experiments in this chapter are intended to measure the e
ectiveness of our prefetching and
caching techniques in a �le system incorporating parallel I�O� given perfect pattern prediction� We
found that prefetching did indeed help to signi�cantly reduce the average block read time and to
increase the cache hit ratio� generally contributing to a decrease in the overall execution time of
the parallel program� The cache hit ratio was an optimistic measure while the read time took into
account prefetching overhead and the hit�wait time as well as the cache hit ratio� Some important
contributors to the read time were the hit�wait time and the disk response time� The average block
read time and the hit ratio were only part of the story� The total execution time was the only good
indicator of overall performance�

Although these techniques were intended to reduce the I�O time seen by a parallel program�
they were most e
ective to a program that did some computation as well as I�O� since much
of the I�O time could be overlapped with the computation time� further reducing the I�O time
actually seen by the program� The speedup to be gained� however� was largest for programs that
were roughly balanced between computation and I�O� just overlapping their I�O with computation�
Indeed� parallel programs have opportunities for multiplying this overlap factor when more than one
process requires a particular disk block at the same time� without prefetching� all processes must
wait for the I�O to complete with prefetching� the I�O may be overlapped with the computation
of all processes�

The lw pattern bene�ted the most from prefetching� There are two reasons� both due to lw�s
overlapped access pattern� First� any prefetched block bene�ted all processes� Second� without
prefetching lw used only one disk at a time �every process waited for one block� then went on to
the next�� Prefetching was able to use all of the disks and thus run much faster�

There was no reason to avoid prefetching blocks needed too soon in the future� since our
experiments suggest that any advance work done reading a block was helpful in reducing the
e
ective access time for that block�

It may seem that a process that does little I�O would leave little time for prefetching to take
place� suggesting that the application should be interrupted for the purpose of prefetching� It
appears� however� that idle times are su�cient for prefetching� Indeed� interrupting the application
may disturb carefully tuned sections of parallel algorithms� Therefore we advocate prefetching only
during application idle periods�

Chapter �

Automatic Prediction in Local

Patterns

In the previous chapter we established the potential for prefetching to improve the performance
of �le I�O� The results depend on the EXACT predictor� which had full knowledge of the access
pattern in advance� In any practical system an o
�line predictor like EXACT is not possible� so
on�line predictors are needed� In this chapter we examine several on�line predictors for local access
patterns �global patterns are treated in Chapter 	�� to determine whether on�line predictors can
reach the full potential identi�ed in the previous chapter� This chapter compares several predictors
on a �xed set of architectural parameters Chapter � examines the e
ects of these parameters on
one local predictor�

�� Introduction

A predictor recommends blocks to prefetch by predicting the near future of the access pattern� On�
line predictors are designed to form their prediction at any point from only the access pattern seen
up to that point� As �le read requests occur� the predictor revises its prediction for the next block
�or blocks� to be accessed� These predictions are used for prefetching when time is available� The
RAPID�Transit testbed supports several predictors in addition to the original EXACT algorithm�
The experiments in this chapter determine what predictor to use for each type of local access
pattern� and whether there is any candidate for a single general�purpose local predictor� First we
describe the idea behind each predictor� Then we outline a set of experiments for evaluating the
predictors� performance� and present and discuss the results�

�� The Predictors

Four basic and three hybrid predictors are de�ned here� These are all on�line predictors� making
predictions in real time based on the data at hand� Remember that predictors do not actually
prefetch anything they are used by the prefetch module to make predictions� which are then used
for prefetching� There are two baseline predictors� the original �o
�line� EXACT algorithm� and
the degenerate case of no prefetching� which we call the NONE predictor� Each predictor is suited
to a di
erent type of access pattern� although some may be more �exible than others� They also
vary in implementation complexity�

Depending on the mix of patterns in a given workload and the importance of optimizing for
particular patterns� one may be able to choose a speci�c predictor for that workload� Each of the

��

�
 CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

�rst six predictors is designed for a speci�c kind of pattern� However� one that is designed for the
lw pattern is de�nitely not the right choice for the rnd pattern� By mixing the characteristics
of several basic predictors� we derive three hybrid predictors that may more easily accommodate
multiple patterns�

����� OBL � One�Block Look�ahead

This algorithm always predicts block i " � after block i is referenced� This is the only block it
recommends for prefetching� It has no prediction at the start�

Note that our implementation of OBL is not the same as most implementations of OBL found
in the literature� Usually� OBL implies prefetching the next block after every read� RAPID�Transit
prefetches only during process idle times� so blocks may not be prefetched after every read�

����� IBL � In�nite�Block Look�ahead

This algorithm is like OBL� in that it predicts block i"� after block i is referenced� It also predicts
that i" �� i" �� � � � will follow� and recommends that they all be prefetched in that order� Whether
they are actually prefetched� of course� depends on the currently available resources� IBL is a logical
extension of OBL� and is designed for the lw and seg patterns�

����� PORT � Portion Recognition

This algorithm attempts to recognize sequential portions� Essentially� PORT tries to handle the lfp
access�pattern family� It expects a regular portion length and regular portion skip �the distance from
the end of one portion to the beginning of the next�� Like IBL� it tries to predict the pattern further
ahead than the next reference� in order to prefetch more blocks� Unlike IBL� however� it limits the
number of blocks that it predicts into the future� This number of blocks is the prefetch distance�
because it represents a distance ahead in the access pattern� With a short prefetch distance� PORT
may predict a few blocks ahead in the pattern� but reach past hundreds of blocks in the �le by
jumping over portion skips� The prefetch distance depends on the following parameters�

MinLen is the number of blocks requested in a row necessary to call the observed sequence a
portion� We use MinLen���

LenRep is the number of consecutive� identical portion lengths needed to consider them regular�
We use LenRep���

SkipRep is the number of consecutive� identical portion skips needed to consider them regular�
We use SkipRep���

MaxDist is the upper limit on the prefetch distance� We use MaxDist���

PORT has no prediction at the start� and predicts nothing until it sees a few �MinLen� blocks
in a row� At this point it predicts a few blocks in advance� depending on a distance function
�below�� If it sees a new portion begin� it records the old portion length and the skip� If� after
a few �LenRep� portions� the length remains constant� it limits its predictions to portions of that
length� If the portion length is regular� and if the skip also remains constant �for SkipRep skips��
it predicts right over the skip into the next portion �possibly over multiple skips� if MaxDist is
greater than the portion length�� up to a distance of MaxDist�

��� THE PREDICTORS ��

The prefetch distance for PORT� when the portion length is irregular� is a function of the
current portion length c�

distance�c� �

���
��

 if c �MinLen
c�MinLen " � if MinLen � c � MinLen"MaxDist
MaxDist if c �MaxDist"MinLen

The MaxDist cuto
 serves to reduce the number of mistakes� In Section ����� we show that it can
also have another signi�cant e
ect on performance�

Choosing PORT Parameters

The value of the PORT parameters �MinLen� LenRep� SkipRep� and MaxDist� depend directly
on the expected workload� If the workload is always �or primarily� of one type of pattern� the
parameters may be chosen to optimize for that pattern� With a more general workload� the ability
to vary these parameters may make PORT more �exible� We discuss each parameter in turn� Note
that all parameters must be at least ��

MinLen should be small �� or �� unless the patterns in the workload suggest avoiding prefetching
in small portions� One example of such a workload is one consisting of two types of portions�
some tiny �say � blocks� and some huge �say �

 blocks�� Here� MinLen�� would defer
prefetching until the portion was con�rmed to be long� Preliminary experiments indicate
that a MinLen of � was a good choice to allow prefetching to begin immediately� MinLen��
was a slightly more conservative choice that was rarely much better than MinLen��� Note
that a random pattern �single blocks at random locations� does have regular portion lengths�
and PORT will not prefetch past the end of a regular portion length� Thus� MinLen�� does
not cause excessive prefetching in random patterns� a major fault of some predictors�

LenRep should also be small� probably � or �� If the portion lengths in the workload are always
�or nearly always� of regular length� then choose LenRep�� to quickly take advantage of this
regularity� Otherwise� choose LenRep���

SkipRep should also be about � or �� Choose SkipRep�� if the workload exhibits �xed skip
lengths� If there are random�access patterns in the workload� however� this will be a
poor choice� Thus� for any workload with some irregular skip lengths� choose SkipRep���
SkipRep�� should su�ce�

MaxDist is a much more �exible parameter� and may be much larger� PORT never prefetches
more than MaxDist blocks ahead of the current position� If MaxDist is too small� processor
and disk idle time may be wasted for lack of prefetching work� If MaxDist is too large�
the number of mistakes caused by an incorrect prediction may be high� Thus� the expected
accuracy of the predictions is an important factor in selecting MaxDist�

It is di�cult to determine the best MaxDist for a particular workload� For highly regular
patterns� the prediction accuracy is likely to be high� so MaxDist may be large� For more
variable patterns� MaxDist should be lower� See Section ��� for a discussion of the sensitivity
of PORT to MaxDist�

����� ADAPT � Adaptive

This predictor also recognizes sequential portions� and is an attempt at handling lrp� It easily
recognizes the regular portion lengths of lfp� It makes no use of any regular skips� however�

�� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

ADAPT is based on probability theory� At any given time ADAPT has some idea of the portion�
length distribution� From this distribution and the current portion length� ADAPT computes the
expected �nal length of the current portion given that the current portion is already a certain
length� This is the conditional expectation of the portion�length distribution��

Let L be the discrete random variable representing the portion length� and c be the length �so
far� of the current portion� Then the expected portion length of the current portion� given that it
is at least c� is given by

E�Ljc� �
X
x

x P �L � xjL � c��

The formula for conditional expectation is from �Tri���� This� by the de�nition of conditional
probability� becomes

E�Ljc� �
X
x

x
P �L � x and L � c�

P �L � c�
�

We can then divide the range of x into two parts� based on c�

E�Ljc� �
X
x�c

x
P �L � x and L � c�

P �L � c�
"
X
x�c

x
P �L � x and L � c�

P �L � c�
�

The �rst term drops out� since the numerator goes to probability zero� The second term can be
simpli�ed since �L � x and x � c� implies �L � c�� We now have simply

E�Ljc� �
X
x�c

x
P �L � x�

P �L � c�
�

We now de�ne the pmf and CDF of L�

pL�x� � P �L � x�

FL�x� � P �L � x�

�
X
y�x

pL�y��

Then we note that P �L � c� � � � FL�c� " pL�c� and that this is independent of x� Then the
conditional expectation becomes

E�Ljc� �
�

�� FL�c� " pL�c�

X
x�c

x pL�x��

We wish to use this formula without advance knowledge of the distribution of L� We thus
de�ne the distribution of L by the portions seen before the current portion� ADAPT records
enough information about the distribution to be able to compute pL�x� �for any x� and FL�c�
easily� and computes the expected portion length every time c changes�

There is a case where the above formula does not work� When the current portion is longer
than any prior portion �which is always true for the �rst portion�� the function becomes in�nite�
In this case we use a simple distance predictor �as with PORT�� shown below� Thus this algorithm
is also a
ected by the MaxDist parameter�

distance�c� �

�
c if c �MaxDist
MaxDist if c �MaxDist

�The concept for ADAPT is loosely based on Smith�s method �Smi	
c��

��� EXPERIMENTS AND METHODS ��

This is equivalent to the formula

E�Ljc� �

�
�c if c �MaxDist
c " MaxDist if c �MaxDist

����� IOBL � IBL	OBL

IOBL is a hybrid predictor� combining IBL and OBL� It is IBL when started� and becomes OBL
whenever an incorrect decision is made� This happens at the �rst portion break� if any� We pay a
little overhead over each of the two algorithms for more generality� The success of this predictor
depends on the workload consisting of one long sequential portion� or many short portions� IBL
alone is probably better for a pattern with multiple long portions�

����� IPORT � IBL	PORT

IPORT is a mixture of IBL and PORT� PORT uses a distance function that is limited to MaxDist�
IPORT uses the same function� but removes the limit when in the �rst portion� Thus� during the
�rst portion� we nearly have IBL� although retaining some conservatism to avoid too many mistakes
in multi�portion patterns� Once a portion break is noticed� IPORT becomes exactly PORT�

����
 IOPORT � IBL	OBL	PORT

This hybrid is slightly more conservative than IPORT� in that it uses OBL instead of the linear
function when in irregular portions� The prefetch distance function is the same as for PORT� with
MaxDist�� for irregular portions� and MaxDist�� for the �rst portion�

�� Experiments and Methods

In this set of experiments we evaluate all of our local predictors in terms of their ability to improve
performance on our synthetic workload� We note the strengths and weaknesses of each predictor�
and identify a predictor �or set of predictors� that work best for each pattern� We also try to
determine whether any one predictor is generally useful for all workloads�

All predictors �including NONE and EXACT� were used with each local access pattern� com�
putation ratio� and synchronization style� Each combination of these four parameters represented
one test case� For each test case� we averaged the total execution time over �ve trials� and used
this as our comparison measure� We recorded many other measures �Section ������ although we do
not directly report them here�

For the ADAPT and the PORT family predictors� which required the MaxDist parameter� we
chose MaxDist��� This choice was fairly arbitrary� Section ��� examines the e
ect of MaxDist on
the PORT�family predictors�

We used our standard workload set� but restricted it to local access patterns� This set included
the lfp� lrp� lw� and seg patterns� We added the rnd pattern here since it is important for
predictors to properly handle random�access patterns�� The synchronization styles were� as before�
each�
�	� neighbor�
�	� total����	� and none� Each test was repeated with computation simulated
between block reads� averaging �
 msec per block�

�They need not handle global patterns
 which are handled by global predictors �Chapter 	�� The choice of a local
or global predictor can also be automated �Section 	�	��

�� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

The other experimental parameters were the same as in our previous experiments� There were
�
 processes and �
 disks� Each process read �

 records �blocks� for a total of �

� There were
�
 bu
ers in the cache� with up to �
 allowed for prefetched blocks� The record and block sizes
were both � KByte� We used the standard prefetching mechanism with none of our other variations
�i�e�� no prefetching�for�others� no private prefetch bu
ers� and no minimum prefetch lead��

To use the results of these experiments to choose a predictor for a given workload� one must know
the relative predominance of each of our pattern types in the given workload� Practical workloads
likely do not have the same composition as our synthetic workload� Since the predictors respond
di
erently to the patterns in our workload� we describe the results for each pattern separately� For
unknown workloads� we de�ne the requirements for a general�purpose predictor� and compare our
predictors to �nd a good general�purpose predictor�

�� Results and Discussion for each Pattern

Our comparison measure is the total execution time� For each test case� we averaged the total
execution time over �ve identical trials� The cv was always less than �! �
�
�
�	 seconds except for
one case�� Thus� small di
erences in total execution time should be ignored� We present a separate
graph for each pattern� including the maximum cv for that graph in its caption� Each graph plots
the total execution times for all test cases in a horizontal bar chart� The graphs group the test
cases by synchronization style� to allow easy comparison of the di
erent predictors� The predictors
are ordered so as to group the IBL family �IBL� IOBL� IPORT� IOPORT� and the PORT family
�PORT� IPORT� IOPORT�� The NONE �no prefetching� case is drawn as dotted lines� both vertical
and horizontal� to facilitate comparison� Occasionally� a predictor was faster than EXACT� These
anomalies are discussed in Section ������

The results for lw are shown in Figures �������� The key to success with both lw patterns was
IBL �one anomaly in lw with computation is described in Section ������� The performance was
almost identical to EXACT� so here on�line prediction was successful� The hybrid predictors all
attempted to mimic IBL on lw patterns and thus came close in performance� The worst performer
was OBL� whose conservatism sharply limited the number of disks used simultaneously� This is an
example of where a simple predictor useful for uniprocessor� single�disk systems was not su�cient
for multiprocessor� parallel�disk systems�

��� RESULTS AND DISCUSSION FOR EACH PATTERN ��

neighbor

each

total

none

	 � � �
 � �
 � �
seconds

Total execution time for lw

NONE �����
EXACT �	���

ADAPT ���
�
PORT ���
�

IPORT �	���
IOPORT �	���

IBL �	���
IOBL �	���

OBL �����

NONE �����
EXACT �	���

ADAPT ���
�

PORT ���
�
IPORT ���	�

IOPORT ���	�
IBL �	���

IOBL ���	�
OBL �����

NONE �����

EXACT �	���
ADAPT ���
�

PORT ���
�
IPORT �	���

IOPORT �	���
IBL �	���

IOBL �	���

OBL �����

NONE �����
EXACT �	���

ADAPT ���
�
PORT ���
�

IPORT �	���
IOPORT �	���

IBL �	���
IOBL �	���

OBL �����

Figure ���� Total execution times for lw� �cv �
�
�	�

�� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

neighbor

each

total

none

	 �
 � � �	 ��
seconds

Total execution time for lw with computation

NONE ��	�
�
EXACT ���
�

ADAPT �
���
PORT �
���

IPORT ���	�
IOPORT ���	�

IBL ���
�
IOBL �����

OBL ���	�

NONE ����	�
EXACT ���	�

ADAPT �����

PORT �����
IPORT ���	�

IOPORT ���	�
IBL ���	�

IOBL ���	�
OBL ���
�

NONE ��	���

EXACT �
���
ADAPT �
���

PORT �
���
IPORT �
���

IOPORT �
�
�
IBL �
���

IOBL �
���

OBL �����

NONE ��	���
EXACT �
���

ADAPT �
�
�
PORT �
�
�

IPORT �
���
IOPORT �
���

IBL �
���
IOBL �
���

OBL �����

Figure ���� Total execution times for lw with computation� �cv �
�
�
�

��� RESULTS AND DISCUSSION FOR EACH PATTERN �	

The results for lfp are shown in Figures �������� The most striking feature in Figure ��� is that
IBL was much slower than the others� IBL made many mistakes at each portion skip� The IBL
hybrids avoided most of the mistakes by switching to OBL or PORT at the end of the �rst portion�
The PORT family and ADAPT are designed to recognize lfp patterns� and so they were more
successful� Still� only small bene�ts �i�e�� improvement over NONE� were obtained for lfp� With
computation� however� the bene�ts were more signi�cant� Here� the PORT family and ADAPT
were essentially tied� All have the same ability to recognize the �xed�length portions� and avoid
mistakes after the start of the third portion� ADAPT could not prefetch into future portions� like
PORT� but that does not seem to have been a de�ciency here�

There were several anomalies due to the greedy�process problem �Section ������� which are
discussed further in Section ������ ADAPT was sometimes faster than the PORT family because
its limitation to prefetching within a portion helped to solve the greedy�process problem� PORT was
highly sensitive to the MaxDist parameter in this pattern �see Section ����� Indeed� with di
erent
�lower� MaxDist values� PORT avoided the problem and did as well or better than ADAPT� The
greedy�process problem was also solved� and better performance obtained� with a large �

�block
cache �see Section �����

�� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

neighbor

each

total

none

	 �
 � � �	 ��
seconds

Total execution time for lfp

NONE �
���
EXACT �
���

ADAPT �
���
PORT �
���

IPORT �
���
IOPORT �
���

IBL ��	���
IOBL �
���

OBL �
�
�

NONE �
���
EXACT �����

ADAPT �
���

PORT �����
IPORT �����

IOPORT ���	�
IBL ���
�

IOBL �
���
OBL �
�
�

NONE �
���

EXACT �
���
ADAPT �����

PORT �
���
IPORT �
���

IOPORT �
���
IBL ��	�
�

IOBL �����

OBL ���
�

NONE �
���
EXACT �
���

ADAPT �
���
PORT �
���

IPORT �
���
IOPORT �
���

IBL �����
IOBL �
���

OBL �
�
�

Figure ���� Total execution times for lfp� �cv �
�
���

��� RESULTS AND DISCUSSION FOR EACH PATTERN ��

neighbor

each

total

none

	 �
 � � �	 �� �
 �� �� �	
seconds

Total execution time for lfp with computation

NONE ��
�
�
EXACT ����
�

ADAPT ��	���
PORT ��	�	�

IPORT ��	���
IOPORT ��	���

IBL ����	�
IOBL ����
�

OBL ����
�

NONE ��
���
EXACT ������

ADAPT ������

PORT ������
IPORT ������

IOPORT ������
IBL ������

IOBL ����
�
OBL ����
�

NONE ��
���

EXACT ��	���
ADAPT ��	���

PORT ��	���
IPORT ��	���

IOPORT ��	���
IBL ������

IOBL ������

OBL ������

NONE ����	�
EXACT �����

ADAPT �����
PORT �����

IPORT �����
IOPORT ���	�

IBL ��	���
IOBL ����	�

OBL ������

Figure ���� Total execution times for lfp with computation� �cv �
�
���

�
 CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

In the lrp pattern �Figure ����� the OBL predictor performed better than less�conservative
predictors �those that prefetched further ahead of the current position�� Only the OBL family was
signi�cantly faster than NONE� More ambitious predictors �such as IBL� made too many mistakes in
this hard�to�predict pattern� Thus� conservatism in the predictor was the key to success� validating
OBL hybrids like IOBL and IOPORT� ADAPT seems to have been too slow to learn the nature of
the portion�length distribution to make e
ective predictions�

In lrp with computation �Figure ����� the results were more mixed� and either PORT or OBL
was the best choice� This pattern allowed more opportunities to overlap computation and I�O� and
thus a more ambitious predictor �like PORT� had some success� In general� though� OBL was a
safe choice for lrp� The hybrids IOBL and IOPORT� intended to mimic OBL in lrp�like patterns�
came fairly close to OBL in most cases� and were thus reasonable substitutes� No predictor could
match EXACT� which was immune to mistakes�

��� RESULTS AND DISCUSSION FOR EACH PATTERN ��

neighbor

each

total

none

	 �
 � � �	 �� �

seconds

Total execution time for lrp

NONE �����
EXACT ���
�

ADAPT �����
PORT �����

IPORT �����
IOPORT ���
�

IBL ��	���
IOBL �����

OBL �����

NONE ��	���
EXACT �����

ADAPT ����	�

PORT ����
�
IPORT ������

IOPORT ��	���
IBL ������

IOBL �����
OBL ���
�

NONE �����

EXACT �����
ADAPT ����	�

PORT ��	�
�
IPORT ��	���

IOPORT �����
IBL ������

IOBL �����

OBL �����

NONE �����
EXACT �
���

ADAPT �����
PORT �����

IPORT �����
IOPORT �����

IBL �����
IOBL �����

OBL �����

Figure ���� Total execution times for lrp� �cv �
�
���

�� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

neighbor

each

total

none

	 �
 � � �	 �� �
 �� ��
seconds

Total execution time for lrp with computation

NONE ������
EXACT ��	���

ADAPT ����
�
PORT ������

IPORT ����
�
IOPORT ����	�

IBL ������
IOBL ������

OBL ������

NONE ��
���
EXACT ������

ADAPT ������

PORT ������
IPORT ����	�

IOPORT ����
�
IBL ����
�

IOBL ������
OBL ����
�

NONE ��
���

EXACT ��	���
ADAPT ������

PORT ������
IPORT ������

IOPORT ����
�
IBL ����
�

IOBL ����
�

OBL ������

NONE ������
EXACT �����

ADAPT ��	���
PORT ��	���

IPORT ��	�
�
IOPORT ������

IBL ��	�
�
IOBL ������

OBL ����	�

Figure ���� Total execution times for lrp with computation� �cv �
�
�
�

��� RESULTS AND DISCUSSION FOR EACH PATTERN ��

The EXACT predictor is not used with the rnd pattern �Figure ��	�� since no prefetching is
reasonably possible here� EXACT is conceptually equal to NONE� The rnd pattern required a
predictor more intelligent than OBL or IBL� which both performed poorly due to mistakes� ADAPT
or any of the PORT family su�ced� In any random pattern� any prefetching is usually wasted� and
thus only slows down the computation� A predictor must shut o
 prefetching to be successful with
rnd� The results for rnd with computation are similar �not shown��

neighbor

each

total

none

	 � �	 �� �	 �� �	 ��
	
�
seconds

Total execution time for rnd

NONE ����
�

ADAPT ����
�
PORT ����
�

IPORT ����
�
IOPORT ����
�

IBL ������
IOBL ��
�
�

OBL ��
�
�

NONE ������

ADAPT ������

PORT ������
IPORT ������

IOPORT ������
IBL ������

IOBL ������
OBL ������

NONE ������

ADAPT ������

PORT ������
IPORT ������

IOPORT ������
IBL ����	�

IOBL ������

OBL ����
�

NONE ��	���

ADAPT ��	���
PORT ��	���

IPORT ��	�
�
IOPORT ��	���

IBL ������
IOBL ��
���

OBL ��
�
�

Figure ��	� Total execution times for rnd� �cv �
�
�
�

�� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

The seg pattern was di�cult to handle� since the disk access pattern is critical to performance
�Figures ��������� The disk access pattern was more important than the prediction accuracy or
other factors� In the seg pattern� all processes began their round�robin disk access pattern on
the same disk� This caused severe initial contention� followed by a neat pipelining of processors
through the disks� Synchronization and prefetching both interfered with this pipeline� It turns out
that a larger cache helped to handle disk contention by allowing more prefetching much better
performance was possible �Section �����

When the disk access pipeline was reset at each synchronization point� as in each�
�	 synchro�
nization� the large amount of prefetching allowed by IBL predictors helped to spread out the disk
accesses after the synchronization point� reducing disk contention� Thus� the IBL family was best
for each�
�	� The conservative OBL was best for the total� and non�synchronized cases� maintaining
a neat pipelined access pattern� MaxDist�limited predictors PORT and ADAPT were similar to
OBL for neighbor�
�	 and none� Adding computation �Figure ���� allowed more potential for over�
lap between computation and I�O� and the conservatism of OBL was no longer necessary� PORT
and ADAPT were generally best� except for each�
�	� where the IBL family was still best�

��� RESULTS AND DISCUSSION FOR EACH PATTERN ��

neighbor

each

total

none

	 � �	 �� �	
seconds

Total execution time for seg

NONE �����
EXACT �����

ADAPT ���	�
PORT �
���

IPORT �����
IOPORT �����

IBL �����
IOBL ���	�

OBL �����

NONE ������
EXACT ����
�

ADAPT ������

PORT ������
IPORT ����
�

IOPORT ����
�
IBL ������

IOBL ������
OBL ��
���

NONE �����

EXACT �����
ADAPT �����

PORT �����
IPORT ���
�

IOPORT ���
�
IBL �����

IOBL �����

OBL ���
�

NONE �����
EXACT �
�
�

ADAPT �
���
PORT �
���

IPORT �����
IOPORT �����

IBL ���
�
IOBL �����

OBL �
�
�

Figure ���� Total execution times for seg� �cv �
�
���

�� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

neighbor

each

total

none

	 � �	 �� �	 �� �	
seconds

Total execution time for seg with computation

NONE ��
�	�
EXACT ����	�

ADAPT ������
PORT ������

IPORT ����
�
IOPORT ������

IBL ������
IOBL ������

OBL ������

NONE ��
�	�
EXACT ��
���

ADAPT ������

PORT ������
IPORT ��
���

IOPORT ��
���
IBL ��
���

IOBL ��
���
OBL ������

NONE ������

EXACT ��	���
ADAPT ������

PORT ��	���
IPORT ����	�

IOPORT ��	���
IBL ������

IOBL ����
�

OBL ������

NONE ������
EXACT �����

ADAPT �����
PORT �����

IPORT �����
IOPORT �����

IBL �����
IOBL �����

OBL ��	���

Figure ���� Total execution times for seg with computation� �cv �
�
���

��� RESULTS AND DISCUSSION FOR EACH PATTERN �	

A slightly di
erent seg access pattern� reading �
� blocks rather than �

 blocks per process�
starts each process on a di
erent disk� Thus� the pipeline is explicitly built into the pattern� The
results for this pattern� seglong� are shown in Figure ���
� OBL was consistently the fastest
predictor� OBL did not disturb the pipeline� especially under the tight each�
�	 synchronization�
while still prestaging accesses to keep the disks fully utilized� In comparing with Figure ���� it is
interesting to note that this pattern� though longer� runs faster� because of the explicit pipeline�
As before� the disk access pattern is more important than the ability of the predictor�

neighbor

each

total

none

	 �
 � � �	
seconds

Total execution time for seglong

NONE �
���
EXACT �
���

ADAPT �
���
PORT �
���

IPORT �����
IOPORT �����

IBL �����
IOBL �����

OBL �
���

NONE �
���
EXACT �����

ADAPT �����

PORT �����
IPORT ���	�

IOPORT ���	�
IBL �����

IOBL ���	�
OBL �
���

NONE �
���

EXACT �
���
ADAPT ���	�

PORT ���	�
IPORT �����

IOPORT ���	�
IBL �����

IOBL ���	�

OBL �
���

NONE �
�
�
EXACT �
���

ADAPT �
���
PORT �
���

IPORT �
���
IOPORT �
���

IBL ���	�
IOBL �
���

OBL �
���

Figure ���
� Total execution times for seglong� which is a slightly longer pattern� �cv �
�
���

�� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

When a variable amount of computation accompanied each block read in the seglong pat�
tern� the pipeline was disrupted and the advantage of OBL was lost� In each test case� PORT
was at least equivalent �within measurement error� to the best predictor for this pattern� shown
in Figure ����� More than one�block lookahead was clearly necessary here� Indeed� for all but
the neighbor�synchronized cases all on�line predictors except OBL were similar� The anomaly in
the neighbor�synchronized tests is similar to that in the seg pattern with computation� which is
discussed in Section ������

neighbor

each

total

none

	 �
 � � �	 �� �
 �� ��
seconds

Total execution time for seglong with computation

NONE ����
�
EXACT �����

ADAPT �����
PORT �����

IPORT ��	���
IOPORT ��	���

IBL ��	�	�
IOBL ��	���

OBL ������

NONE ������
EXACT �����

ADAPT �����

PORT �����
IPORT ��	���

IOPORT ��	���
IBL ��	���

IOBL ��	�	�
OBL ������

NONE ����
�

EXACT �����
ADAPT ��	���

PORT ��	���
IPORT ��	�
�

IOPORT ��	�
�
IBL ��	�
�

IOBL ��	���

OBL ������

NONE ������
EXACT �����

ADAPT ���
�
PORT ���
�

IPORT ���
�
IOPORT ���
�

IBL ���
�
IOBL �����

OBL ��	�
�

Figure ����� Total execution times for seglong with computation� �cv �
�
���

��� RESULTS AND DISCUSSION FOR EACH PATTERN ��

����� Choosing a General�purpose Predictor

The determination of the �best� predictor clearly depends on the relative importance of di
erent
access patterns in a particular workload� Given knowledge of the workload� the preceding discussion
helps to choose the best predictor� With a highly�mixed workload� or no knowledge of the workload�
a general�purpose predictor is necessary� A general�purpose predictor should work reasonably well
on all workloads� and provide high performance to most of the access patterns encountered� We
designed the hybrid predictors in the search for a general�purpose predictor� Although our synthetic
workload is not necessarily typical� it is broad enough to encompass the many kinds of patterns
that may be found in practical workloads� We thus use our synthetic workload to evaluate our
predictors� a general�purpose predictor will handle all test cases reasonably� and most test cases
well�

Our �rst comparison measure was the percent deviation of each predictor�s time from that of
the best on�line predictor� Thus� if the total execution time on a given test with on�line predictor
i is ti� and the best time tb is de�ned to be the minimum ti� the percent deviation for predictor i is

di �
ti � tb
tb

� �

!�

If the deviation for a predictor were zero in every test case� then the predictor would be the best
choice for every test case� This is unlikely� but we can expect a general�purpose predictor to have
many deviations near zero without any that are high� Since the run time for each predictor was
averaged over �ve trials� and the run time often varied by about �!� deviations of this magnitude
were indistinguishable from noise in the data� Thus a deviation of less than �! should be considered
to be essentially no deviation�

The collection of deviations for each predictor forms a distribution� We present each distribution
in a common graphical form called the box plot� which allows inspection of �ve key points� the
minimum� maximum� median� and lower and upper fourths� These �ve points divide the distribution
into four parts� each representing one quarter of the data points in the distribution� The position
and size of these parts summarize the shape of the distribution�

The box plot of the deviation distribution for each predictor is shown in Figure ����� Each
distribution is given on a separate line� with a circle representing the median� and a line on either
side representing the upper and lower fourths of the distribution� In this particular plot� the
lower fourth is barely visible� if at all� The OBL and IBL distributions are cut o
 on the right�
since their maximums are large� The predictors are grouped somewhat to keep the PORT family
�PORT� IPORT� IOPORT� and the IBL family �IBL� IOBL� IPORT� IOPORT� together for easy
comparison�

From Figure ����� ADAPT and the PORT family had the lowest median deviations �less than
�!�� IPORT and IOPORT had the additional advantage of a low maximum ���!�� meaning
they were never more than a third slower than the best predictor for any test case� There is
little information here to distinguish IOPORT from IPORT� Note that the simple OBL and IBL
predictors were poor general�purpose selections�

A similar comparison measure computes the percent deviation from NONE� This is the negative
of the percent improvement due to prefetching� In Figure ����� negative percent deviation represents
improvement due to prefetching� and positive deviation represents a slowdown due to prefetching�
IBL is again cut o
 on the right� Although all on�line predictors had similar medians ��� to ��!
improvement�� IOPORT had the lowest maximum ����! slowdown�� and the IBL family had the
lowest minimum �����
! improvement�� Here the di
erence between IOPORT and IPORT is
more clear� since IPORT had a higher maximum deviation� IOPORT was thus a good choice for a
general�purpose predictor�

	
 CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

ADAPT

PORT

IPORT

IOPORT

IBL

IOBL

OBL

	 �� �	
� �		 ��� ��	
Percent Deviation

Deviation from Best Total Execution Time

OBL to max

�

IBL to max ���

�

�

Figure ����� A box plot of the percent deviation from the best for each test case� The lowest
medians belong to ADAPT and the PORT family� but the lowest maximums to the hybrid PORT
patterns�

EXACT

ADAPT

PORT

IPORT

IOPORT

IBL

IOBL

OBL

��		 ��	 	 �	 �		
Percent Deviation

Total Execution Time� Deviation from NONE

IBL to max ��	 �

Figure ����� A box plot of the percent deviation from NONE�

��� RESULTS AND DISCUSSION FOR EACH PATTERN 	�

A box plot of the predictors compared to EXACT �not shown� was of little use due to several
anomalies� where on�the��y predictors beat EXACT� EXACT was a perfect predictor in terms of
accuracy� but was unfortunately not a perfect �best case� for comparing results�

����� Anomalous Cases

In some cases an on�line predictor actually beat the EXACT algorithm� The reason varied with
the case� but each depended on an e
ect separate from prediction issues� We discuss each e
ect
separately here�

The Greedy�Process Problem

This problem a
ecting the lfp pattern involved an imbalance in the bene�ts of prefetching� One or
more processes prefetched an inordinate amount for themselves� using all of the bu
ers and slowing
down the other processes �page �	�� With explicit inter�process synchronization the computation as
a whole was slower� This e
ect was responsible for the anomaly in the lfp pattern with each�
�	 and
neighbor�
�	 synchronization� with or without computation� With some mechanism for balancing
the bene�ts of prefetching� the performance of EXACT would improve� For example� the MaxDist
cuto
 in PORT restricted the prefetching of individual processes� allowing all processes a chance
to prefetch� By similarly restricting the EXACT predictor� its performance improved� This points
out that perfect prediction does not guarantee the best performance�

As an example� consider lfp with computation and neighbor�
�	 synchronization� With EXACT
it completed in ���� seconds whereas PORT and ADAPT took �
�
 and �
�� seconds respectively�
Varying the MaxDist parameter demonstrates the dependence�

MaxDist
Algorithm � � �
 �
 �
 �

PORT ���� �
�� �
�	 ���� ���� ����
ADAPT �
�
 �
�� �
�

Once we removed the low MaxDist restriction from PORT� its run time climbed to match that of
EXACT� ADAPT� by its nature� was limited to prefetch within the portion� A similarly restricted
EXACT had a total time of �
�� seconds� The other lfp anomalies can be explained in the same
way� The e
ect of MaxDist on PORT is discussed further in Section ����

The lw Phase Problem

In the lw pattern� all processes read the same set of blocks in the same order� As long as they
all read them at about the same time� the cache ensured that each block was only read from the
disk once� If the processes became spread out over the �le� reading a wide range of blocks� blocks
may have been read from disk� used� and �ushed from the cache before they were needed by some
process� This process must then reread the block from the disk�

In some cases synchronization� or a balanced load� ensured that the processes stayed together�
With variable computation per block� and with the loose neighbor�
�	 synchronization� the pro�
cesses spread out� In this case� EXACT ran in 	�� seconds ��	� disk reads�� while PORT and
ADAPT took ��� or ��� seconds ��

 disk reads�� In fact� only OBL� PORT� and ADAPT managed
to stay together� Again� it was the MaxDist restriction that solved the problem�

One possible solution to this problem is to predict the number of uses of each block from the
number of uses of previous blocks in the pattern� Then only �ush blocks from the cache when

	� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

they have been used the predicted number of times� This would require some �exibility� since non�
integral record sizes would cause inequalities in the number of uses of di
erent blocks� In addition�
if the prediction is incorrect� another mechanism is needed to expire the block�

In a more exact solution to this problem� processes record their �interest� in a block whenever
they predict the block� We add a counter for each block to count the processes interested in the
block� The counter is incremented when a process selects the block� and decremented when a
process uses the block� The �rst interested process also prefetches the block� The block remains
in the bu
er until the interest count drops to zero� This has bene�ts whenever many processes try
to prefetch a block� either correctly or incorrectly� This mechanism is not guaranteed to solve the
problem with lw� since it is possible for a process to not mention its interest in a block until after
the block is prefetched� used� and �ushed by other processes�

When the tests for lw with computation and neighbor�
�	 synchronization were repeated with
the latter solution in place� the problem disappeared� Only �

 blocks were read in all cases�
Although NONE and OBL were not a
ected� all of the other predictors managed to lower their
time to ��� seconds� Although this mechanism seems like a desirable addition� it is not the default
in the rest of our experiments�

Disk Access Pattern Details

The seg pattern produced a most di�cult disk access pattern� all processes read from the disks in
a round�robin fashion� and all began on the same disk� This could cause a lot of disk contention�
and the e
ect of the predictor �or synchronization� on this pattern could mask the e�ciency of the
predictor�

Without prefetching� the processes fell into a pipeline� With prefetching� this pipeline often
never formed and the accesses became more spread out� With a lot of prefetching� the access times
became highly variable� the synchronization times increased� and the computation slowed down�

For example� in seg with neighbor�
�	 synchronization� EXACT required ��� seconds� while
PORT and ADAPT needed only ��� and 	�
 seconds� We devised some special variants of the
prediction algorithms� the �rst was EXACT with a maximum distance restriction on each process
the second was PORT with a distance function �xed at MaxDist� Note that changing the PORT
limit to a �xed number� instead of the varying function� only a
ected prefetching at the beginning
of the pattern� since there was only one portion in this pattern� The e
ect of the limit parameter
is shown for several algorithms below�

Limit
Algorithm � � �
 �
 �
 �

Restricted EXACT 	�
 	�� 	�	 	�� 	�� 	��
Fixed PORT 	�� ��� 	�� 	�� ��
 ���
PORT 	�� ��� 	�� 	�� 	�	 	��
ADAPT 	�� 	�
 	�� 	�	 	�� 	��

EXACT was improved by sharply restricting its prefetching �to OBL� essentially�� PORT and
ADAPT were best with a moderate limit of �� Thus� a local limit on the prefetching distance led
to the best performance� Indeed� the pattern with no limit on the prefetch distance� IBL �and its
hybrid variants�� had the poorest performance for this synchronization style�

Similar results were found for seg with computation and neighbor�
�	 synchronization� The
same explanation does not work� however� for the unsynchronized case� which also appeared anoma�
lous� The above explanation for the anomaly blames the slowdown on increased synchronization
delays� With no synchronization this cannot happen� Using the same special set of experiments

�	� OVERHEAD 	�

we found that the Fixed PORT predictor slowed down to match EXACT� and Restricted EXACT
was no faster� Thus� we believe that it was the relatively conservative startup used by PORT and
ADAPT that allowed the pipeline to be primed correctly� giving better performance�

�� Overhead

One measure of the overhead of the predictor was the noti�cation time �page ���� the amount
of time used to notify the predictor of each block that was referenced� Since this was time out
from processing a read� not overlapping some otherwise idle time� it was important to keep the
noti�cation mechanism e�cient� Another part of the predictor overhead came during prefetching�
when the predictor was asked for a prediction�

The predictors did most of their work during noti�cation and quickly provided predictions when
they were requested� If there were any blocks prefetched by mistake� the noti�cation procedure
arranged for their removal from the cache� This could take a long time� and mask the pure
noti�cation time of the predictor�

We recorded the noti�cation time for each test case� averaged over the �

 references in the
test� In Figure ����� the distribution of these average noti�cation times is shown for each predictor�
Some cases had large noti�cation times� from processing many prediction mistakes� This was
particularly apparent when the IBL predictor was used with the rnd pattern� For all predictors�
however� the median noti�cation time over all test cases was less than
�� msec� and the lower
fourth was under
�
� msec� These represent the test cases where few mistakes were made� and
indicate that the noti�cation overhead was usually negligible� The cost of mistakes� however� was
occasionally quite high�

NONE

EXACT

ADAPT

PORT

IPORT

IOPORT

IBL

IOBL

OBL

�

���
��

�	� ��

 ����
Noti�cation Time �msec�

Average Predictor�Noti�cation Time

IBL to max �����

Figure ����� The average time needed to notify the predictor for each block referenced�

	� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

�
 The Sensitivity of PORT Predictors to the MaxDist
Parameter

MaxDist is an important parameter of all the PORT�family predictors� since it controls the amount
of prefetching by limiting predictions to the near future� An understanding of MaxDist�s e
ect
allows us to better understand PORT� and to tune PORT for particular workloads� To determine
the sensitivity of PORT to MaxDist� we experimented with a range of MaxDist values �� to �
�
for every test case and all three PORT predictors �PORT� IPORT� IOPORT�� Although the data
are too numerous to show here� we summarize the results below� using total execution time as the
performance measure� The general behavior was often di�cult to characterize� implying no simple
relationship between MaxDist and PORT performance� but we present the key observations�

Note that MaxDist was inherently ignored in many cases� in the IPORT and IOPORT predictors
for lw and seg patterns� since they were in IBL mode� and in the IOPORT predictor for lrp
patterns� since it was in IBL and then OBL mode� MaxDist was irrelevant to all three predictors
in the rnd pattern�

lw
 MaxDist is only relevant to PORT� The total execution time decreased steadily with increasing
MaxDist� slowly approaching the constant performance of IPORT and IOPORT� Since for lw PORT
with a large MaxDist is essentially the same as IPORT� which in turn is the same as IBL� this
behavior is no surprise� The lw pattern needs a lot of prefetching� and IBL �or an imitation� is the
best way to do it� The same results hold with and without computation�

lfp
 MaxDist is relevant to all three predictors� The lfp pattern is easily predicted� once the
regular portions are recognized� Thus� early conservatism is warranted until the regularity is de�
tected� and then aggressive prefetching can be used for the bulk of the pattern� However� the
greedy�process problem �Section ������ is always an issue with lfp� Here� a low MaxDist helped
to limit prefetching and avoid the greedy�process problem� In most cases� execution was fastest
with MaxDist��� and then slowed down steadily for increasing MaxDist� as the greedy�process
problem became more signi�cant� It did level o
 around MaxDist��
� when other factors �such
as the prefetch limit or prefetch overhead� limited prefetching� The exception was total����	 syn�
chronization� which was slow for MaxDist�� and for high MaxDist� but had a sharp minimum at
MaxDist��� Note that � is exactly a single process�s share of the prefetch limit thus� MaxDist�� is
essentially an implementation of private prefetch limits �PPL page �	�� one of our earlier solutions
to the greedy�process problem� Although there are better solutions to the problem �e�g�� PFO or a
larger cache�� PPL may be implemented with MaxDist equal to the prefetch limit divided by the
number of processes�

With computation� however� the conservatism of MaxDist�� �OBL� was not as successful�
Adding computation to the pattern provided an opportunity for prefetching to overlap computation
and I�O� Thus� a successful prefetch was even more bene�cial� and a mistake was less costly� All
three predictors were worst at MaxDist��� speeding up signi�cantly with increasing MaxDist until
about MaxDist�� �MaxDist�� for each�
�	�� Thus� the bene�ts of the added prefetching were
important� Beyond MaxDist��� total����	 and none leveled o
� but each�
�	 and neighbor�
�	
slowed down slightly� showing a return of the greedy�process problem�

lrp
 MaxDist is not relevant to IOPORT� which is in IBL and then OBL mode� The PORT and
IPORT predictors were equivalent to IOPORT at MaxDist��� where they all have the conservatism
of OBL� which was successful in this hard�to�predict pattern� From there� however� PORT slowed

��� CONCLUSIONS 	�

down steadily with increasing MaxDist� as more predictions were mistakes� It leveled o
 around
MaxDist��
� Thus for lrp the best MaxDist was ��

As before� conservatism was a poor policy when there was computation to overlap with I�O�
PORT was similar to IPORT and IOPORT at MaxDist��� sped up for moderate MaxDist values
�around ��� and then slowed down for larger MaxDists� Thus for this pattern a moderate MaxDist
of � was best� representing the moderate predictability of lrp�

seg
 MaxDist is only relevant to PORT� since the others are in IBL mode� The results for PORT
were complicated� and highly dependent on the synchronization style� The root of all explanations
is seg�s di�cult disk access pattern� Each process began its round�robin disk access pattern on the
same disk� so there was a lot of disk contention� Under the right conditions� the processes begin a
pipeline through the disks� which can be successful� Strong synchronization �such as each�
�	� or
aggressive prefetching can disrupt the pipeline�

With no synchronization� MaxDist�� limited prefetching and kept the pipeline intact� PORT
was fastest at MaxDist��� and slowed steadily as MaxDist increased� eventually matching IPORT
and IOPORT �which are in IBL mode� similar to having a high MaxDist�� For each�
�	 synchro�
nization the opposite was true� PORT was slowest at MaxDist��� and slowly sped up to match
IPORT at higher MaxDist values� Here� the pipeline is emptied at each synchronization point� and
the aggressive prefetching of a large MaxDist helped to �ll it quickly after each synchronization�
The total����	 and neighbor�
�	 synchronization styles� compromises in terms of synchronization�
needed a compromise in MaxDist� PORT was faster than IPORT at MaxDist��� but sped up
around MaxDist�� and then slowed to match IPORT for high MaxDist values� This kept the
pipeline full without overly disrupting it�

As always� with computation more prefetching was necessary for best performance� Here�
MaxDist�� was slowest� in contrast to the above result� This corresponds to the poor perfor�
mance of OBL on seg with computation� Except in neighbor�
�	 synchronization� PORT sped
up with increasing MaxDist to match IPORT and IOPORT for large MaxDist� The neighbor�
�	
synchronization still needed a compromise� with PORT slow for low and high MaxDist� and a deep
minimum at MaxDist���

Summary� There are several issues involved in MaxDist�s e
ect on the PORT family of predictors�
First� in some cases it is irrelevant� Second� since it controls the aggressiveness of prefetching� its
e
ect corresponds to the predictability of the pattern� with highly predictable patterns needing a
high MaxDist� and poorly predictable patterns preferring a low MaxDist� Third� predictability is
sometimes not as important as other factors� such as the greedy�process problem or disk contention�
Fourth� a pattern with computation needs to be less conservative than the same pattern with no
computation� since prefetch I�O may be overlapped with computation� This overlap increases the
bene�t of success and decreases the cost of failure� Fifth� IOPORT had two advantages� it was
often the fastest of the PORT family� and MaxDist was more often irrelevant� In some seg and lrp
cases� it is possible to identify a MaxDist that gave PORT better performance than IOPORT� but
this would be di�cult to do dynamically� IOPORT was more generally successful and required less
tuning�

�� Conclusions

It was no surprise that conservative predictors were important for random patterns� and ambitious
predictors were better for regular patterns� OBL was best for lrp� and NONE �or a predictor smart

	� CHAPTER
� AUTOMATIC PREDICTION IN LOCAL PATTERNS

enough to do no prefetching� for rnd� PORT with a solution to the greedy�process problem worked
for lfp� and IBL for lw� The results for seg were more dependent on the disk pattern than the
predictor� We show in Section ��� that a larger cache signi�cantly improves the performance of
IOPORT on lfp and seg� so more prefetching success is possible�

Patterns with some computation allow for overlap between computation and I�O� The bene�t
of a successful prefetch can be much larger due to this overlap� and the relative cost of a mistake
much less� Thus� less conservatism is necessary in predicting for patterns with more computation
than in the patterns with no computation� In other words� when I�O�bound� a predictor should
concentrate more on the I�O that must be done� and speculate less on the I�O that may be done�

The on�line predictors matched the performance of the EXACT predictor in many cases� All
on�line predictors were less than �
! slower than EXACT half of the time� and were within a few
percent of EXACT a quarter of the time� In some cases� due to e
ects like the greedy�process
problem� the on�line predictors actually beat EXACT�

IOPORT appears to be the best general�purpose local�pattern predictor� in that it provided
high performance to a wide variety of patterns without causing poor performance to any pattern�
IOPORT was always within a third of the execution time of the best on�line predictor� and in half
of our test cases was within �! of the best predictor�

Chapter �

Automatic Prediction in Global

Patterns

��� Introduction

We have shown that locally�sequential access patterns can be predicted with su�cient accuracy and
e�ciency to allow prefetching to improve the run time of programs that use them� This chapter
concentrates on the problem of recognizing and predicting globally�sequential patterns at runtime�
To do so� we de�ne several global predictors� Although the problem is more di�cult� and the over�
head is larger� our experimental results show that the bene�ts are still signi�cant� In this chapter
we compare several predictors on a �xed set of architectural parameters� to investigate the tradeo

between accuracy and e�ciency� the impact of some workload and predictor parameters� and the
overhead involved in prefetching� In Chapter � we examine the e
ects of di
erent architectural
parameters�

There are three primary challenges for a global predictor� �rst� to recognize sequentiality sec�
ond� to prefetch intelligently and recognize mistakes and third� to have an e�cient and concurrent
implementation� The emphasis in local patterns is on intelligent prefetching� since recognition is
relatively easy� In global patterns� the blocks in the pattern may be referenced in only a roughly
sequential order� so that each block number may not be simply the previous block number plus
one� Thus it is more di�cult just to recognize sequential access� Our bu
er�replacement policy�
which requires mistakenly�prefetched blocks to be explicitly �ushed from the cache� complicates
prefetching with the need to recognize mistakes� E�cient� concurrent implementations are di�cult
due to the need for global decision making�

In any concurrent algorithm there is a tradeo
 between accurate information and high concur�
rency� The algorithms we describe here involve extensive computation and cooperation between
processes� and their implementations require signi�cantly more overhead than any of the local pre�
dictors� To determine the importance of the tradeo
 between accuracy and e�ciency� we compare
a highly accurate �but ine�cient� predictor with a less accurate �but e�cient� predictor�

In the next section we discuss some assumptions and theory behind our techniques� We outline
our primary predictor in Section 	�� and its implementation in Section 	��� Some alternative
predictors are presented in Section 	��� The results of experiments using the global predictors are
described in Section 	��� A predictor for both local and global reference patterns is discussed in
Section 	�	� We conclude in Section 	���

		

	� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

��� Theory

Globally�sequential access to a portion of a �le �or perhaps the whole �le� involves processes coop�
erating to read the portion so that all blocks of the portion are read� and the blocks are referenced
in a more�or�less increasing order� with variations that are small compared to the overall pattern�
With this in mind� we present some assumptions� de�nitions� and theorems we use as the basis for
global predictors�

���� Assumptions

We make a number of assumptions about globally�sequential access patterns�

� First� we assume that the processes are all cooperating to read portions of the �le� This
is di
erent from locally�sequential patterns� where the processes work independently� For
simplicity� we do not consider the possibility of several groups of processes cooperating in
groups to read independent portions of the �le� We also assume that all processes continue
to participate no process drops out or runs arbitrarily slowly�

� We assume that the pattern is the result of either a self�scheduled assignment of work� or more
strictly� a round�robin assignment of work� In the self�scheduled method� processes choose
records to read from the �le based on a shared variable �or similar method� that atomically and
incrementally assigns work to the processes� The round�robin assignment needs no shared
variable� since the record choice is dependent on a regular� well�known pattern� where p
processes read every pth record� In any case� the speci�c assignment method is not known to
the �le system�

� We assume that the �le system is only aware of references to �le system blocks� Although
access to the actual byte ranges accessed by the processes may provide other information
�such as record size�� this is often obscured by user�level bu
ering anyway �for example� the
stdio package��

� The above assumptions imply a series of block numbers that is nondecreasing� Although the
�le system may not see a list of block references that is smoothly increasing with time� we
can expect the reference string from each process to be nondecreasing� A process experiences
a jump�back when it references a block number less than its previous reference� Jump�backs
are useful to global predictors� since they indicate the end of a sequential portion�

� Another assumption is part of the de�nition of global portions� The global access pattern
within a sequential portion references all blocks of that portion� By de�nition� the missing
blocks would divide the reference stream into smaller sequential portions� This gives rise to
completeness� all blocks in a portion are eventually accessed�

� The processes are reading records� which may or may not be of constant size� Although our
experiments use constant�size records� our theory� algorithm� and implementation allow for
variable�size records� Since highly variable record sizes make sequentiality hard to recognize�
the record sizes must be constant or nearly constant for the method to work e
ectively� In
other words� we are not optimizing for wildly variable record sizes in this work�

� We also assume that the record size is at most a few �le system blocks� Larger record
sizes appear to the �le system to be locally sequential portions� since a process reads several
consecutive blocks� We thus leave large record sizes to the local predictors�

���� THEORY 	�

We believe that these assumptions are reasonable� and encompass many kinds of global access
patterns�

���� Zones of Activity

Combining these assumptions and observations allows an understanding of some important fea�
tures of globally�sequential access patterns� Imagine several processes cooperating to read a single
sequential portion� The reference string from each process is ordered� that is� it has no jump�backs�
At any time the next block number for a given process will be greater than or equal to its last�
referenced block number �called last�� Overall� the next block from any process must be greater
than or equal to the minimum of the set of last blocks from all processes� We call this minimum
block number minlast� There is also a corresponding maxlast� which is the maximum last of any
process�

These two values de�ne three zones of activity �see the example in Figure 	���� The old zone is
a range of blocks that will not be referenced in the future� From our assumption of completeness�
these blocks have all been referenced� The active zone contains the set of blocks between minlast
and maxlast� inclusive� Some of these blocks may have already been referenced� The rest are likely
to be referenced soon� The future zone contains blocks that will be referenced in the near� and
far�future� None of these have been referenced yet� Note that the zones change as blocks are
referenced and the processes� last values change�

��

maxlast���minlast���

�����������������	

Future ZoneActive ZoneOld Zone

Figure 	��� The three zones of activity� The numbered squares in this example represent
blocks that have been referenced� Four blocks in the active zone have not yet been referenced
��������	�����

���� Bounding the Future Zone

There are several properties about the active zone� and changes to the active zone� that are useful
for detecting and predicting sequentiality� At any time� the active zone is de�ned by the current
values of minlast and maxlast� We derive a bound on the extension of the active zone when a
process references a block beyond maxlast� This bound aids in detecting the end of a sequential
portion� by specifying the blocks that are likely to be part of the current portion�

Theorem � For a pattern with p processes and a �xed record size of r blocks �r not necessarily
integral	� the next block to be referenced �assuming it is in the same portion	 is between minlast
and maxlast"dpre� inclusive�

Proof
 From our observation that the references of each individual process are ordered� the next
reference for each process is greater than or equal to the last for that process� Since minlast is

�
 CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

the minimum last value� the next reference from any process is certainly greater than or equal to
minlast�

We assume that records are assigned to processes in increasing order� in either a self�scheduled
or round�robin pattern� Since no process is assigned more work until it has �nished its current
assignment� there are at most p records assigned that have not yet been requested from the �le
system� involving at most dpre" � blocks� The "� only arises in certain situations when the �rst
record begins in the middle of a block� If all of these outstanding blocks were greater than maxlast�
then the highest outstanding block number would be maxlast"dpre� We would calculate it as
maxlast"dpre" �� but the "� does not belong here� since if the �rst outstanding record does begin
in the middle of a block� it must begin in the middle of maxlast� Since the next reference must be
one of these outstanding block numbers� the next reference is also limited to maxlast"dpre� The
theorem follows� �

This theorem is easily generalized to variable record sizes� the theorem still holds if r is the
maximum record size� The upper bound in the theorem can also be tightened� since each process
reads the blocks of each record in order� only the �rst block of the highest outstanding record is a
possible next reference� Thus� the maximum next reference is maxlast"dpre � dre" ��

We now have a well�de�ned range of blocks for the next reference� The bound on the extension
of the active zone is useful� but unfortunately there is no bound on the size of the active zone itself�
This has strong implications for any implementation that tries to track the active zone� The size
of the active zone is unbounded because it is possible for one process� whose last�minlast� to not
reference any blocks for a long time while the other processes move ahead� Our implementation
optimizes for small active zones� due to our assumption that no process will drop out or run
relatively slowly�

��� The GAPS Predictor

Armed with this understanding of globally�sequential access patterns� we have developed an algo�
rithm for recognizing� tracking� and using global sequentiality� We call this predictor GAPS� for
Global Access Pattern Sequentiality� The method is much more complex than any of the local
predictors� and also involves more guesswork� On the other hand� this prediction algorithm bases
its decisions on more references than do the local predictors� so its decisions may sometimes be
more accurate� We describe the technique �rst� and delay implementation details to Section 	���

���� The Overall Plan

Like other predictors� the GAPS predictor is a self�contained module within the �le system� noti�ed
on each block reference and queried when prefetching work is desired �page ���� The predictor is
then a �black box� that takes block reference streams as input� responds to queries for prefetching
predictions� and issues �ush commands for mistaken prefetches� As with the rest of the �le sys�
tem� the GAPS predictor is concurrent� every user process may be active simultaneously� GAPS
maintains separate state information for each process� as well as global state information�

The structure of the GAPS predictor is a state machine with three states �Figure 	���� The
only events that trigger state transitions are the noti�cations from the �le system� Although it
is possible for processes to be in di
erent states� they usually move between the states in unison
�these are distinguished in the �gure�� This is accomplished with a mixture of private and shared
state variables� Initially� all processes are in Watch mode� watching the access pattern for signs
of sequentiality or extreme randomness� If the pattern appears extremely random� all processes
shift to the much simpler Random mode� in which they do just enough processing to shift back

���� THE GAPS PREDICTOR ��

to Watch mode if the pattern becomes less random� If sequentiality is detected� all processes
shift to Continuation mode� where prefetching is �nally possible� Continuation mode tracks the
sequentiality carefully if sequentiality appears to end� the processes drop out� one by one� back to
Watch mode� The separate transitions here allow each process to complete the portion before going
to Watch mode� All processes must be back in Watch mode before any new check for sequentiality�
and thus before any process re�enters Continuation mode� In the next few subsections� we describe
each state separately�

Individually

In unison
Start

Continuation

Watch

Random

Figure 	��� The three states in GAPS� Most state transitions occur simultaneously across all
processes�

���� Watch Mode

Watch mode has two primary purposes� to detect sequentiality� and to record enough information
about the sequential portion to start Continuation mode and enable prefetching� No predictions
are made while in Watch mode�

The access pattern is presented to GAPS via a noti�cation procedure called on each reference�
All that is provided about each reference is the block number� To detect sequentiality GAPS records
the access pattern in a shared access list� The blocks in the list are tagged with process numbers�
The last block number is recorded by each process� for comparison with each new reference� If the
new block number is the same as or greater than the last block number� then the ordered property
has been maintained� and the new reference is appended to the list� If the new block number is less
than last� a jump�back has occurred� Under our assumptions� that process must have moved to a
new sequential portion� Thus� all of its previous references are irrelevant to the new portion� and
are �ushed from the list �using the process tag on each list element�� If the jump�back is indicative
of a new portion� then all processes eventually jump back and �ush their entries from the list�� The
list then contains only blocks from this new portion� in their global reference order�

To be considered sequential� the access pattern must pass three successive tests� described below�
If sequential� several values are computed before switching from Watch mode to Continuation mode�
minlast� maxlast� start �the starting block number of the portion�� and maxjump �the furthest we
expect to extend maxlast in any one reference�� Continuation mode also requires a list of blocks
that have already been referenced in the active zone �copied from the access list�� and last for each

�Note that if we were to �ush the whole list on every jump�back
 the earliest blocks in the portion would be erased
from the list by the last process to join the portion�

�� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

process�
The �rst test� that of enough information� ensures that all processes are in Watch mode and

that each has contributed to the access list� The second and third tests are described below�

Completeness

The Completeness check examines the access list as a set of blocks without regard to their time
ordering� First� we compute minlast from all the processes� last values� Then we examine the
blocks in the list to determine the completed part of the old zone� In other words� what is the value
of start such that all blocks between start and minlast� inclusive� have been referenced� Note that
blocks greater than minlast or less than start are ignored� Because there are no jump�backs in the
access list� blocks less than start are from an earlier portion� no longer relevant�

Slope

If the pattern passes the Completeness check� we test it for linearity� In this check� the order of the
blocks in the access list is important� We �rst restrict the access list to blocks greater than start�
We then treat the blocks in the list as a function of their position in the list� and �t a line to this
function� obtaining a slope� If the slope is �for some reason� negative� the check fails immediately�
A positive slope� however� does not tell us whether the function was even close to linear� Thus� we
compute the coe�cient of determination �cd� for the function �Tri���� The coe�cient is a measure
of the deviation of the function from the linear �t� and is between zero and one� If cd is close to
one� the �t is good� our slope check succeeds� and we consider the access pattern to be sequential�
A piece of an actual access pattern is shown in Figure 	��� along with the �tted line� the slope� and
cd� Here the �t is good�

	

�

�	

��

�	

��

�	

��

	

�

�	

	 � �	 �� �	 �� �	 ��
	
� �	

Block

Time of reference �position in list�

Block accesses plotted by position in list

Accesses
Slope�
��	��� cd �
����

Figure 	��� An actual access list plotted with respect to our measure of time� the position in the
list� The line resulting from a linear regression of the data is also plotted�

���� THE GAPS PREDICTOR ��

Occasionally there are two or more sequential portions represented in the access list� with
the later one involving higher block numbers� Thus� there were no jump�backs to �ush the old
portion from the list� If minlast and start are still in the lower� older portion� the slope calculation
encompasses both portions� obtaining a large slope� Usually cd is low� and the check fails� As an
optimization� the check fails due to a large slope before computing cd� This is safe� since the slope
is rarely much more than ��
 for the sequential reference patterns that �t our initial assumptions�

An Optimization
 Random Mode

Watch mode is su�cient to distinguish sequential access patterns from random access patterns�
However� it also entails a lot of overhead� For random access patterns� this overhead is costly�
because there are no prefetching bene�ts to balance the overhead� For this reason� we add Random
mode�

In a truly random access pattern� the ordered property of references on a particular process is
rarely maintained for many references� The probability of three or more references in nondecreasing
order is roughly� �

�
� For p processes to simultaneously be ordered� the probability is ��

�
�p� which

is small even for moderate p� In a sequential reference pattern� however� references are usually
ordered� Thus� we shift to Random mode when several processes are not maintaining reference
order� and shift back to Watch mode when all processes again have ordered references� In Random
mode� there is only a quick check for changes in ordered status� This reduces overhead and increases
concurrency�

���� Continuation Mode

Continuation mode has several purposes� Primarily� it tracks the sequential portion recognized by
Watch mode� It detects breaks in sequentiality� and decides how to handle them� perhaps by going
back to Watch mode� It tracks the portion length and portion skip� in an e
ort to detect regular
sequential portions� Finally� of course� it records enough information to make predictions and to
catch mistakes�

As each reference arrives� Continuation mode updates last� minlast� and maxlast� It checks
for failures in three critical areas� orderedness �jump�backs�� completeness �in the old zone� as it
grows�� and maxlast extension� Any of these failures signal the end of a sequential portion� and can
force the process to leave Continuation mode� Despite these extensive e
orts� Continuation mode
is more e�cient than Watch mode� and also allows prefetching� Thus� Continuation mode tries to
handle sequentiality failures and stay in Continuation mode�

A jump�back clearly indicates that the process is in a new portion� Since the new references
could overlap the current portion� and the two portions become confused� the process must leave
Continuation mode� The other processes follow when they have also �nished the current portion�

A completeness failure is detected only when minlast is updated� When minlast changes� the
old zone is extended� We expect the old zone to be complete� that is� for all blocks in the old zone
to have been referenced� Any gaps signal the end of one portion and the start of the next� A gap
may or may not have been detected previously by the maxlast�extension check�

The third check involves references that exceed maxlast � From Theorem � we know that a
reference in the current portion cannot be past maxlast"dpre� for p processes and record size r�
�Our implementation does not use the tighter bound from Section 	������ The quantity dpre is
called maxjump� Thus� any reference that is past maxlast"maxjump is likely to be in another

�The probability of being ordered can be easily found with a combinatoric calculation� For an N �block �le
 the
exact probability is �

 �
�
�N � �

�N�
�

�� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

portion� If this happens� one option is to leave Continuation mode and watch for sequentiality to
begin again� There are� however� two optimizations� if the portion length and portion skip are
regular� and the current reference is consistent with those values� then GAPS assumes the pattern
is continuing� If the portions are irregular� but the completed portion is long� GAPS treats the new
reference as a new portion and remains in Continuation mode� This makes the assumption that the
pattern consists of irregular sequential portions� These optimizations allow the GAPS predictor to
spend most of its time in Continuation mode� and to do more prefetching�

���� Prefetching

The bulk of the GAPS predictor is involved with watching for and tracking sequentiality� All of the
information is used to predict future accesses and to recommend blocks for prefetching� Essentially�
GAPS recommends blocks for prefetching that have not yet been accessed� are greater than minlast�
and meet other special�case constraints� It prefetches in both the active and future zones�

The prediction code is similar to that in the IPORT local predictor� That is� it detects regular
sequential portions� and prefetches accordingly� Unlike IPORT� it limits the prefetch distance only
when the portion length is not regular� In the �rst portion� or with regular portions� it may prefetch
far past maxlast� When the portion length is not regular� it limits its prefetching at all times to
maxlast"MaxDist� where MaxDist is a parameter as before �see Section 	������ It also limits its
prefetching to the active zone whenever any process leaves Continuation mode� which implies the
current portion is ending�

��� Implementation of the GAPS Predictor

In order to make a scalable predictor� concurrency must be high and the amount of serialization
kept to a minimum� This is one problem with GAPS� it uses a great deal of serialization to make
global decisions� especially in Watch mode� Thus� the scalability of this predictor may be limited
�see the scalability experiments in Section ����� Thus� it represents one endpoint of the tradeo

spectrum between accuracy and e�ciency�

Without going into detail� we brie�y describe the implementation of each of the primary modes�
along with the transitions between them�

���� Watch Mode

Watch mode is completely serial� operating as a �rather long� critical section� More concurrency
may be available in Watch mode� but to gain concurrency we would have to sacri�ce some accuracy�
In GAPS we concentrate on accuracy� The entrance to Watch mode is controlled by a FIFO queue�
so the processes enter the critical section in the same order that they arrived� This is crucial to
maintaining the original block ordering� which is important to the slope check� The access list is
represented by a shared array�

���� Random Mode

The Random mode has a simple implementation� The access list is not used� Each process in
Watch mode counts the total number of references it has made since its last jump�back� If this
is higher than the threshold �two references� then this process is considered ordered� There is a
global count of the number of processes that are ordered� When this count falls below a threshold
�	
! of processes�� GAPS enters Random mode� When it returns to the number of processes �all
processes are ordered�� GAPS returns from Random mode to Watch mode�

��	� OTHER GLOBAL PREDICTORS ��

���� Determining maxjump and MaxDist

Before GAPS may enter Continuation mode it must determine two values� maxjump� used for
tracking sequential portions� and MaxDist� used to limit prefetching�

The ideal value of maxjump is dpre� where p is the number of processes and r is the �maximum�
record size in blocks� The �le system does not have access to r� so it must be estimated� The
record size is estimated with heuristics based on observations of the average number of references
to each block� and the average length of locally�consecutive runs �a series of consecutively numbered
references from a single process��

The ideal value of MaxDist is more di�cult to determine� A large MaxDist leads to more
mistakes� and a small MaxDist may not allow enough prefetching� Section 	���� examines this issue
further� Preliminary experiments led us to determine MaxDist from the record size as follows� for
r � �� use MaxDist� p� For r � �� use MaxDist� �p��� For r � �� use MaxDist�p��� For r � ��
use MaxDist�
�

���� Continuation Mode

The primary data structure for Continuation mode is an array with one entry for each block in
the �le� Our implementation uses the �le system�s existing� memory�resident block map for the �le
instead of a separate array�� Each entry in the array contains a used bit� indicating that GAPS
knows that the block has been referenced� These bits are initialized from the access list� and
updated by later block noti�cations� Once Continuation mode is started� block noti�cation can
proceed concurrently with other noti�cations and with prefetching� On each noti�cation� the used
bits are adjusted� and minlast and maxlast are updated� possibly catching mistakes or deciding
that the portion has ended� When a process leaves Continuation mode� it limits prefetching to the
current active zone� and drops out into Watch mode� The last process to leave must clean up the
data structures�

���� Prefetching

The GAPS prediction code is executed on request from the �le system� and can run concurrently
with other processes in Continuation noti�cation code� There is a short lock used to choose a
block for prefetch� The block is chosen by updating a single counter� then adjusting for any known
portion skips and the prefetch limit� Also� the block must not have already been used or prefetched�
The block is marked for later detection of prefetch mistakes� and the block number is given to the
�le system�

��� Other Global Predictors

For comparison with the accurate but ine�cient GAPS predictor� we consider two predictors that
are less accurate but more e�cient� These are two more points in the tradeo
 spectrum between
accuracy and e�ciency�

The GAPS predictor has three primary states� Watch mode� Random mode� and Continua�
tion mode� Watch mode is expensive� due to the serialization and the amount of computation�
Watch mode determines whether the access pattern is random or sequential� and enters Random
or Continuation mode� respectively� If all patterns are either random or sequential� then why not
eliminate Watch mode entirely� This is the basis of the RGAPS predictor� which begins in Random

�Other data structures are possible
 of course�

�� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

mode� In RGAPS� when Random mode decides that the pattern is not random� it shifts directly to
Continuation mode� constructing the data structures as well as possible� Of course� the information
usually found in the access list is not available� so the start of the portion and the initial list of
used blocks are inaccurate� and estimates of maxjump and MaxDist are crude� Continuation mode
exits directly to Random mode when necessary� Some wrong decisions may be made� but at least
they are made quickly� Of course� not all patterns are either random or globally sequential� so
this predictor may be prone to failure on pathological patterns�� In any case� it is an interesting
alternative�

Another possible alternative is to build a predictor speci�c to a particular pattern� GAPS is
intended to handle the gw� grp� gfp� and rnd �random� patterns� It is likely� however� that some
workloads may contain only� or predominately� gw patterns �at least among the global patterns��
Thus� we have implemented a GW predictor� designed speci�cally for gw� that prefetches from the
start to the end of the �le and ignores mistakes� It adjusts its prefetching in only two ways� to
accept block numbers back when they could not be prefetched� and then recommend them again
and to keep the prefetching ahead of maxlast� This predictor is especially valuable if the �le system
allows hints from the user to direct its prefetching �Section �
����

��
 Experiments and Results

We ran a broad suite of experiments using the global predictors� Each of the patterns grp� gfp�
gw� and rnd was used with an appropriate set of predictors� NONE� GAPS� and RGAPS were used
with all patterns� EXACT was used with all patterns except rnd� since the best predictor for rnd is
NONE� Finally� the GW predictor was used with the gw pattern� Each of the four synchronization
styles each�
�	� total����	� none� and neighbor�
�	 was used with all patterns� Finally� each of
these tests was run both with and without computation on each block� Each combination of these
parameters represented one test case�

We ran all predictors on the lw pattern� since lw is a type of gw pattern where every process
reads every block� We also included the IBL predictor �which had had the best results for lw� for
comparison� Due to the short execution times of the normal lw pattern� we used an extended lw

here� in which every process read the same �

 blocks ��ve times as many as before�� We used
only the each�
�	 synchronization style� to avoid the lw�phase problem� Each case was run with
and without computation on each block�

For each test case� we averaged the total execution time over �ve trials� and used this as our
comparison measure� The standard deviation over �ve trials was always less than ��! of the
mean �at most � second�� and was less than �! in �
! of the cases� Small di
erences �in most
cases� about
�� seconds or less� between the average times for two predictors should therefore be
considered insigni�cant relative to measurement error� We present the results in the same style as
we did the local pattern results� The time in seconds and predictor name is given next to each line
in the graph� and the maximum cv for all lines in a graph is given in the graph�s caption�

The other parameters were the same as in our previous experiments� There were �
 processes
and �
 disks� Each pattern �except lw� involved reading �

 blocks� There were �
 bu
ers in the
cache� with up to �
 allowed for prefetched blocks� The block size and the record size were both
� KByte� The computation simulated for each block� when used� averaged �
 msec�

�This includes local patterns� Section 	�	 describes a special predictor for distinguishing local and global patterns

which chooses either a local or a global predictor as appropriate�

��
� EXPERIMENTS AND RESULTS �	

neighbor

each

total

none

	 � � �
 � �
 � �
seconds

Total execution time for gw

NONE �
���
EXACT �
�	�
GAPS �
���
RGAPS �
�	�
GW �
�	�

NONE �
���
EXACT �
�	�
GAPS �
���
RGAPS �
�	�
GW �
�	�

NONE �
���
EXACT �
�	�
GAPS �
���
RGAPS �
�	�
GW �
�	�

NONE �
�
�
EXACT �
�	�
GAPS �
���
RGAPS �
�	�
GW �
�	�

Figure 	��� Execution times for gw� �cv �
�
���

The results for gw �Figure 	��� were encouraging and fairly straightforward� It was no surprise
that the GW predictor was best among the on�line predictors� always matching EXACT� GAPS
and RGAPS nearly matched those two predictors� and were also essentially equivalent to each
other� This is because the expensive Watch mode �the di
erence between GAPS and RGAPS�
was used little here� The results for gw with computation �not shown� were similar� except that
the improvements were more signi�cant �about �
! faster with prefetching than without� and
that RGAPS was more similar to GAPS� With computation� the overhead of GAPS was reduced
due to decreased contention in Watch mode� since the added computation meant there were fewer
processes active in the �le system code at any one time�

�� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

no comp

with comp

	 �	 �	 �	
	 �	 �	
	 �	
seconds

Total execution time for lw

NONE ��
�
�

EXACT �����

GAPS �
�
�

RGAPS �
���

GW �����

IBL �����

NONE �
����

EXACT ����
�

GAPS ������

RGAPS ����	�

GW ����
�

IBL ����
�

Figure 	��� Execution times for lw� both with and without computation� Both cases use
the each�
�	 synchronization style� Note that this is an extended lw� reading �

 blocks�
�cv �
�
���

In the experiments with the lw pattern� shown in Figure 	��� we used only the each�
�	 synchro�
nization� so there is room for both the with�computation and no�computation cases on the same
graph� The results here were similar to those for the gw pattern� with GW matching EXACT� and
GAPS and RGAPS coming fairly close� GAPS and RGAPS had more overhead to slow them down
than did GW or EXACT� With longer patterns� the di
erence between GAPS and EXACT �which
was also due to start�up e
ects� should be less signi�cant� For comparison� we included the IBL
predictor here� The EXACT� GW� and IBL predictors had equivalent performance�

��
� EXPERIMENTS AND RESULTS ��

neighbor

each

total

none

	 �
 � � �	 �� �

seconds

Total execution time for rnd

NONE ��	���

GAPS ����	�
RGAPS ��	���

NONE ������

GAPS ������
RGAPS ������

NONE ������

GAPS ������
RGAPS ������

NONE ��	�	�

GAPS ��	���
RGAPS ��	�	�

Figure 	��� Execution times for rnd� �cv �
�

	��

Results for the rnd pattern are shown in Figure 	��� No prefetching was possible because of
the random access pattern� so NONE represented the best possible time� That GAPS and RGAPS
were as fast as NONE shows that they recognized and handled rnd patterns with low overhead�
This success was due entirely to the �Random� mode of GAPS and RGAPS �an early version of
GAPS without Random mode was almost four times slower than NONE#�� The conclusions for
rnd with computation are identical �not shown��

�
 CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

neighbor

each

total

none

	 � � �
 � �
 � �
seconds

Total execution time for gfp

NONE �
���
EXACT �
�	�
GAPS �
���
RGAPS �
���

NONE �
���
EXACT �
�	�
GAPS �
���
RGAPS �
���

NONE �
���
EXACT �
���
GAPS �
���
RGAPS �
���

NONE �
�
�
EXACT �
�	�
GAPS �
���
RGAPS �
���

Figure 	�	� Execution times for gfp� �cv �
�
���

The gfp pattern �Figure 	�	� is more di�cult than the preceding patterns� due to the portion
changes� The regularity of the portions� however� was recognized by both GAPS and RGAPS�
and used to prefetch over the portion skips into future portions� The RGAPS predictor required
one more portion to recognize the regularity� since it did not correctly notice the start of the �rst
portion �Random mode is less accurate than Watch mode�� Nonetheless� RGAPS and GAPS were
essentially equivalent on this pattern� The results for gfp with computation �Figure 	��� show
that GAPS and RGAPS are closer to EXACT than to NONE� something that is not evident in
Figure 	�	�

��
� EXPERIMENTS AND RESULTS ��

neighbor

each

total

none

	 �
 � � �	 �� �
 �� �� �	
seconds

Total execution time for gfp with computation

NONE ����	�
EXACT �����

GAPS �����
RGAPS �����

NONE ��
���
EXACT ��	���
GAPS ��	���
RGAPS ��	���

NONE ����
�
EXACT �����
GAPS ���
�
RGAPS �����

NONE ������
EXACT ���	�
GAPS ���
�
RGAPS ���
�

Figure 	��� Execution times for gfp with computation� �cv �
�
	��

�� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

neighbor

each

total

none

	 �
 � � �	
seconds

Total execution time for grp

NONE �
���
EXACT �
���

GAPS �����
RGAPS �����

NONE �����
EXACT �
���

GAPS �����
RGAPS �����

NONE �����
EXACT �
���

GAPS ���	�
RGAPS �����

NONE �
���
EXACT �
���

GAPS ���
�
RGAPS �����

Figure 	��� Execution times for grp� �cv �
�
���

The grp pattern �Figure 	��� is the most di�cult pattern for the GAPS predictor� Because of
the unpredictable portion lengths and jump�backs� GAPS spent a lot of time in Watch mode� and
made more prefetching mistakes than in other patterns� In our experiments� GAPS was never able
to break even and match NONE in the no�computation test cases �but see Section 	������ Note that
RGAPS was slightly faster than GAPS in all cases �we examine this further in Section 	������ We
also ran this experiment with a di
erent grp pattern constructed with the same parameters� The
results �not shown� from this experiment were similar to those for the original grp pattern� except
that RGAPS was more clearly faster than GAPS� Thus� although GAPS was more accurate� the
e�ciency of RGAPS was more important in grp�

��
� EXPERIMENTS AND RESULTS ��

neighbor

each

total

none

	 �
 � � �	 �� �
 �� �� �	
seconds

Total execution time for grp with computation

NONE ����	�
EXACT �����
GAPS ������
RGAPS ����
�

NONE ��
���
EXACT ������
GAPS ����
�
RGAPS ����
�

NONE ������
EXACT �����
GAPS ������
RGAPS ������

NONE ������
EXACT �����
GAPS �����
RGAPS �����

Figure 	��
� Execution times for grp with computation� �cv �
�
���

When there was some computation on each block� the opportunities for overlapping I�O and
computation were increased� and the e
ects of I�O overhead were less signi�cant� In the grp pattern
with computation �Figure 	��
�� as in all test cases with computation� the bene�ts of prefetching
were more signi�cant� Indeed� GAPS and RGAPS were able to obtain signi�cant bene�ts by
prefetching� about half those obtained by EXACT� There was also less of a di
erence between
GAPS and RGAPS �same reason as for gw� page �	�� As before� we also tried a di
erent grp
pattern generated with the same parameters� Again� there was little qualitative di
erence between
the results for that pattern �not shown� and those for the �rst grp pattern� except that RGAPS
was a little faster than GAPS�

�� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

���� Performance of the Global Predictors

With the usual caveat that our workload does not necessarily contain the distribution of patterns
in any real workload� we formed a summary presentation of the performance of GAPS and RGAPS�
Since EXACT is a good baseline for evaluating global predictors� we evaluate GAPS and RGAPS
in terms of their relative performance to EXACT� Our measure was the normalized performance�
the ability of the on�line predictor to improve on NONE compared to EXACT�s ability to improve
on NONE� Thus� if te was the execution time for EXACT� tn was the time for NONE� and t was
the time for some other predictor� the normalized performance of this other predictor was

t � tn
te � tn

Note that the normalized performance was � when the predictor in question did as well as EXACT�
It was zero when it did only as well as NONE� and negative when slower than NONE� We computed
the normalized performance for all test cases except those of the rnd pattern� since there te � tn� We
plot the CDFs of the distributions of these values in Figure 	���� The low�performance �negative�
cases were all from the grp pattern� where GAPS and RGAPS were often slower than NONE� In
general� however� half of the GAPS cases reached at least
��� normalized performance �i�e�� ��!
of the performance improvement of EXACT�� and half of the RGAPS cases reached at least
�	�
normalized performance�

	

	��

	��

	��

	�

	��

	��

	�

	��

	��

�

�	�
 ���
 ���
 ���
 ���
 ���
 ���

�
 ��

CDF

normalized performance

Normalized Performance

GAPS
RGAPS

Figure 	���� The normalized performance for GAPS and RGAPS on all patterns except rnd�
A normalized performance of ��
 indicates that the predictor matched EXACT� and a negative
number indicates that it was slower than NONE�

���� GAPS vs� RGAPS

From the preceding discussion of the results� it appears that there was no performance di
erence
between the GAPS and RGAPS predictors for most patterns� The exception was grp� where

��
� EXPERIMENTS AND RESULTS ��

RGAPS was faster in most cases� This makes sense� since Watch mode �the di
erence between
GAPS and RGAPS� is not important to the other patterns� In Figure 	���� the predictors had
similar distributions in the high�performance areas� but di
ered in the low�performance areas �i�e��
the grp pattern�� Thus GAPS and RGAPS were essentially identical for most test cases here�
with RGAPS better for grp patterns� RGAPS was much more robust �and usually had better
performance� in the experiments described in Chapter � �in particular see Section ����� Section 	����
points out a situation where GAPS was more robust than RGAPS�

���� Accuracy

Judging by the performance of GAPS and RGAPS on most patterns� the e
ort expended to prefetch
was worthwhile� One reason for this was the accuracy of the predictions� Figure 	��� shows the
distribution of the fraction of prefetched blocks that were wasted �read from disk but never used��
The rnd pattern is excluded here� since there were no prefetches� There were many zero�waste
cases from the gw and lw patterns� Only the grp and gfp patterns allow for mistakes� and even
in these cases it is clear that the waste rate was extremely low� always less than ��!� Note also
that RGAPS tended to have a higher waste rate� as expected�

	

	��

	��

	��

	�

	��

	��

	�

	��

	��

�

	 	�	� 	�	
 	�	� 	�	� 	�� 	��� 	��

CDF

waste rate

Fraction of Prefetches that were never used

GAPS
RGAPS

Figure 	���� The waste rate for GAPS and RGAPS� The waste rate is the ratio of the number of
wasted blocks to the number of prefetched blocks�

���� Overhead

The overhead of the GAPS predictor can be high� One measure of the overhead is the noti�cation
time� the time spent in the GAPS predictor for every block read �page ���� From an examination
of the distribution of noti�cation times� most noti�cations were short �less than � msec�� Some
noti�cations were extremely long ��

��

 msec�� with the longest noti�cation times typically in
the grp pattern� an evidence of its di�culty�

�� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

	

	��

	��

	��

	�

	��

	��

	�

	��

	��

�

	 �	
	 �	 �	 �		

CDF

msec

GAPS Noti�cation time

to max

	

�

Noti�cation
Watch�entry wait

Figure 	���� Distribution the GAPS noti�cation time for a typical grp test case�

In Figure 	���� we display the distribution of the noti�cation time for a typical grp case� along
with the distribution of the time waiting to enter Watch mode�s critical section� Here we see
the severe skew on the distributions� �
! of the noti�cation times were less than � msec� There
was often a long wait to enter Watch mode� due to the critical section� Thus many of the long
noti�cations were when GAPS was in Watch mode� and many processes were forced to wait at the
entry point� This kind of serialization is likely to limit the scalability of such an algorithm� The
longest noti�cation times� however� occurred in Continuation mode� and reached up to �	
 msec�
These were the result of a major update to minlast� which often had to scan large portions of the
�memory�resident� �le map when moving from one portion to another� Fortunately� these long
updates were rare� and were concurrent with other Continuation�mode noti�cations�

The RGAPS predictor uses Random mode instead of Watch mode� This mode is simple and
concurrent� compared to the complex� serialized Watch mode in GAPS� The noti�cation times for
RGAPS were generally lower than for GAPS �not shown�� except in the grp pattern� where they
were similar� Figure 	��� shows the distribution of the noti�cation times and Random�mode times
for the same pattern as in Figure 	���� but with the RGAPS predictor� Note the time scale is
shorter than Figure 	���� The Random�mode time was short� never more than � msec and less
than
�	� msec in �	! of the cases� As with GAPS� RGAPS had some long Continuation�mode
times� up to ��
 msec� This was re�ected in the noti�cation�time distribution� Nonetheless� �
!
of the noti�cation times were less than � msec�

���� The E�ect of MaxDist

In any predictor� the prefetch distance represents a commitment to prefetching� The prefetch
distance is the number of blocks that the predictor is willing to prefetch past the highest�known
block in the portion� There is a tradeo
 in many situations� since a small distance overly restricts
prefetching� and a large distance increases the number of mistakes when a portion ends unexpect�
edly�

��
� EXPERIMENTS AND RESULTS �	

	

	��

	��

	��

	�

	��

	��

	�

	��

	��

�

	 �
 � � �	 �� �
 �� �� �	

CDF

msec

RGAPS Noti�cation time

to max
�	
�

Noti�cation
Random Mode

Figure 	���� Distribution the RGAPS noti�cation time for a typical grp test case� Note the time
scale is shorter than Figure 	����

In the preceding experiments the prefetch distance �called MaxDist� was determined as de�
scribed in Section 	���� �which were derived from preliminary experiments�� For these tests this
means MaxDist was ��� In the �rst portion� and when the portions were regular� MaxDist was
in�nite� allowing plenty of prefetching for gw and gfp patterns�

To examine the e
ect of MaxDist on the GAPS predictor� we ran a set of experiments varying
MaxDist from zero to �
 blocks� It was still in�nite for the �rst portion and for regular portions� so
it did not a
ect gw or lw� and scarcely a
ected gfp in preliminary tests� It did not a
ect rnd� of
course� so we only studied the grp pattern� All other test parameters were the same� Figure 	���
shows the results for tests with no computation� and Figure 	��� shows the results for tests with
computation� Each point represents the average of �ve trials��

Whereas it is di�cult to determine the single �best� value of MaxDist from these results�
some general conclusions are possible� First� it is important that MaxDist not be too small� since
the performance was clearly worse for small MaxDist �small being less than �
 blocks for no�
computation tests� �
 for computation tests�� In some cases� the performance curve shows a
de�nite minimum in others the performance tends to level o
� Overall� the best performance
was found with MaxDist between �
 and ��� with �
 as a reasonable compromise� Within this
range the performance di
ers little� Our choice of �� allowed reasonable� though not optimum�
results� Overall� a moderate MaxDist was needed� corresponding to the moderate predictability of
grp�

In a few of neighbor���� tests there were some trials that were discarded from the average due to extreme
behavior� These cases are the result of the extreme synchronization stress on the pattern
 which idles some processors
in synchronization points while the others are still working� The execution sequence and the execution times are thus
highly dependent on random run�time variations� The a�ected data points are marked�

�� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

�

�

�	

��

��

��

�

	 �	 �	 �	
	 �	 �	

time
�seconds�

MaxDist

MaxDist variation for GAPS on grp

Synchronization style�
each�
�	

total����	
none "

"

"
" "

" " """"
" " " " "

neighbor�
�	
Extremely variable point �

�

Figure 	���� The e
ect of varying MaxDist on grp patterns with no computation�

�

�	

��

��

��

�

��

��

�

��

	 �	 �	 �	
	 �	 �	

time
�seconds�

MaxDist

MaxDist variation for GAPS on grp with computation

Synchronization style�
each�
�	

total����	
none "

"

"

"

"
" " """" " " " " "

neighbor�
�	
Extremely variable point �

�

�

�

Figure 	���� The e
ect of varying MaxDist on grp patterns with computation�

��
� EXPERIMENTS AND RESULTS ��

���� The E�ect of Portion Length

The performance bene�ts from prefetching in sequential portions using the GAPS and RGAPS
predictors sometimes depend on the length of the portion� Short portions are more di�cult to
recognize� particularly when the length is not constant� With longer portions more time is spent
in Continuation mode� and less time is spent in handling portion skips� so overhead is reduced� To
examine the e
ect of portion length on the global predictors� we ran a set of experiments using
the GAPS and RGAPS predictors on several grp and gfp patterns� each with a di
erent portion
length� In the gfp patterns the portion length was �xed� of course in the grp patterns� the portion
length represents an average portion length� Our original experiments �and those in the previous
section� used a �

�block portion length here we vary the length from �

 to �

 blocks� We ran
each experiment with no computation on each block� and again with computation �keeping the set
of computation times identical across all patterns�� For simplicity� we restricted ourselves to the
none synchronization style� For comparison� we also used the EXACT and NONE predictors� All
other experimental parameters remained the same� Of course� when the portion length increases
and the number of blocks in the pattern remains the same� the number of portions necessarily
decreases�

The gfp pattern was generally insensitive to the portion length� due to prefetching over portion
skips� Neither the NONE nor the EXACT predictors were a
ected by the portion length� The
execution time for the GAPS predictor did not change appreciably with di
erent portion lengths�
at least for the no�computation test case� Since there were essentially no changes� the normalized
performance �de�ned on page ��� for GAPS remained steady �Figure 	��	�� The RGAPS predictor
was only a
ected by the shortest ��

�block� portions� Due to the incomplete information available
in the RGAPS Continuation mode� RGAPS never recognized the pattern as gfp and could not take
advantage of the regularity� This was true with and without computation� and is the reason for
the odd RGAPS points in Figure 	��	� This is one �rare� case where GAPS was more robust than
RGAPS�

��

����

��

�	��

	

	��

�

	 �		
		 �		 �		 �			

Norm�
perf�

Portion length

Normalized performance of gfp� varying portion length

GAPS� comp
RGAPS� comp

GAPS� no comp
RGAPS� no comp

Figure 	��	� The normalized performance for the gfp pattern� while varying the portion length�

�

 CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

In the grp pattern� a decrease in the number of portions is as signi�cant as an increase in the
portion length� Thus� we expected GAPS� RGAPS� and EXACT all to improve their execution
time on grp� and our experiments con�rmed this� To gauge the signi�cance of the faster execution
times� we plot the normalized performance for GAPS and RGAPS in Figure 	���� The normalized
performance increased roughly with portion length� Thus� not only did the execution time improve�
but the predictors were closer to EXACT�s performance� The di
erence between GAPS and RGAPS
also decreased� due to the smaller signi�cance of portion skips�

��

���

��	

��

��

�

��

	

�

	 �		
		 �		 �		 �			

Norm�
perf�

Average portion length

Normalized performance of grp� varying portion length

GAPS� comp
RGAPS� comp

GAPS� no comp
RGAPS� no comp

Figure 	���� The normalized performance for the grp pattern� while varying the average portion
length�

MaxDist and Portion Length

To examine any interactions between the MaxDist parameter and the portion length� we repeated
the above portion�length variation experiment with several di
erent MaxDist values from
 to �
�
We only summarize the data here�

� For grp� the optimum MaxDist value depended slightly on portion length� but otherwise the
e
ects of MaxDist and portion length were independent�

� For gfp� the e
ects of MaxDist and portion length were only coincidentally correlated� Large
MaxDist values were the solution�

� MaxDist should be higher for patterns with computation� to keep the disks busy during
periods of computation�

��� Using Both Global and Local Predictors

We have a range of predictors for both local and global patterns� We have a predictor that is
su�cient for most general�purpose local�pattern workloads �IOPORT�� We also have predictors

���� USING BOTH GLOBAL AND LOCAL PREDICTORS �
�

su�cient for general�purpose global�pattern workloads �GAPS or RGAPS�� However� GAPS is
de�nitely not suitable for local patterns� and IOPORT is not suitable for global patterns� Is it
possible to implement both in a �le system� and use the appropriate predictor for each pattern�
There are several possibilities�

�� Include two predictors �one local and one global� notify both on each access� and somehow
arbitrate between their decisions by choosing one or the other� This requires too much
overhead�

�� Include two predictors �one local and one global�� plus a fast recognition mechanism to choose
one or the other during the initial accesses of the pattern� This seems most promising�
provided the recognition is fast and accurate�

�� Include two predictors �one local and one global� start working with one� but switch to the
other if it does not work well� The problem is determining when it does not work well� This
could use a mechanism similar to that in option � �above�� or some other mechanism�

�� Merge a local and a global predictor into a single� more general predictor� Such a general
predictor would unnecessarily complicate the simpler local pattern prediction�

We chose the second option and implemented a predictor called SWITCH� Once this predictor
recognizes a pattern as either local or global� it switches control to a local or global predictor�
respectively� SWITCH is completely independent of the particular local and global predictors� The
recognition is based on consecutive references� whereas the individual process reference streams in
both locally� and globally�sequential access patterns are ordered� only in local patterns are they
likely to be a consecutive set of block numbers�� The SWITCH predictor concurrently monitors
the local reference pattern for each process� If any process makes a non�consecutive reference� the
pattern is assumed to be global� If all processes make three or more consecutive references� the
pattern is assumed to be local� Once the decision is made� each process switches to the appropriate
�local or global� predictor� This involves passing the recorded reference pattern �represented by
the �rst and last block numbers of a consecutive run� plus one possibly non�consecutive reference�
to the predictor�

Local predictors do not lose any information by this technique� but global predictors lose the
inter�process interleaving order of the blocks� For global predictors� however� the number of blocks
involved in the switch is usually small� because the switch is made early in the pattern� This limits
the di
erence between the actual interleaving and the interleaving recorded during the switch�

We ran a full set of experiments using the SWITCH predictor with IOPORT as the local
predictor and GAPS as the global predictor� The record size was one block� The results for each
experiment were compared with former results for the identical experiment with either the IOPORT
or GAPS predictor� In every test case except those involving the lrp pattern� SWITCH chose the
correct predictor� The lrp pattern we used occasionally had short portions �two or three blocks�� so
the pattern did not meet the consecutive�references criterion and the global predictor �GAPS� was
used� An lrp pattern with longer portions was correctly switched to a local predictor �IOPORT�� A
fully�general solution would add some of solution � �above� to GAPS if a local pattern is suspected�
switch back out of GAPS and into the local predictor�

We measured the percent di
erence in the total execution time between SWITCH and either
GAPS or IOPORT� whichever was appropriate for the test� This represented the percent overhead

Note that a global pattern with large �many blocks� records can also be viewed as a local pattern
 and would be
by SWITCH�

�
� CHAPTER �� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

required by the SWITCH predictor� The lrp pattern� due to the poor choice of the global predictor�
was much slower than with IOPORT ���

!�� The di
erences for most other cases are so small
�����! to ���!� that they are essentially insigni�cant compared to measurement error� �One case�
grp with neighbor�
�	 synchronization� was ����! slower using SWITCH�� Thus� the overhead was
minimal� Note that� except in lrp� all of the overhead is at the start of the pattern� and essentially
represents a delay in the start of prefetching by the predictors� For longer patterns� the SWITCH
overhead percentage would be smaller�

It is therefore possible to construct a reasonably e�cient general�purpose predictor for the
types of sequential access patterns we consider� SWITCH chose the correct predictor in all cases
except in the lrp pattern with short portions� Another case where it might have di�culty is a
local pattern where some processes reference blocks much more slowly than other processes� Some
modi�cations may be necessary to handle these cases more intelligently� In addition� the SWITCH
overhead was usually quite small� Although SWITCH with GAPS and IOPORT may be a fair
general�purpose predictor� it may be possible to use extra information to choose the predictor that
gives best performance for a particular type of pattern �see Section �
����

��� Conclusion

We present one primary global�pattern predictor �GAPS�� a variant �RGAPS�� and a specialized
predictor �GW�� In our experiments� these three predictors each managed to successfully reduce
the execution time of global access patterns in most cases� approaching the best time� represented
by the EXACT predictor� closely in many cases� The GAPS predictor had a high overhead� which
may limit its scalability �see Section ����� The overhead of the RGAPS variant was lower� and its
concurrency was high� so it should be more scalable� In our experiments� the RGAPS and GAPS
predictors were essentially equivalent in most cases� except in the grp pattern� where RGAPS was
faster than GAPS� From these experiments� it is not clear whether RGAPS was strictly better than
GAPS� Although GAPS was more robust for short�portioned gfp patterns� the next chapter shows
that RGAPS was usually superior to GAPS� In particular� Section ��� shows that GAPS could not
handle large record sizes� The GW predictor did well on gw and lw patterns� matching EXACT�
although GAPS and RGAPS came close to this performance�

We studied the e
ect of the MaxDist parameter and found that MaxDist should not be too
small �for these tests� less than about �� or �
 blocks�� but a MaxDist that is too large is rarely
a signi�cant problem� There is thus a lot of latitude for this parameter� We also studied the
signi�cance of the portion length of the pattern� As expected� longer portions allow for greater
e�ciency and better performance from all predictors�

Any real implementation of GAPS or RGAPS might obtain better performance through further
tuning� new cache replacement algorithms� the use of programmer�supplied hints� or optimizing for
a particular workload�

Chapter 	

E�ect of Architectural and Workload

Parameters

In all of the experiments described so far� most of the parameters to the RAPID�Transit �le
system testbed were �xed while we explored the potential for prefetching �in Chapter �� and the
capabilities of various on�line predictors for local and global access patterns �in Chapters � and 	��
In this chapter we investigate the e
ect of some of these other parameters on prefetching across our
full range of access patterns� using a few selected predictors� We begin in Section ��� by changing
the record size� which is an important factor in predictors like GAPS as well as in the replacement
algorithm� Then� we vary the cache size in Section ���� and examine how prefetching might use
more or fewer bu
ers� In Section ��� we examine the e
ect of fast and slow disks� Section ���
discusses varying the number of disks� and Section ��� discusses varying the number of processors�
Finally� in Section ���� we pull all of this together with some overall conclusions�

��� Varying the Record Size

So far all of our experiments have used access patterns consisting of records that were all exactly
one block long ��
�� bytes�� The record size is the size of each request to the �le�system interface�
which converts the request into a set of individual block requests for the �le system� Note that
sequential access with records that are not an integral number of blocks results in multiple references
to some blocks� Records larger than a block can radically change the block�request sequence of
globally�sequential access patterns� These are two ways the record size can a
ect the performance
of the �le system� In this section� we explore the e
ects of di
erent record sizes on the potential
for prefetching and on the predictors�

����� Experiments

We ran experiments varying the record size from �

�
block ���� bytes� to �
 blocks ��
��
 bytes��

Note that it was the relationship between the record size and the block size that was important�
not the actual sizes in bytes� We used the NONE and EXACT predictors as well as on�line
predictors �GAPS and RGAPS� or IOPORT� as appropriate�� To keep things simple� we used
only the none synchronization style� This keeps synchronization e
ects separate from record�size
e
ects� The experiments also did not include any computation with each record� This I�O�bound
workload stresses the �le system to its maximum� All other parameters were the same as usual� �

processors� �
 disks� � KByte block size� �
�block cache� and �ve trials per test case�

�
�

�
� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

We experimented with the lfp� lw� seg� rnd� grp� gfp� and gw patterns� For any given pattern�
several variants were constructed with various record sizes� The block access pattern was identical
across all variants of a particular pattern �except for rnd�� It was not possible to build similar lrp
variants due to the short� random portion lengths� Thus� the lrp pattern was not included in these
experiments�

����� Results and Discussion

The results are presented in Figures ������	� The total execution time� averaged over �ve trials� is
plotted as a function of record size� The maximum coe�cient of variation �cv� is noted for each
�gure� With some �noted� exceptions� the curves are tight�

To help in interpreting the results� we compare the experimental execution time to a simple
model of the ideal execution time �page ���� There is no computation in these experiments� only
�

 block reads each requiring �
 msec of I�O� Ideally these are spread evenly over �
 disks� so
the ideal I�O time is � seconds� One exception is the lw pattern� which ideally has only �

 block
reads spread over �
 disks� so the I�O time is
�� seconds� The ideal execution time is plotted as a
dotted line in all of the �gures in this section�

There is one e
ect that was common to all predictors in all patterns� Whenever blocks may
contain multiple records �either whole small records or parts of larger records�� the �le system
processes some blocks many times� We have kept the number of blocks in the pattern constant to
maintain a constant I�O time �except in the rnd pattern see page �
��� Thus the number of �le
system requests �and hence the �le system overhead� is related to the number of records in the
pattern� This e
ect was most evident as a speedup in many cases as the record size increased from
�

�
to one block�

Local Patterns

The results for the local patterns are shown in Figures �������� The NONE predictor was una
ected
by the record size except as mentioned above� �The smaller variations are noise in the data�� The
same was true for EXACT and IOPORT on the lw pattern �Figure ����� EXACT and IOPORT
were mostly una
ected by record size in the lfp pattern� We expect lrp to behave similarly to lfp�

IOPORT was erratic in the seg pattern� shown in Figure ���� The standard deviation of the
�ve trials was as large as the deviations observed for di
erent record sizes� Random runtime
�uctuations determined the order that processes were served by the disks� Because of the heavy
disk contention� shu$ing the disk service ordering could signi�cantly change the execution times�
For the same reason� the cost of mistakes by the IOPORT predictor �not an issue in the EXACT
and NONE predictors� varied wildly� It is not possible to make any signi�cant conclusions for seg
except that it was roughly independent of the record size�

Global Patterns

The results for the global patterns are shown in Figures �������� All predictors were slower for non�
integral record sizes due to several e
ects� First� there were more �le system references since each
block was requested several times� so there was more overhead� Second� di
erent processes were
sometimes simultaneously reading several records within a block� which resulted in competition
for the data structures for that block� Third� until the I�O was complete several processes were
waiting for the same block� Without prefetching� no other I�O was started� and several disks were
idle at all times� The poor disk utilization is re�ected as slower execution times for NONE on the

���� VARYING THE RECORD SIZE �
�

�

���

���

���

��

���

���

��

���

���

��

��

	 �
 � � �	

time
�sec�

Record Size �blocks�

Record�size variation for lfp

NONE "
"

"

"
" " " "

"
" "

EXACT
IOPORT

ideal

Figure ���� Total execution time for lfp as a function of record size� Note y axis does not begin
at zero� �cv �
�
���

	

�

�

�

�

�

�

	 �
 � � �	

time
�sec�

Record Size �blocks�

Record�size variation for lw

NONE "

"""""""""""" " " "" " "" " " " " "" " " " "

EXACT
IOPORT

ideal

Figure ���� Total execution time for lw as a function of record size� �cv �
�
���

�
� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

���

��

���

���

��

�

��

��

�

���

��

	 �
 � � �	

time
�sec�

Record Size �blocks�

Record�size variation for seg

NONE "

"
""

""""""""" " " "" " "" " " " " "" " " " "

EXACT
IOPORT

ideal

Figure ���� Total execution time for seg as a function of record size� Note y axis does not begin
at zero� Here IOPORT had
�
�� � cv �
��
�� �cv �
�
�
 otherwise�

non�integral sizes� with the most acute e
ects in record sizes less than one block� This e
ect was
also evident� although to a lesser extent� when prefetching for non�integral record sizes�

Finally� the replacement algorithm did not handle multiple references per block well� and some
blocks were �ushed from the cache before they had been fully used� This caused extraneous disk
I�O� This points out the need for a better replacement mechanism to avoid �ushing blocks that may
be used by di
erent processes� A simple solution is to avoid �ushing blocks until they have been
referenced a given number of times� This solution is inadequate� however� since for many record
sizes �e�g�� �

�
blocks� the number of references per block is not a single constant� It would also

add complexity and interdependence between the prediction and replacement algorithms� Another
possibility is a method similar to that used to solve the lw phase problem �see Section ������� where
blocks remained in the cache until all processes �interested� in the block had used it�

Note that for integral record sizes ��� �� �� �� �� and �
 blocks� the execution time for EXACT�
NONE� and RGAPS was nearly constant �roughly ��	 seconds�� and close to the ideal execution
time�� Thus� there were no other record�size dependent e
ects on these predictors�

The GAPS predictor slowed down signi�cantly for records larger than two blocks� This was
due to the increased e
ort needed to recognize sequentiality in the block access pattern� since a
mismatch between the record size and the block size made the already convoluted global reference
string even more convoluted� In each case� records larger than four blocks caused GAPS to fail
completely� prefetching no blocks and running �
 times slower �the GAPS curves go o
 the scale
at this point� although it worked a little for gw with ��block records�� This was planned into the
design of GAPS� with the understanding that larger record sizes can be treated as local reference
patterns �and they are more e�ciently treated as local patterns��

From these �gures it is now clear that RGAPS is superior to GAPS �at least for these access pat�
terns�� RGAPS parallels the performance of EXACT throughout� only slightly slower� GAPS only

�We use these record sizes because they divide the ���� blocks into an integral number of �xed�size records�

���� VARYING THE RECORD SIZE �
	

comes close to RGAPS for some small �
�� blocks� record sizes� This reinforces the interpretation
of the GAPS slowdown as a problem with recognizing sequentiality�

	

�

�	

��

�	

��

�	

� � �
 � �
 � � �	

time
�sec�

Record Size �blocks�

Record�size variation for gfp

NONE "
"

"

"
"

"""
"

""" " "
"

""
"

""
" " "

"
"

" " " " "

EXACT
GAPS

RGAPS �

�
��
�
���

�
�����

��
�
� �

�
� � � � �� � � � �

ideal

Figure ���� Total execution time for gfp as a function of record size� �cv �
�
�
�

	

�

�	

��

�	

��

�	

� � �
 � �
 � � �	

time
�sec�

Record Size �blocks�

Record�size variation for grp

NONE "
"

"

"
"" ""

"" " "
"

"
"

"
"

" "

EXACT
GAPS

RGAPS �

�������
�� � �

�
�

�
�

�

� �

ideal

Figure ���� Total execution time for grp as a function of record size� The GAPS experiments
with records larger than � blocks were highly variable �cv �
������ but the signi�cant slowdown
is still clearly evident� �cv �
�
�� otherwise��

�
� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�

�	

��

�	

��

�	

	 � � �
 � �
 � � �	

time
�sec�

Record Size �blocks�

Record�size variation for gw

NONE "
"

"

"
"

"""
"

"""
"

"""
"

"""

"
"""""""""

"
"""""

"

"

EXACT
GAPS

RGAPS �

����
���

�
���

�
������

�
������������������

ideal

Figure ���� Total execution time for gw as a function of record size� �cv �
��
�

Random Pattern

In our previous experiments we used the rnd pattern to show that some predictors handled random
patterns intelligently� Those tests used ��block records� With other record sizes� there are other
issues� parts of some blocks are unused� and some sequentiality is present� We now show how our
predictors were a
ected by these issues� We experimented with the rnd pattern by generating
random patterns with di
erent record sizes� In each pattern all references were to �xed�length
records aligned on record boundaries� much like random access to a �le of �xed�length records� We
used the NONE� IOPORT� GAPS� and RGAPS predictors�

There were several interesting e
ects� shown in Figure ��	� First� the execution time improved
with longer records� This was because of a reduction in wasted I�O bandwidth� For each record of
r blocks� up to dre " � blocks were read� Since the patterns were random� adjacent records were
rarely needed� wasting dre " � � r blocks� The total wasted bandwidth decreased� on the whole�
with increasing r� The waste was especially large for r � �� For integral record sizes� r blocks were
read and r were used� so there was no waste� Thus� the integral record sizes were fastest�

Also note that IOPORT was faster than NONE for all but the smallest records� Once records
used more than one block �even records smaller than one block may involve two adjacent blocks��
there was some sequentiality and prefetching was possible� In other words� the block access pattern
looked to IOPORT like lrp� instead of pure rnd� On the other hand� the execution time for RGAPS
was usually a little slower than NONE� There was no sequentiality on a global scale� so RGAPS
was able to do little prefetching� GAPS was so much slower than the others that most of the curve
is o
 the scale� The rnd pattern with records larger than one block had just enough sequential
access to keep GAPS in Watch mode� but not enough to do any prefetching� This overhead caused
the GAPS execution time to exceed �

 seconds in some cases�

���� VARYING THE CACHE SIZE �
�

	

�

�	

��

�	

��

�	

��

	

�

	 �
 � � �	

time
�sec�

Record Size �blocks�

Record�size variation for rnd

NONE ""

"

"

"

"
""

"

"""" "

"
""

"
"" " " " " "" " " " "

IOPORT
GAPS

RGAPS �

�

�

�

�

�
��

�

���
�
���

�
���

�
���������

��������

ideal

Figure ��	� Total execution time for rnd as a function of record size� �cv �
�
��� except for
GAPS� cv �
����

����� Conclusions

There are several signi�cant conclusions�

� GAPS had its best performance for one�block records� Since all our previous experiments
with GAPS used this record size� those results are optimistic�

� GAPS failed for large record sizes �more than � blocks�� and for random�access patterns with
records larger than one block�

� RGAPS was clearly more general than GAPS when varying the record size� at least on these
access patterns� Other than being a little slower for non�integral record sizes� its performance
was little di
erent from that in Chapter 	�

� Prefetching was possible in the rnd pattern for some record sizes� and IOPORT gained some
improvement over NONE�

� There is a need for tuning the replacement algorithm� to avoid �ushing blocks before all
references �especially from separate processes� are completed�

��� Varying the Cache Size

All of our experiments so far used �
 processes� Thus the minimum cache size was �
 blocks �see
page ���� We used an �
�block cache� implying a prefetch limit of �
 blocks when prefetching� We
chose a �
 block prefetch limit based on preliminary experiments that showed it to be a reasonable
compromise� In this section we examine the e
ect of this parameter �e
ectively� the cache size� on
prefetching� We determine what cache size is appropriate for each workload� and why�

��
 CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

����� Experiments

Using all of our access patterns except rnd� we varied the prefetch limit from �
 blocks to at least
��
 blocks� and in some cases as high as ��
 blocks� Remember that the prefetch limit is in addition
to the base cache size of �
 blocks� The NONE and EXACT predictors were used in every case�
with the IOPORT predictor included for all local patterns and the GAPS and RGAPS predictors
included for all global patterns� All four synchronization styles were used� and only the I�O�bound
�no�computation� experiments were included� All other experimental parameters were the same as
usual� �
 processors� �
 disks� ��KByte block size� ��block record size� and �ve trials per test case�

Although the prefetch limit does not directly a
ect experiments with the NONE predictor� to
be fair we also varied the cache size in those test cases� Although our access patterns are primarily
sequential� some patterns �grp� lrp� and rnd� have a few repeated block references and thus are
a
ected by di
erent cache sizes�

����� Results and Discussion

We only present the data for the each�
�	 synchronization style� since we found the behavior
depended little on the synchronization style� The total execution time was measured for all test cases
�with coe�cient of variation never larger than �!�� This was compared with the no�prefetching
execution time in terms of the percent improvement due to prefetching� With this measure� large
positive percentages are desirable� Figures �������� plot the percent improvement as a function of
the prefetch limit�

Local Patterns

The data for local patterns are shown in Figures �������
� Here we examined the IOPORT and
EXACT predictors� The performance was heavily dependent on the prefetch limit except in the lw
pattern� To examine the e
ects of large prefetch limits� we extended the experiments for lfp� lrp�
and seg out to a prefetch limit of ��
 blocks� This was more than enough bu
ers for every process
to have one prefetch outstanding on every disk simultaneously�

Both EXACT and IOPORT were able to use many prefetch bu
ers in the lfp pattern �Fig�
ure ����� Since IOPORT was limited by MaxDist � �� its performance curve has a sharp knee
at prefetch limit �

 ��
� ��� EXACT leveled o
 at around ��
 blocks� Note that EXACT was
slower than IOPORT� and both were slower than NONE �i�e�� negative improvement�� for small
caches �less than about �

 blocks� this was due to the greedy�process problem� For prefetch limits
of �

 or more� both IOPORT and EXACT were �nally faster than NONE� For limits over �

�
EXACT �nally beat IOPORT� Thus� one solution to the greedy�process problem is to increase the
cache size� The primary conclusion here is that a reasonably large prefetch limit gave the best
performance� though there were diminishing returns�

In the lrp pattern �Figure ���� the performance of EXACT improved signi�cantly with increas�
ing prefetch limit� Unburdened by mistakes and most prefetch limitations� EXACT was able to
use more prefetch bu
ers to reduce both the number of misses and the wait time associated with
bu
er hits� No additional prefetching bene�ts were possible for IOPORT� since it was in OBL mode
and could not use much more than �
 bu
ers for prefetching� All predictors �including NONE�
bene�ted from an increased hit ratio from random re�references in larger caches� This e
ect is
cancelled out in our presentation of percent improvement�

The lw pattern �not shown� was essentially not a
ected by the prefetch limit� EXACT was
constant at �	! improvement� and IOPORT at ��! improvement� independent of the cache size�
In other words� �
 prefetch bu
ers were su�cient� This is no surprise� since every block was used

���� VARYING THE CACHE SIZE ���

��	

���

��	

��

	

�

�	

��

	
	 �	 ��	 ��	 �		 �
	 ��	 ��	 ��	
		

	

Percent
improved

Prefetch limit �blocks�

Cache�size variation for lfp

EXACT
IOPORT

Figure ���� The percent improvement of prefetching over not prefetching� for the lfp pattern�
�cv �
�
�	�

	

�

�

�

�	

��

�

��

��

	
	 �	 ��	 ��	 �		 �
	 ��	 ��	 ��	
		

	

Percent
improved

Prefetch limit �blocks�

Cache�size variation for lrp

EXACT
IOPORT

Figure ���� The percent improvement of prefetching over not prefetching� for the lrp pattern�
�cv �
�
���

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

by every process� signi�cantly reducing overall bu
er space requirements� A �
�block cache was
large enough to keep all the disk queues full� so the disks were always busy�

In contrast� it was clearly important to use many prefetch bu
ers in the seg pattern �Fig�
ure ���
�� This was due to the high�contention disk access pattern in seg� More prefetch bu
ers
meant more prefetching� and more prefetching allowed for much better disk utilization� This was
true both for EXACT and for IOPORT�

The curves in Figure ���
 leveled o
 at a prefetch limit of �

 blocks� This point corresponds
to the total size of one synchronization interval ��
 processors doing �
 blocks each�� and re�ects
seg�s use of only �
 disks during any one synchronization interval�

	

�	

�	

�	

	

�	

�	

	

	
	 �	 ��	 ��	 �		 �
	 ��	 ��	 ��	
		

	

Percent
improved

Prefetch limit �blocks�

Cache�size variation for seg

EXACT
IOPORT

Figure ���
� The percent improvement of prefetching over not prefetching� for the seg pattern�
�cv �
�
���

These experiments provide valuable information about the e
ect of cache size on local pattern
prefetching� Larger caches helped to solve the greedy�process problem in lfp and to handle disk
contention in seg� but made little di
erence to lrp and lw� These results show that our previous
results about prefetching in local patterns are pessimistic� The previous results for lfp show that
our on�line predictors were slightly faster or slightly slower than not prefetching at all� whereas a
�

�block cache gave a solid �
! improvement� The previous results for the seg pattern show ��!
improvement� but �
! improvement was possible with a ��
�block cache� Results for lrp and lw

changed little�

���� VARYING THE CACHE SIZE ���

Global Patterns

For the global patterns we studied the EXACT� GAPS� and RGAPS predictors� The data are
shown in Figures ���������� The EXACT predictor generally leveled o
 in all three patterns after
a �
�block prefetch limit� Apparently �
 prefetch bu
ers were su�cient to keep all the disks busy
and to minimize the number of cache misses� Indeed� with all predictors the disk utilization was
consistently over �
! for grp� �
! for gfp and gw�

The performance of the GAPS and RGAPS predictors steadily declined for grp �Figure �����
and most of gfp �Figure ������ This was due to an increasing number of mistakes in the �rst
portion� where the only limit on mistakes was the prefetch limit� In gfp� there was an improvement
from a �
�block to �
�block prefetch limit� where there was a reduction in the number of cache
misses to o
set the increased number of mistakes� Note that adjustments in the prefetch limit did
not allow either GAPS or RGAPS to attain positive improvement in the grp pattern�

	

�

�

�

�	

��

	 �	
	 �	 �	 �		 ��	

Percent
improved

Prefetch limit �blocks�

Cache�size variation for gfp

EXACT
GAPS

RGAPS �

�

� � � �
�

Figure ����� The percent improvement of prefetching over not prefetching� for the gfp pattern�
�cv �
�
���

Finally� in the gw pattern �Figure ������ GAPS and RGAPS were una
ected by varying the
prefetch limit �the �uctuations were smaller than the measurement error�� In short� it seems that
�
 blocks �two per process� were su�cient for prefetching in global patterns� There was not much
di
erence between prefetch limit �
 and �
� so our other experiments using prefetch limit �
 were
close to the best performance we can expect �at least in terms of prefetch limit��

����� Conclusions

In the I�O�bound patterns that we examined� disk utilization was the key to good performance�
Prefetching �usually� improved disk utilization by �lling the disk queues with appropriate requests�
avoiding costly disk idle time� Unless the disk utilization was already nearly perfect� the availability
of more prefetch bu
ers allowed more prefetching and hence higher disk utilization and higher
performance� This e
ect is clear in the results from the local access patterns� The global access

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

���

��	

��

	

�

�	

��

	 �	
	 �	 �	 �		 ��	

Percent
improved

Prefetch limit �blocks�

Cache�size variation for grp

EXACT
GAPS

RGAPS �

�

�
� � � �

Figure ����� The percent improvement of prefetching over not prefetching� for the grp pattern�
�cv �
�
���

	

�

�

�

�	

��

	 �	
	 �	 �	 �		 ��	 �
	 ��	 ��	 �		

Percent
improved

Prefetch limit �blocks�

Cache�size variation for gw

EXACT
GAPS

RGAPS �

� � � � � � � � � �

Figure ����� The percent improvement of prefetching over not prefetching� for the gw pattern�
�cv �
�
���

���� VARYING THE DISK�ACCESS TIME ���

patterns� however� had high disk utilization �over �
 or �
!� even for small cache sizes and thus
were not much improved by adding bu
ers� This re�ects the contrast between the cooperative
nature of global patterns and the private nature of local patterns� in global patterns� prefetching
a block into the cache bene�ts the entire computation� whereas in local patterns it bene�ts only
one process� The self�serving nature of prefetching in local patterns� and their less�uniform disk
access patterns� may be the reason why they require more prefetching bu
ers� More prefetch bu
ers
would probably also be helpful if the application mixed computation and I�O� when more aggressive
prefetching is useful�

Our original choice of an �
�block cache was indeed a compromise between some local patterns�
which preferred large ���
�block� caches� and all global patterns and the other local patterns� which
were less a
ected by cache size and which were content with a �
�block cache� Given a larger cache�
the bene�ts of IOPORT to the lfp and seg patterns were better than we report in Chapters � and
��

Because the best prefetch limit seems to depend on the access pattern� and is fairly easy to
adjust in a running system� it is possible to use the predictors� information to adjust the prefetch
limit� A simple policy is to use a large prefetch limit �e�g�� �

� for local patterns� and a small
prefetch limit �e�g�� �
� for global patterns� This could be built into the SWITCH predictor�

��� Varying the Disk�Access Time

In RAPID�Transit the physical disk is modeled by a constant disk access time� In all of our other
experiments� the disk access time �per block� was �
 msec� This is roughly the average access time
for the kind of small cheap drives that might be replicated in large quantities as part of a parallel
disk system �PGK��� Sch���� This also ignores disk layout and any bene�t that might come from
physically contiguous disk access�

Although one motivation for parallel disk systems is the slow rate of improvement in disk access
time� disks are getting faster� We study the e
ect of faster and slower disks in this section� Although
we are not changing the speed of our processors �which will also happen as technology changes�
our disk�access time variation is essentially a study of the relative speed of processors and disks�
Thus� the study of slower disks is useful� since slower disks are analogous to faster processors� or
to a situation where both processors and disks are faster� but the speed di
erential is wider than
it is now� The latter is the expected future� The study of faster disks is also useful� in case some
architectures have a narrower gap between processor and disk speeds�

We also use these experiments to determine how well prefetching overlaps I�O and computation�

����� Experiments

We varied the physical disk access time from �
 msec to �
 msec for our usual set of experiments�
Thus� we used the lrp� lfp� lw� and seg patterns with NONE� EXACT� and IOPORT predictors�
and the grp� gfp� and gw patterns with NONE� EXACT� GAPS� and RGAPS predictors� We
used all four synchronization styles with each of the above combinations� and used both the no
computation �I�O�bound� and computation variants� The computation� when present� averaged
roughly �
 msec per block� and was the same across all experiments with a given pattern� All of
the other experimental parameters were the same as usual� �
 processors� �
 disks� ��KByte blocks�
��block records� �
�block cache� and �ve trials per test case�

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

����� Results and Discussion

We present only the results for the each�
�	 synchronization style� The other styles usually had
similar results� and the few exceptions are pointed out� The coe�cient of variation of the total
execution time is provided for each �gure�

To help in interpreting the results� we compare the experimental execution time to a simple
model of the ideal execution time� Recall that the ideal time T is

T � max�I�O time� comp time��

There are �

 block references in our patterns� each requiring t seconds of I�O� with t varying
from �
 to �
 msec� Ideally these are spread evenly over �
 disks� so the ideal I�O time is �

t�
One exception is the lw pattern� which ideally has only �

 disk reads spread over �
 disks� so the
I�O time is �
t� In the I�O�bound experiments there was no computation� so the ideal execution
time is the ideal I�O time� either �

t or �
t�

In the experiments with computation� the total amount of computation �C� varied slightly since
it was randomly generated� but it was roughly �

���
 seconds for all patterns� There were �

processors in all these tests� so the parallel computation time was �ideally� C��
 and hence

T � max��

t�
C

�

� seconds�

Similarly� for lw� the ideal is

T � max��
t�
C

�

� seconds�

In all plots of these experiments� we show the �ideal� execution time as a dotted line� using the
actual value for C� The ideal curve may be somewhat obscured by the experimental�result curves�

I�O�bound Experiments

In these experiments there was only I�O� and no computation� This corresponds to the extreme
case of processors that are so fast that I�O is totally dominant� The ideal disk I�O time assumes
perfectly balanced disks and no extra overhead� If the line for a given experiment has a slope
greater than the ideal line�s slope� the experiment did not have a balanced disk load� If they have
the same slope� but di
erent intercept� then the di
erence is some other source of overhead �e�g��
synchronization time� that is independent of the disk access time�

Global Patterns� The results for I�O�bound global patterns are shown in Figures ���������� In
Figure ���� the total execution time of the gfp pattern is plotted for NONE� EXACT� GAPS� and
RGAPS as a function of the disk access time� All predictors matched at least the slope of the ideal
curve� indicating only a constant overhead� for all but the fastest disks� Our results thus scale
well to the situation when processor speed has increased relative to disk speed� represented here
by the slowest disks� An interesting e
ect� however� occurred with fast disks� GAPS and RGAPS
degraded for disks with access times less than �
 msec� EXACT also degraded� but only for disks
faster than �� msec� �The precise point also varied a little depending on the synchronization style��
There is a simple explanation for this e
ect� Prefetching in global patterns added a substantial
amount of overhead� For slow disks� there was plenty of idle processor time available to be used for
prefetching� and the overhead was absorbed by the idle time� In addition� the bene�ts of prefetching
could be quite large� by avoiding lengthy disk waits� With fast disks� however� the overhead time
remained the same� but the idle processor time and the potential bene�ts were both reduced� In

���� VARYING THE DISK�ACCESS TIME ��	

this case the overhead necessary for accurate prefetching was not worth the small bene�ts obtained�
and only small speedups were obtained by using disks faster than �
 msec� Indeed� for the fastest
disks GAPS and RGAPS were slower than NONE�

�

�

�

�

�

�

�	

��

�	 �	 �	
	 �	

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for gfp

NONE "

"

"

"

"

"

"

"

"

"

EXACT
GAPS

RGAPS �
� � �

�

�

�

�

�

�

ideal

Figure ����� The result of varying disk access time for the I�O�bound gfp pattern� �cv �
�
�	�

When considering the poor performance of prefetching with fast disks� remember that the
processor speed is �xed in this experiment� Also remember that� as technology improves� processor
speeds are increasing faster than disk speeds� Thus� as the fast disks become available� even
faster processors are available� Prefetching overhead will be reduced more quickly than the disk�
access time� so we expect prefetching performance to remain in the linear part of the curve� where
prefetching was successful� Indeed� it may be in the rightmost end of the curve� where disks have
slowed relative to processor speed�

The results for gw �not shown� were essentially the same as those for gfp�
In Figure ����� for the grp pattern� the slope for NONE was larger than ideal� indicating

that the disk load was not quite balanced in this less�regular access pattern� EXACT behaved
much like it did on gfp� with a slight degradation below �� msec� Otherwise it seems to have
a balanced disk load� GAPS and RGAPS did not have the same sharp degradation point� but
changed more smoothly� Note also that they were slower than NONE� as usual for grp� In the
none synchronization style �not shown�� the degradation point was sharper� In the neighbor�
�	
synchronization style �not shown�� GAPS had so much overhead that it degraded for disks faster
than �
 msec� though these results were highly variable �typical for GAPS on grp with neighbor�
�	
synchronization��

In summary� prefetching in global patterns should scale well with disk and processor technology�
given the expected increasing gap between processor speed and disk speed�

Local Patterns� The results for local patterns are shown in Figures ���������� The disk loads
were less balanced� as indicated by the slopes that were higher than ideal� In the lfp pattern
�Figure ������ EXACT and IOPORT both exhibited this e
ect� each with a di
erent slope� This

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

�

�

�	

��

�

�	 �	 �	
	 �	

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for grp

NONE "

"

"

"

"

"

"

"

"

"

EXACT
GAPS

RGAPS �

� �
�

�
�

�
�

�

�

ideal

Figure ����� The result of varying disk access time for the I�O�bound grp pattern� �cv �
�
���

was due in part to the greedy�process problem �note that they were often slower than NONE�
and to a disturbance of the uniformity in the access pattern� Because NONE did not disturb the
uniform disk access pattern� it had only a constant overhead� These conclusions were supported by
the non�synchronized version of these experiments �not shown��

In the lrp pattern� shown in Figure ���	� all three predictors �NONE� IOPORT� and EXACT�
had an unbalanced disk load� as indicated by the slopes that were higher than ideal� In this case�
the slopes were all about the same� since it was the pattern� not the predictor� that was unbalancing
the load�

In the lw pattern �Figure ����� the NONE predictor has a high slope because the disks were
completely unbalanced �only one disk was used at a time�� The run times of EXACT and IOPORT�
however� were independent of the disk access time� since they were able to use all of the disks and
to completely overlap all I�O�

Figure ���� shows the results for the seg pattern� NONE had poorly�balanced disk accesses�
exhibited here by the high slope� EXACT and IOPORT improved the slope� though still higher
than the ideal� In the non�synchronized experiments �not shown�� the disks were balanced naturally
by the pipeline e
ect� In that case� both NONE and EXACT were better able to balance the disks
and had lower overhead� but IOPORT tended to request blocks out of the pipeline order and was
slower than NONE for all but the fastest disks�

In summary� the I�O�bound experiments represent the most stressful test of the �le system�
Our results about local� and global�pattern prefetching that are valid with �
 msec disks seem to
scale well to the likely future hardware balance� with faster disks tied to much faster processors�

���� VARYING THE DISK�ACCESS TIME ���

�

�

�

�	

��

�

�	 �	 �	
	 �	

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for lfp

NONE "

"
"

"
"

"
"

"
"

"

EXACT
IOPORT

ideal

Figure ����� The result of varying disk access time for the I�O�bound lfp pattern� �cv �
�
���

�

�

�

�	

��

�

��

��

�	 �	 �	
	 �	

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for lrp

NONE "

"

"

"

"

"

"

"

"

"
EXACT
IOPORT

ideal

Figure ���	� The result of varying disk access time for the I�O�bound lrp pattern� �cv �
�
���

��
 CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�

�

�

�	

��

�	 �	 �	
	 �	

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for lw

NONE "

"
"

"
"

"
"

"
"

"

EXACT
IOPORT

ideal

Figure ����� The result of varying disk access time for the I�O�bound lw pattern� �cv �
�
���

	

�

�	

��

�	

��

�	

�	 �	 �	
	 �	

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for seg

NONE "

"

"

"

"

"

"

"

"

"

EXACT
IOPORT

ideal

Figure ����� The result of varying disk access time for the I�O�bound seg pattern� �cv �
�
���

���� VARYING THE DISK�ACCESS TIME ���

Experiments with Computation

When the application performs some computation on each block read from the �le� the load on the
�le system is reduced and there is another opportunity for prefetching to improve performance� by
overlapping I�O and computation� As long as there is more computation than I�O� it is possible for
all of the I�O to be masked by computation� This is re�ected in the ideal execution time plotted
in each �gure�

Global Patterns� The total execution time of NONE on the gfp pattern with computation
increased with the disk access time �Figure ���
�� Prefetching with GAPS or RGAPS was always
faster� For fast disks� the I�O time was completely overlapped with computation� so the time was
independent of disk access time� With slower disks� the I�O was the bottleneck and thus the total
execution time was dependent on the disk access time� This e
ect is more clear in Figure ����� the
non�synchronized version of Figure ���
� Notice that the total time was near to the ideal disk time�
indicating that the computation was mostly overlapped by I�O� or vice�versa�

�

�

�	

��

�

��

��

�	

�	 �	 �	
	 �	

Total
time
�sec�

Disk access time �msec�

Disk access time variation for gfp with computation

NONE "

"
"

"
"

"
"

"
"

"

EXACT
GAPS

RGAPS �

� � � � � �
� � �

ideal

Figure ���
� The result of varying disk access time for the gfp pattern with computation�
�cv �
�
�
�

The results for grp and gw �not shown� were similar to those for gfp� They changed gradually
from I�O�bound to compute�bound� unlike in Figure ����� As before� the tradeo
s in the non�
synchronized versions were more clearly de�ned� Also� in grp GAPS and RGAPS were slower than
EXACT�

Local Patterns� The results for lfp are shown in Figure ����� EXACT and IOPORT were able
to overlap part of the I�O with computation� since the slopes of their lines were smaller than the
ideal� but NONE was not able to overlap any I�O with computation� The greedy�process problem
�page �	� was evident for slow disks�

The total execution time for lrp with computation was essentially linear for all three predictors

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

�

�	

��

�

��

��

�	 �	 �	
	 �	

Total
time
�sec�

Disk access time �msec�

Disk access time variation for gfp with computation� no synchronization

NONE "

"
"

"
"

"
"

"
"

"

EXACT
GAPS

RGAPS �

� � � � � �
�

�
�

ideal

Figure ����� The result of varying disk access time for the gfp pattern with computation� no
synchronization� �cv �
�
���

�

�

�	

��

�

��

��

�	

��

�	 �	 �	
	 �	

Total
time
�sec�

Disk access time �msec�

Disk access time variation for lfp with computation

NONE "

"
"

"
"

"
"

"
"

"
EXACT
IOPORT

ideal

Figure ����� The result of varying disk access time for the lfp pattern with computation�
�cv �
�
�
�

���� VARYING THE DISK�ACCESS TIME ���

�Figure ������ This indicates that the I�O never completely overlapped the computation time� as
it did for the global patterns� For other synchronization styles �not shown� the curves were bent
slightly� so there may have been a small amount of overlap�

�

�

�	

��

�

��

��

�	

��

�	 �	 �	
	 �	

Total
time
�sec�

Disk access time �msec�

Disk access time variation for lrp with computation

NONE "

"
"

"
"

"
"

"

"

"

EXACT
IOPORT

ideal

Figure ����� The result of varying disk access time for the lrp pattern with computation�
�cv �
�
���

EXACT and IOPORT were independent of the disk access time in the lw pattern �Figure ������
Nearly all I�O was overlapped with computation or other I�O�

The seg pattern results �not shown� were similar to lfp except for the greedy�process problem�

����� Conclusions

These are the primary conclusions�

� Slower disk�access times represent the likely architectural change to faster disks and much
faster processors�

� The disk speed parameter had the obvious linear e
ect on the total execution time� Based on
the slope of the line� it was clear whether the disk loads were balanced� Also� many I�O�bound
global patterns had a total execution time that was equal to the ideal disk I�O time�

� In many cases the bene�ts of prefetching �in terms of an improvement over not prefetching�
increased with the disk access time� Slower disks meant more idle time that could overlap
with overhead or computation� which is one area where prefetching �nds bene�ts� It also
meant that the cost of a cache miss was increased� increasing the value of a prefetch relative
to its cost�

� In addition to the obvious linear e
ect� in certain predictors the overhead was large enough
to make prefetching unproductive for fast disks on I�O�bound patterns� Increased processor
speeds should keep prefetching overhead ahead of the fast disks�

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

�

�

�

�	

��

��

��

�

��

�	 �	 �	
	 �	

Total
time
�sec�

Disk access time �msec�

Disk access time variation for lw with computation

NONE "

"
"

"
"

"

"

"

"

"

EXACT
IOPORT

ideal

Figure ����� The result of varying disk access time for the lw pattern with computation�
�cv �
�

���

� The lw pattern with prefetching was never a
ected by the disk speed since all I�O was
overlapped with other I�O�

� For some compute�intensive global patterns and fast disks� most or all of the I�O was over�
lapped by computation� These patterns were insensitive to changes in disk speed within that
range�

��� Varying the Number of Disks

In most of our other experiments we used �
 processors and �
 disks� In many real multiprocessors
it is likely that there are fewer disks than processors� Also� many applications may be run with
more or fewer processors than there are disks� To understand the importance of the number of
disks� and how well prefetching can use all of the disks� we experimented with various numbers of
disks�

����� Experiments and Results

We ran several experiments using � to �� disks� using our usual set of patterns and predictors�
We used only none synchronization� which simpli�es analysis by removing synchronization e
ects�
The number of processors was �xed at �
� As usual� there was one application process on each
processor� In this section� we refer to processors instead of processes� to reinforce the fact that there
is full physical parallelism available for the �
 processes� All of the other experimental parameters
were the same as usual� �
 processors� ��KByte blocks� ��block records� �
�block cache� and �ve
trials per test case�

���� VARYING THE NUMBER OF DISKS ���

The ideal execution time is derived as before�

T � max�I�O time� comp time�

There are �

 block references in our patterns� each requiring �
 msec of I�O� for a total of
��
 seconds �lw has �

 disk accesses� for a total of � seconds�� The ��
 seconds of I�O is spread
over a variable number of disks� d� In the I�O�bound experiments there is no computation� so

T �
��

d
seconds

In the experiments with computation� the total amount of computation �C� varied slightly since
it was randomly generated� but it was roughly �

���
 seconds for all patterns� There were �

processors in all of these tests� so the parallel computation time was �ideally� C��
 and hence

T � max�
��

d
�
C

�

� seconds

In all plots of these experiments� we show the �ideal� execution time as a dotted line� using
the actual value for C �it may be somewhat obscured by the experimental�result curves�� We �rst
discuss the I�O�bound cases� then move on to the cases with computation�

I�O�bound Experiments

The results for the I�O�bound gfp pattern are shown in Figure ����� The overall impression is that
all predictors� including NONE� roughly followed the ideal curve� running faster with increasing
numbers of disks� Most of the speedup occurs for fewer than �
 disks� with diminishing returns
after that�

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of disks

Number of disks variation for gfp

NONE "
"

"

"
"

" " " " " " " "" "

EXACT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����� The result of varying the number of disks for the I�O�bound gfp pattern� �cv �
�
���

There are a few interesting details� however� Note that the NONE predictor leveled o
 after
�
 disks� With only �
 processors� and no prefetching� there was no way for NONE to use more

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

than �
 disks� NONE was faster than the others� however� for fewer than � disks� At this point�
the overhead of prefetching was larger than the bene�ts the extra parallelism provided by four or
more times as many processors as disks was enough to keep all of the disks busy� This is a common
feature of all the results in this section�

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of disks

Number of disks variation for grp

NONE "
"

"

"
"

" " " " " " " "" "

EXACT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����� The result of varying the number of disks for the I�O�bound grp pattern� �cv �

�
�	�

The overall shape of the curves for grp� shown in Figure ����� is the same as for gfp� but the
details are a little di
erent� Here NONE was faster than both GAPS and RGAPS for fewer than �

disks� For more than �
 disks� however� GAPS and RGAPS were faster than NONE� which leveled
o
� GAPS and RGAPS were further from the ideal than they were in gfp� due to the increased
mistakes and prediction overhead�

The results for gw are not shown� NONE leveled o
 above �
 disks� and all other predictors
matched the ideal curve throughout�

The results for lfp �Figure ���	� were remarkably similar to those for gfp� With fewer disks than
processors� there were enough processors to keep the disks busy without prefetching� and NONE
ran at ideal speed� The added overhead of prefetching� coupled with the high cost of mistakes�
slowed down IOPORT� Then again� the shortage of disks limited the application so severely that
the di
erence between NONE and IOPORT was insigni�cant� For greater than �
 disks� however�
�
 processors could no longer keep the disks busy without prefetching� so NONE leveled o
 while
IOPORT was essentially identical to both EXACT and the ideal curve� The seg pattern results
�not shown� were essentially the same as in the lfp pattern�

In the lrp pattern �Figure ������ we again note that NONE was faster than IOPORT for small
numbers of disks �here fewer than �
 disks�� and IOPORT was faster than NONE for more than
�
 disks� Unlike lfp� however� neither IOPORT nor EXACT were as fast as the ideal� This was
due to the added mistakes� the inability to predict over portion skips� and IOPORT�s conservative
treatment of random portions�

���� VARYING THE NUMBER OF DISKS ��	

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of disks

Number of disks variation for lfp

NONE "
"

"

"
"

" " " " " " " "" "

EXACT
IOPORT

ideal

Figure ���	� The result of varying the number of disks for the I�O�bound lfp pattern� �cv �
�
�	�

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of disks

Number of disks variation for lrp

NONE "
"

"

"
"

" " " " " " " "" "

EXACT
IOPORT

ideal

Figure ����� The result of varying the number of disks for the I�O�bound lrp pattern� �cv �
�
���

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�

�

�

�

�

�

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of disks

Number of disks variation for lw

NONE "
" " " " " " " " " " " "" "

EXACT
IOPORT

ideal

Figure ����� The result of varying the number of disks for the I�O�bound lw pattern� The ideal
time is based on �

 disk accesses instead of �

� �cv �
�
���

The lw pattern results �Figure ����� were remarkably di
erent than the others� Without
prefetching� all processors in the lw pattern worked on only one block at a time� and hence only
one disk at a time� Thus� the time for NONE was roughly constant for all numbers of disks� The
other predictors leveled o
 for more than 	 disks� This phenomenon is related to our choice to do
prefetching only during processor idle times� In lw� with prefetching and enough disks� the disks
supplied blocks faster than they could be processed� reducing the hit�wait time to zero� There was
then no idle time and hence no prefetching� Eventually the bu
ers were emptied and a demand
fetch was necessary� which provided idle time for more prefetching� These events repeated in a
cycle� causing several �time�consuming� demand fetches� and limiting the speed of lw� This was
one case where it might have been productive to force a prefetch when there was no processor idle
time available�

The rnd pattern is neither local nor global �Figure ���
�� This graph is a little di
erent because
it includes all of the predictors except EXACT �NONE� IOPORT� GAPS� and RGAPS�� For few
disks �i�e�� ��� disks� the �
 processors were able to fully use all the disks and run close to the ideal
speed� With more disks� the random access pattern caused short�term imbalances in the disk load
that left some disks idle and thus the ideal was not reached� The disk contention was reduced when
the pattern was spread over more disks� so performance gains were possible when there were more
disks than processors�

Experiments with Computation

In our experiments with computation� the execution time had a lower bound of about � seconds�
which was the total computation time spread evenly over �
 processors� This lower bound was
achieved only if all of the I�O was overlapped with computation� This was possible when there
were enough disks to make the I�O time shorter than the computation time� and if some mechanism
was used to overlap the two� Since the I�O and computation times were roughly balanced for �

���� VARYING THE NUMBER OF DISKS ���

	

�	

	

�	

�	

�		

��	

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of disks

Number of disks variation for rnd

NONE "
"

"

"
"

" " " " " " " "" "

IOPORT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ���
� The result of varying the number of disks for the I�O�bound rnd pattern� Note that
IOPORT� GAPS� and RGAPS are all included� �cv �
�
�
�

disks and �
 processors� the ideal execution time leveled o
 for more than �
 disks� If there were
more computation time� the ideal curve would level o
 with fewer disks� Thus� a program with
more computation needs fewer disks� while a program that has less computation needs more disks�
to attain its best performance� This comes directly from the equations on page ���� Indeed�
applications with much more computation than I�O could not bene�t from large numbers of disks
�but could still bene�t from prefetching�� For example� if our experiments had roughly ��
 seconds
of computation per process �instead of ��� the ideal would be ��
 seconds regardless of the number
of disks�

Figure ���� shows the results for the gfp pattern with computation� Note that NONE leveled
o
 above �
 disks� With �
 or more disks� on average half of the processors were using the disk and
half were computing at any one time �since the average computation time is equal to the disk access
time� per block�� Hence� at most �
 disks �half of �
� could be used by NONE�� For �
 or fewer
disks NONE was close to ideal speed� implying that it was able to overlap I�O and computation�
This was because there were enough processors to keep all the disks busy� although some processors
were computing�

The �ideal� curve leveled o
 at �
 disks� and the other predictors stayed close to ideal� leveling
o
 around �	 or �
 disks� The di
erence between these predictors� times and the ideal time is the
amount of I�O and overhead that could not be overlapped with computation� plus the extraneous
I�O caused by prefetching mistakes�

The results for grp with computation �Figure ����� were similar to those for gfp with compu�
tation� except that the GAPS and RGAPS predictors were a little slower� This was typical for grp�
of course� because of the greater number of mistakes and the di�cult pattern recognition� This
added overhead made them slower than NONE for fewer than �
 disks�

�If there had been more computation involved
 NONE would have leveled o� sooner
 able to use fewer disks�

��
 CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
time
�sec�

Number of disks

Number of disks variation for gfp with computation

NONE "
"

"

"
" " " " " " " " "" "

EXACT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����� The result of varying the number of disks for the gfp pattern with computation�
�cv �
�
���

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
time
�sec�

Number of disks

Number of disks variation for grp with computation

NONE "
"

"

"
" " " " " " " " "" "

EXACT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����� The result of varying the number of disks for the grp pattern with computation�
�cv �
�
���

���� VARYING THE NUMBER OF DISKS ���

The results for gw with computation �not shown� were similar to those of gfp with computation�
GAPS� RGAPS� and EXACT were essentially identical in all cases� and all close to the ideal
execution time�

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
time
�sec�

Number of disks

Number of disks variation for lfp with computation

NONE "
"

"

"
" " " " " " " " "" "

EXACT
IOPORT

ideal

Figure ����� The result of varying the number of disks for the lfp pattern with computation�
�cv �
�
���

The lfp pattern with computation �Figure ����� was similar to the gfp pattern with computa�
tion� EXACT and IOPORT were essentially identical� though not quite ideal for more than a few
disks� The results for the seg pattern with computation �not shown� were similar to those of the
lfp pattern with computation�

The lrp pattern with computation� in Figure ����� performed much like the grp pattern with
computation� For fewer than �
 disks� NONE was faster than IOPORT� and for �
 or more disks�
IOPORT was faster than NONE� Due to the mistakes and IOPORT�s reluctance to prefetch in lrp�
IOPORT was slower than EXACT�

In the lw pattern with computation� as in the I�O�bound lw pattern� the NONE predictor
had a roughly constant execution time �Figure ������ However� so did the EXACT and IOPORT
predictors� which both came within a �xed overhead of the ideal execution time for more than
one disk� Here the ideal curve was mostly constant �equal to the computation time�� since the
total I�O time was always less than or equal to the computation time �there were only �

 total
disk accesses�� In this pattern� therefore� there was no need for a large number of disks� The
computation time dominated�

For the rnd pattern with computation �Figure ����� we again used all of the global and local
predictors� There was no possibility of prefetching� so the predictors did not come close to the
ideal time for more than a few disks� For more than �
 disks� the total execution time was the
sum of the I�O and computation times� plus a little overhead� For fewer than �
 disks� the added
processor parallelism allowed some overlap between computation and I�O� The rest was similar to
the I�O�bound rnd pattern in Figure ���
�

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
time
�sec�

Number of disks

Number of disks variation for lrp with computation

NONE "
"

"

"
" " " " " " " " "" "

EXACT
IOPORT

ideal

Figure ����� The result of varying the number of disks for the lrp pattern with computation�
�cv �
�
���

	

�

�

�

�	

��

� � �	 �� �	 �� �	 ��

Total
time
�sec�

Number of disks

Number of disks variation for lw with computation

NONE "

" " " " " " " " " " " "" "

EXACT
IOPORT

ideal

Figure ����� The result of varying the number of disks for the lw pattern with computation� The
ideal time is based on �

 disk accesses instead of �

� �cv �
�

���

��	� VARYING THE NUMBER OF PROCESSORS ���

	

�	

	

�	

�	

�		

��	

� � �	 �� �	 �� �	 ��

Total
time
�sec�

Number of disks

Number of disks variation for rnd with computation

NONE "
"

"

"
" " " " " " " " "" "

IOPORT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����� The result of varying the number of disks for the rnd pattern with computation�
Note IOPORT� GAPS� and RGAPS are all included� �cv �
�
���

����� Conclusions

These are the primary conclusions�

� Remember that achieving the ideal execution time� while a good measure of prefetching�s
e
ectiveness� is not necessarily the overall goal� It is little help to be close to the ideal when
the ideal is slow� as is the case� for example� when there are only a few disks�

� The predictors all roughly followed the shape of the ideal�time curve� except for NONE�
which could not use more than �
 disks with �
 processors ��
 disks in the computation
experiments��

� Only with prefetching did performance continue to improve when there were more disks than
processors �except in the rnd pattern��

� NONE was often slightly faster than prefetching when there were many fewer disks than
processors �except in lw�� In this case� the parallelism in �le system requests was able
to keep the disks busy with less overhead than by prefetching� This seemingly negative
result is tempered by the fact that� in these experiments� NONE was only slightly faster than
prefetching� whereas in many other situations �fewer processors than disks� small record sizes�
high disk contention� etc�� NONE was much slower than prefetching� Overall� prefetching
was worthwhile�

��� Varying the Number of Processors

In all of our other experiments our test applications had �
 processes running on �
 processors� In
most of those experiments� the number of disks was also �
� When we varied the number of disks�

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

we found several interesting e
ects when the number of processors did not equal the number of
disks� We revisit these e
ects in this section� where we vary the number of processors� and we also
examine the scalability of both the �le system and the predictors�

As always� we run exactly one process on each processor� and so the number of processes equals
the number of processors� In this section we often use the word �processor� to emphasize the
variation in available physical parallelism�

����� Experiments

We used our standard set of patterns� with and without computation� All patterns �except lw�
read �

 blocks total �as always�� Thus the local patterns had to be regenerated for each number
of processors� We varied the number of processors from � to over �
�� This is enough processors
to get a rough idea of scalability� though more processors are required to seriously test scalability
of the implementation� We used the NONE and EXACT predictors� plus the appropriate on�
line predictors �IOPORT or GAPS and RGAPS�� We used only the none synchronization� which
simpli�es the analysis by avoiding synchronization e
ects� All other parameters were the same as
usual ��
 disks� ��KByte blocks� ��KByte records� �
�block cache� and �ve trials per test case��
Wherever possible we used the same pattern� or pattern parameters� across all tests with that
pattern� Due to the random nature of the rnd and lrp patterns� the pattern we used was necessarily
di
erent for each number of processors� but we believe that the di
erence had only a minor e
ect
on these experiments�

In order to isolate the e
ect of the number of processors� we held most of the parameters
constant� In particular� the cache size� and hence prefetch limit� was �xed� For local patterns� this
meant that the prefetch limit per process varied with the number of processes� In a production
system� it would be more logical to �x the cache size per process� and vary the total cache size with
the number of processes�

����� Results and Discussion

The ideal execution time for these experiments is derived much like it is for the number�of�disks
variation� Here� however� the number of disks is �xed at �
� and the number of processors �p�
varies�

T � max�I�O time� comp time� � max���
C

p
� seconds�

Here C is the total amount of computation in the pattern� In the I�O�bound experiments C �
�
and T � � seconds� In the global patterns the computation was randomly generated� and so C
varied a little from pattern to pattern� It was usually around �

 seconds� In the local patterns we
used a �xed �
 msec computation time on each block� to avoid di�culties in generating patterns
that could be fairly compared as the number of processors varied� Here C � ��
� except for lw�
where C � �p� The ideal curve is plotted in all of the �gures� using the actual values for C�

I�O�bound Experiments

The results for the gfp pattern are shown in Figure ���	� Adding processors reduced the execution
time for the NONE predictor by helping to keep the disks busy� More than �
 processors �i�e��
more processors than disks� made little di
erence� With prefetching� the ideal execution time was

�We stopped at �� because that was the maximum useful size of our machine when the tests were run� In most
local patterns we stopped at �� because it was the largest number that evenly divided the work among the processors�

��	� VARYING THE NUMBER OF PROCESSORS ���

achieved with fewer processors� For EXACT� three processors were su�cient to keep �
 disks busy
with prefetching� Thus� the disks were fully utilized either by prefetching or by using a su�cient
number of processors�

There were two interesting e
ects when there were more processors than disks� First� NONE
was faster than all other predictors �though not much faster�� At this point the parallelism alone
was enough to keep the disks occupied� whereas prefetching required more overhead for the same
task� and also made mistakes� This result was con�rmed on similar experiments with �
 disks�
Second� note that GAPS �and to some extent RGAPS� slowed down for more than �
 processors�
The inter�process contention was increasing� a hint that these predictors may not scale well�

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of processors

Number of processors variation for gfp

NONE ""

"

"

" " " " " "

EXACT
GAPS

RGAPS �

�
� � � � � � � �

ideal

Figure ���	� Total execution time for gfp as a function of number of processors� �cv �
�
�
�

Less prefetching was possible in the grp pattern� shown in Figure ����� The NONE predictor
behaved much as it did on gfp� but the three prefetching predictors needed more processors to match
the ideal execution time than they did for gfp� NONE was fastest for more than �
 processors�
This result was con�rmed by a corresponding e
ect in experiments with �
 disks� GAPS began to
slow down �due to predictor contention� for more than �� processors�

The results for the gw pattern �not shown� were similar to those for gfp� The prefetchers had
nearly ideal execution time except for few processors �fewer than three��

The results for the lfp pattern� shown in Figure ����� were similar to the gfp results� EXACT
was always close to the ideal execution time� especially with more than � processors� IOPORT was
also close to the ideal for more than � processors� although it began to slow down some when the
number of processors exceeded the number of disks� In fact� for �� processors IOPORT was slower
than NONE� This was due to two factors� increased contention for prefetch bu
ers and other
prefetching data structures� and an increasing number of prefetching mistakes� The prefetching
mistakes occurred primarily at the end of the �rst portion on each processor� when the number of
processors increased� the number of �rst portions increased� so the number of mistakes increased�

The results for lrp are shown in Figure ���
� The general form of these results is similar to
the lfp results� except that EXACT and IOPORT were able to prefetch less and thus needed more

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of processors

Number of processors variation for grp

NONE ""

"

"

" " " " " "

EXACT
GAPS

RGAPS �

�

�
�

� � � � � �

ideal

Figure ����� Total execution time for grp as a function of number of processors� �cv �
�
	
�

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	

Total
Time
�sec�

Number of processors

Number of processors variation for lfp

NONE ""

"

"
"

" " " " " "

EXACT
IOPORT

ideal

Figure ����� Total execution time for lfp as a function of number of processors� �cv �
�
���

��	� VARYING THE NUMBER OF PROCESSORS ��	

processors to approach the ideal execution time� Their approach was further from the ideal than in
lfp� since the prefetching potential in lrp was more limited� NONE was faster than IOPORT for
more processors than disks� a result con�rmed in similar experiments with �
 disks� Here NONE
was never faster than EXACT� but with more than three times as many processors as disks ���
processors� �
 disks� it was essentially the same as EXACT �not shown�� None of the predictors
showed any sign of slowing down for large numbers of processors�

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	

Total
Time
�sec�

Number of processors

Number of processors variation for lrp

NONE ""

"

"
"

" " " " " "

EXACT
IOPORT

ideal

Figure ���
� Total execution time for lrp as a function of number of processors� �cv �
�
���

The lw pattern was di
erent from the other patterns� as shown in Figure ����� In this pattern�
every process read the whole �le� rather than some share of the �le� Thus� the number of �le system
requests� per process� was independent of the number of processors� and the total number of �le
system requests grew linearly with the number of processors� The amount of I�O was constant�
as in all the other experiments� As Figure ���� shows� there was no improvement in the execution
time by adding more processors� NONE could not use more than one disk at a time� regardless
of the number of processors� whereas EXACT and IOPORT were able to use all of the disks with
only one processor� Because of the increasing �le system overhead� however� the execution time
actually increased with more processors� The conclusions from similar experiments with �
 disks
were the same�

Prefetching was successful in the seg access pattern� shown in Figure ����� Except for the one�
processor case� and for more processors than disks� both EXACT and IOPORT ran at essentially
ideal speed� IOPORT slowed down some for �� processors� and NONE was then faster� Prefetching
reordered the disk accesses and increased the disk contention� This had two e
ects� to reduce the
number of blocks prefetched� and to decrease the load balance between the processors by delaying
some processors more than others� With more processors� the load was less balanced� and the
execution time increased�

For the rnd pattern� we necessarily used a di
erent random pattern for each number of pro�
cessors� Given the uniform distribution of block references throughout the �le �and hence over the
disks�� we believe the di
erences had only small e
ects on the timing� We used the NONE� IO�

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�

�

�

�

�

�

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of processors

Number of processors variation for lw

NONE "
" " " " " " "

" """

EXACT
IOPORT

ideal

Figure ����� Total execution time for lw as a function of number of processors� �cv �
�
���

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	

Total
Time
�sec�

Number of processors

Number of processors variation for seg

NONE ""

"

"
"

" "
" " " "

EXACT
IOPORT

ideal

Figure ����� Total execution time for seg as a function of number of processors� �cv �
�
	��

��	� VARYING THE NUMBER OF PROCESSORS ���

PORT� GAPS� and RGAPS predictors� The results are shown in Figure ����� All of the predictors
were essentially the same as NONE� None of them ever quite reached the ideal execution time�
although they all continued to speed up �albeit slightly� past �
 processors� These results were
con�rmed in a similar experiment using �
 disks�

	

�	

	

�	

�	

�		

��	

�
	

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of processors

Number of processors variation for rnd

NONE ""

"

"
"

" " " " " "

IOPORT
GAPS

RGAPS �

�

�

�

� � � � � �

ideal

Figure ����� Total execution time for rnd as a function of number of processors� Note that not
all predictors were run at all test points� �cv �
�
���

Experiments with Computation

The ideal execution time for experiments with computation is attained by overlapping all computa�
tion with I�O� or all I�O with computation� Note that NONE could not use more disks than it had
processors� Once there were more processors than disks� however� NONE queued multiple requests
on some disks� It was possible� therefore� for all the disks to be busy while some processors were
computing� Thus� the execution time for NONE could be less than the sum of the I�O time and the
computation time� and approach the ideal execution time� when there were more processors than
disks� This also held for all predictors in the rnd pattern� where none of them did any prefetching�

In the gfp pattern with computation �Figure ������ the prefetchers all came close to the ideal
execution time� especially once they were I�O�bound �more than �
 processors�� Thus� the overlap
between computation and I�O was nearly perfect� As the number of processors increased� NONE
was closer to the ideal execution time� though it was always slower than the others� In the �
�disk
experiments �not shown�� NONE was faster than GAPS and RGAPS for �� or more processors� so
we believe that NONE would also be faster than GAPS and RGAPS with �
 disks� given enough
processors�

The results for gw with computation �not shown� were similar to those for gfp with computa�
tion�

The results for grp with computation are shown in Figure ����� All of the predictors� curves
follow the same rough shape� with EXACT running at close to ideal speed throughout� GAPS

��
 CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�	

�		

��	

�		

��	

� � �	 �� �	 �� �	 ��

Total
time
�sec�

Number of processors

Number of processors variation for gfp with computation

NONE "
"

"

"

" " " " " "

EXACT
GAPS

RGAPS �

�

�
�

� � � � � �

ideal

Figure ����� Total execution time for gfp with computation as a function of number of processors�
�cv �
�
���

and RGAPS were slower than EXACT� but still faster than NONE in most cases� For more than
�
 processors� NONE was slightly faster than either GAPS or RGAPS� which began to level o

about ��� seconds slower than ideal �due to the inevitable mistakes�� Once again� a surplus of
processors was able to provide the same bene�ts as prefetching� without the added overhead or
costly mistakes� GAPS and RGAPS were roughly the same� except for one processor and more
than �� processors� where RGAPS was faster� Overhead slowed GAPS down�

The results for lfp with computation� in Figure ����� were similar to those for gfp with compu�
tation� EXACT was fairly close to the ideal execution time� and IOPORT was slightly slower for
fewer than �
 processors� Both were always an improvement over NONE�

In the lrp pattern with computation� shown in Figure ���	� IOPORT was never quite as fast
as EXACT� which in turn was never quite as fast as the ideal� Both were always an improvement
over NONE�

The results for the lw pattern with computation are shown in Figure ����� and seem to be
independent of the number of processors� Without prefetching� only one disk was used at a time�
so the I�O time was � seconds instead of
�� seconds� Computation �which for lw was independent
of p� was not overlapped with I�O� so the total execution time was about �� seconds� With
prefetching� all computation was overlapped by I�O� so the total was closer to the ideal � seconds�

In the seg pattern with computation� IOPORT was essentially the same as EXACT� and both
were close to the ideal� They were both always faster than NONE�

The rnd pattern with computation �Figure ���
� was much like the I�O�bound rnd pattern�
in that all of the predictors were about the same� and none ever matched the ideal execution time�
With more processors� however� they were increasingly close to the ideal�

��	� VARYING THE NUMBER OF PROCESSORS ���

	

�	

�		

��	

�		

��	

� � �	 �� �	 �� �	 ��

Total
time
�sec�

Number of processors

Number of processors variation for grp with computation

NONE "
"

"

"

" " " " " "

EXACT
GAPS

RGAPS ��

�

�
� � � � � �

ideal

Figure ����� Total execution time for grp with computation as a function of number of processors�
�cv �
�
���

	

�	

�		

��	

�		

��	

� � �	 �� �	 �� �	

Total
Time
�sec�

Number of processors

Number of processors variation for lfp with computation

NONE "

"

"

"
"

" "
" " " "

EXACT
IOPORT

ideal

Figure ����� Total execution time for lfp with computation as a function of number of processors�
�cv �
�
���

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�	

�		

��	

�		

��	

� � �	 �� �	 �� �	

Total
Time
�sec�

Number of processors

Number of processors variation for lrp with computation

NONE "

"

"

"
"

" "
" " " "

EXACT
IOPORT

ideal

Figure ���	� Total execution time for lrp with computation as a function of number of processors�
�cv �
�
�	�

	

�

�

�

�	

��

�

� � �	 �� �	 �� �	 ��

Total
Time
�sec�

Number of processors

Number of processors variation for lw with computation

NONE "
" " " " " " " " ""

EXACT
IOPORT

ideal

Figure ����� Total execution time for lw with computation as a function of number of processors�
�cv �
�

���

��	� VARYING THE NUMBER OF PROCESSORS ���

	

�	

�		

��	

�		

��	

� � �	 �� �	 �� �	

Total
Time
�sec�

Number of processors

Number of processors variation for seg with computation

NONE "

"

"

"
"

" "
" " " "

EXACT
IOPORT

ideal

Figure ����� Total execution time for seg with computation as a function of number of processors�
�cv �
�
�	�

	

�	

�		

��	

�		

��	

� � �	 �� �	 �� �	 ��

Total
time
�sec�

Number of processors

Number of processors variation for rnd with computation

NONE "
"

"

"
"

" "
" " " "

IOPORT
GAPS

RGAPS �

�

�

�

� � � � � �

ideal

Figure ���
� Total execution time for rnd with computation as a function of number of processors�
�cv �
�

�	�

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

����� Scaling both Disks and Processors

In another set of experiments� we varied both the number of disks and processors so that there was
always one disk per processor� The results from these experiments were similar to the experiments
described above� except that the theoretical and experimental total execution time never leveled
o
 within our test range �� to �� processors�� as was the case when we varied only the number of
disks or the number of processors� The ideal execution time for p processors and d � p disks is

T � max�I�O time� comp time� � max�
IO

d
�
C

p
� �

max�IO� C�

p
�

Our experimental data followed the ideal curve in much the same way as described above� where
we varied the number of disks or processors independently�

����� Conclusions

These are the signi�cant conclusions�

� The ideal execution time was often achieved without prefetching� given a surplus of processors
�except in lw�� In I�O�bound applications� it su�ced to have more processors than disks�
With some computation� it was necessary to have many more processors than disks�

� Using prefetching� fewer processors were required to reach the ideal execution time�

� It was possible to overlap computation and I�O almost perfectly�

� In some cases� the predictors ran more slowly when given more processors in particular� it
appears that the GAPS predictor had trouble scaling to many more processors than disks�
We expect that GAPS would not scale well if it had more processors available�

The �rst conclusion is perhaps the most important� Since we expect that most multiprocessors
will �and do� have more processors than disks� this is a common situation� Remember� however�
that in other situations �e�g�� small record sizes or unbalanced disk loads� prefetching was much
better than not prefetching� In general� it is a valuable addition with signi�cant bene�ts most of
the time� and occasionally a small slowdown�

��
� OVERALL CONCLUSIONS ���

��
 Overall Conclusions

The performance of our GAPS� RGAPS� and IOPORT predictors varied a lot in some of the
experiments discussed in this chapter� Their performance relative to each other� and to EXACT�
NONE� and the ideal execution time� also varied� In an e
ort to combine all of these results� and
contrast them with the results of other chapters� we make the following conclusions�

� Disk utilization was obviously the key to performance� particularly in the I�O�bound experi�
ments� Prefetching usually increased disk utilization and hence performance�

� All three predictors� GAPS� RGAPS� and IOPORT� were fairly robust across most of the
experiments in this chapter� Within limits� the number of disks� number of processors� and
disk access time could vary and prefetching came close to the ideal execution time� and was
usually faster than not prefetching� There were exceptions� usually at the extremes of the
variation �e�g�� few disks� many processors� or fast disks��

� RGAPS is clearly better than GAPS as a general�purpose choice� RGAPS was able to handle
unusual record sizes� where GAPS was sometimes �
 times slower than NONE� Because of its
lower overhead and higher concurrency� we expect RGAPS to scale better than GAPS when
given more processors� judging by the e
ects we saw beginning around �
 processors�

� When there were fewer processors than disks� prefetching was better able to keep the disks
busy than was NONE� In this case� the execution time with prefetching was often close to
the ideal execution time�

� When there were more processors than disks� the NONE predictor was often faster than all of
the others� The parallelism alone was able to keep the disks busy� with less overhead and no
mistakes� When there was computation involved� more processors were required for NONE to
be faster than the other predictors� since it could not overlap as much I�O with computation�

� Prefetching helped to overlap computation and I�O� and in many cases the execution time
was close to the ideal� The execution time was� of course� bounded below by the computation
time� since prefetching could only improve the I�O time�

� Limited prefetching was possible in the rnd pattern when the record size was not one block�
Thus� some execution time improvements are possible even for �random� access patterns�

� With fast disks� prefetching was sometimes slower than not prefetching� In this case� the
overhead of prefetching was not worth the small bene�ts� Increasing processor speeds will
lower this overhead faster than disk speeds will improve� so this e
ect may not be signi�cant�

� Prefetching in many local patterns was much improved with larger caches �on the order of
�

 blocks instead of �
 blocks��

Although there were some situations where prefetching was not helpful� it was not much worse
than not prefetching �with the exception of GAPS on unusual record sizes�� Prefetching was most
useful in these situations�

� When there were fewer processors than disks�

� When there was some computation to be performed�

� When the disk�access speed was slow relative to processor speed�

��� CHAPTER �� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

� In the lw pattern�

In addition� successful prefetching required more bu
ers than were needed without prefetching� In
general� prefetching gave huge performance increases and sometimes small performance decreases�
Thus� on the whole� prefetching was e
ective�

The results in previous chapters were based on only one assignment of the parameters we explore
in this chapter� We cannot say whether those results were consistently optimistic or pessimistic�
either in terms of the potential for prefetching or the performance of any given predictor� From
the results in this chapter�

� With larger caches� IOPORT and EXACT performed much better on some local patterns�

� With fewer processors� or more disks� the bene�ts of prefetching were more signi�cant�

� With slower disks the bene�ts of prefetching were more signi�cant�

� The all�round performance of GAPS was much worse than in Chapter 	�

Thus our previous results were neither pessimistic nor optimistic� except in the case of the GAPS
predictor� where they were overly optimistic�

Our experiments were limited by the size of the machine available to us� We believe� however�
that prefetching will scale to larger machines� In any application� the bottleneck will limit perfor�
mance� so for higher performance both the number of processors and the number of disks must be
increased� depending on the particular access patterns and computational loads that are expected�
To scale to much larger machines �hundreds of processors� the quality of the implementation be�
comes even more important� Our experiments only began to test the scalability of the �le system
and predictors� all of which showed some stress even with �
 processors� IOPORT looks like it will
scale well to larger numbers of processors and disks� and RGAPS may scale some more� but will be
more limited� GAPS� on the other hand� is not likely to scale much further at all� The �le system
itself has moderate scalability a more careful implementation is needed for signi�cant scalability�

Chapter

Bu�ering for Write Access

�� Introduction

In the preceding chapters we concentrate on read�only access patterns� investigating the potential
for prefetching and caching techniques to improve parallel I�O performance� In this chapter we
consider another important class� write�only access patterns� Recall from page �� that these
patterns are writing newly created �les� not overwriting existing �les� The issue� then� is not
prefetching� since there is no data to fetch from disk� but bu
ering data written to the cache and
deciding when to write it back to disk� The timing of disk writes can have signi�cant performance
e
ects� As before� the goal is high disk utilization and minimization of mistakes� We explore several
methods in this chapter� and evaluate their performance on our write�only access patterns �page
����

We assume that the space for the �le is preallocated� so no �le�extension or other overhead is
required while the �le is written� This assumption is necessary since we do not model the disk
layout or simulate the associated �le system overhead involved with opening �les and allocating
disk space� Preallocation is already found in some supercomputer �le systems �Pow		� NNI����

�� Methods

All I�O is done to bu
ers in the disk cache� The application writes data into a cache bu
er �which
is then �dirty��� and the data are written to disk later� Cache consistency is not an issue because
there is only one� shared cache� We implemented several distinct methods for triggering the physical
disk writes�

WriteThru� the simplest scheme� forces a disk write on every �le write request from the applica�
tion�

WriteBack delays the disk write until the bu
er is needed for another block�

WriteFree issues a disk write when the bu
er enters the free list� Thus� it issues a write before
the bu
er is needed for re�use� but after it is no longer in use by some processor� This is a
compromise between WriteThru and WriteBack�

WriteFull issues the disk write when the bu
er is �full�� de�ned to be when the number of bytes
written to the bu
er is exactly equal to the size of the bu
er in bytes� This assumes that
each byte of the �le is written exactly once �page ����

��	

��� CHAPTER
� BUFFERING FOR WRITE ACCESS

Each of these methods is easy to implement� and has its own advantages and disadvantages�
WriteThru� for example� is ideal for blocks that are only accessed once� because the disk I�O
is started immediately� It is poor� however� for patterns where the block may be accessed many
times in a short interval �e�g�� when the record size is smaller than the block size there are sev�
eral records per block and thus several accesses per block�� WriteFull was designed for this case�
WriteBack and WriteFree provide interesting alternatives�

There are two types of mistakes possible in any write�only access pattern with non�integral
record sizes�

rewrite
 A disk write is issued prematurely� The application writes to a bu
er� the bu
er is
written to disk� and then the application writes to the bu
er again� requiring another disk
write� Several rewrite mistakes are possible before a bu
er �nally leaves the cache� Each
rewrite mistake represents one extraneous disk write�

reread
 A block is removed from the bu
er cache prematurely� In this case� the application writes
a bu
er and then the bu
er is written to disk and used for another block� If the application
writes to part of the �rst block again� the block must be read back into the cache before it can
be updated� Each reread mistake represents two extraneous disk operations �one premature
write� one reread��

�� Experiments

We designed a set of experiments to evaluate the e
ectiveness of our write�bu
ering policies across
variations in workload and cache size� These experiments answer the following questions�

� What is the e
ect of cache size� Is a large cache useful�

� How do the policies react to the record size�

� Which �if any� policy is the most generally successful�

� Can a cache using a smart write�bu
ering policy help an application to better use the available
parallel I�O bandwidth�

We experimented with all three write�only access patterns �page ���� both with computation
�averaging �
 msec per block� and without �i�e�� I�O bound�� For each case� we tried all of the
write methods described above� �rst varying the cache size with one�block records� then varying
the record size with an �
�block cache� In all tests there were �
 processes and �
 disks� the RU�
set size was one block� the block size was � KByte� and there was no synchronization �i�e�� none
synchronization�� The ideal execution time was � seconds for all cases except lw� with computation�
which was limited by its ��
 seconds of computation�

In one �nal experiment� we varied the RU�set size using the WriteFree method �Section �������

�� Results

All results represent the average over �ve trials for each test point� In all cases cv �
�
��� that is�
the standard deviation was never more than ���! of the mean� Most cases had much smaller cv�

��� RESULTS ���

���� Cache�size Variation

In these experiments� the cache size varied from �
 one�block bu
ers to �

 one�block bu
ers ��
to �
 blocks per process�� The workload patterns all issued write requests of exactly one block
�i�e�� the record size was one block�� Thus� each block was accessed only once� The most successful
methods issued disk writes soon after the bu
er was �lled� Note that WriteFull and WriteThru are
inherently equivalent in these access patterns� because the bu
er is full when it is �rst written�

In the gw pattern� shown in Figure ���� WriteThru� WriteFull� and WriteFree were clearly
faster than WriteBack� which delayed the disk write too long� In gw with computation� shown in
Figure ���� WriteFree is also slower than WriteThru or WriteFull� This is because WriteFree delays
the disk write for a full but most�recently�used block until the next �le system access� which is
after the process�s compute cycle� This delay was too long� slowing down overall execution� Note
that �
 or more bu
ers for gw� and �
 or more bu
ers for gw with computation� were su�cient to
run these patterns close to the ideal execution time of � seconds� Forty bu
ers corresponds to two
bu
ers per process� which allowed one to be �lled while the other is written to disk� More bu
ers
��
� were required in the I�O�bound gw� because it was issuing write requests at a faster rate�

The slight rise in the time for gw with computation �Figure ���� for caches larger than �

bu
ers was due to increasing overhead� unready�queue scans took longer when there were more
bu
ers� With computation� this pattern was barely keeping the �
 disks busy� so a slight increase
in overhead slowed it down and caused a lower disk utilization� The lower utilization led to a longer
overall execution time� The gw pattern with no computation had no trouble utilizing the disks
even with increased overhead� and so was not a
ected �Figure �����

�

�

�

�

�	

��

��

�	
	 �	 �	 �		 ��	 �
	 ��	 ��	 �		

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for gw

WriteBack "
"

"

" " " " " "

WriteFull
WriteFree
WriteThru �

�

�
� � � � � �

ideal

Figure ���� Cache�size variation for write pattern gw�

The lw� patterns ran more slowly than the gw patterns� because one process could not drive all
�
 disks at full e�ciency �Figures ��������� WriteBack was much worse than the other methods� and
WriteFree again was slow for lw� with computation� Larger caches bene�ted the lw� pattern by
allowing more disk parallelism to be used� but this e
ect was not a factor when computation clearly
dominated� as in Figure ���� Note that lw� with computation is compute�bound� ideally having

��
 CHAPTER
� BUFFERING FOR WRITE ACCESS

�

�

�	

��

�

�	
	 �	 �	 �		 ��	 �
	 ��	 ��	 �		

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for gw with computation

WriteBack ""

"
" " " " " "

WriteFull
WriteFree
WriteThru �

�

� � � � � � �

ideal

Figure ���� Cache�size variation for write pattern gw with computation�

��
 seconds of computation and � seconds of disk time� WriteThru was the fastest in both cases�
barely faster than WriteFull� presumably by having slightly less overhead in the implementation�

The write�only seg patterns� like their read�only counterparts� had a di�cult disk access pattern
�all processes began on the same disk�� A large cache helped to alleviate this problem� as seen in
Figure ��� and Figure ���� since the larger cache allowed processes to continue writing even when
some disks were overloaded� In e
ect� large caches allowed a longer pipeline to form� using more
disks concurrently than with a short pipeline� This is especially important as processor speeds
increase relative to disk speeds� A �

�block cache allows �
 outstanding disk writes for each of �

processes�

Summary� From these results� both WriteThru and WriteFull �essentially equivalent here� appear
to be good write�bu
ering methods� in that they had the best overall performance� Note that
WriteThru with a �
�block cache and a one�block record size is conceptually similar to not caching
at all� and had poor performance� Our results show that large caches can use more disk parallelism
and improve overall performance� The necessary cache size� however� depends on the workload� a
larger cache is needed to absorb disk contention problems �as in seg� or a high write request rate
�as in gw without computation�� For the experiments in the next section we chose an �
�block
cache because that was a reasonable compromise for all workloads� based on the results in this
section�

��� RESULTS ���

��

�

��

��

�

��

�	
	 �	 �	 �		 ��	 �
	 ��	 ��	 �		

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for lw�

WriteBack "

" "
"

" " " " "

WriteFull
WriteFree
WriteThru �

�
�

� � � � � �

ideal �� seconds�

Figure ���� Cache�size variation for write pattern lw��

���

���

��

���

���

��	

���

�	
	 �	 �	 �		 ��	 �
	 ��	 ��	 �		

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for lw� with computation

WriteBack "

" "
" " " " " "

WriteFull
WriteFree
WriteThru �

� � � � � � � �

ideal ���	 sec�

Figure ���� Cache�size variation for write pattern lw� with computation�

��� CHAPTER
� BUFFERING FOR WRITE ACCESS

�

�

�

�	

��

��

��

�

��

�	
	 �	 �	 �		 ��	 �
	 ��	 ��	 �		

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for seg

WriteBack "

"

"
" " " " "

WriteFull
WriteFree
WriteThru �

�

�

�
�

�
� � �

ideal

Figure ���� Cache�size variation for write pattern seg�

�

�

�	

��

�

��

��

�	
	 �	 �	 �		 ��	 �
	 ��	 ��	 �		

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for seg with computation

WriteBack ""

"

"
" " " " "

WriteFull
WriteFree
WriteThru �

�

�
� � � � � �

ideal

Figure ���� Cache�size variation for write pattern seg with computation�

��� RESULTS ���

���� Record�size Variation

In the experiments of this section� we varied the record size of the access pattern with a �xed cache
size of �
 one�block bu
ers� The variation includes both integral and non�integral record sizes� The
latter are important because they cause multiple accesses to many blocks�

Figure ��	 shows the record�size variation for the write�only gw access pattern� WriteThru is
clearly a poor choice for small record sizes� due to a huge number of rewrite mistakes� WriteFree
was smarter� waiting until the bu
er was mostly unused before issuing a disk write� but it was still
not perfect due to some mistakes and to not immediately writing the blocks to disk when they
�nally were ready to be written� �Some mistakes could be avoided by increasing the RU�set size
see Section ������� WriteBack was sometimes faster than WriteFree because it had fewer rewrite
mistakes� Finally� the WriteFull method had a nearly perfect ��second execution time over all
record sizes� because it issued the write precisely when the block was ready to go to disk� and made
no mistakes�

Note the dips in the curves for all but WriteFull� These occur at integral record sizes ��� �� ��
�� �� and �
 blocks��� where there was only one access per block� This avoided any opportunity
for mistakes� which were common in the non�integral record sizes� Note that as the record size
increased� an increasing number of blocks were accessed only once� even with a non�integral record
size� This accounts for the convergence of these three methods as the record size increases�

	

�

�	

��

�	

	 � � �
 � �
 � � �	

Total
Time
�sec�

Record size �blocks�

Record�size variation for gw

WriteBack "

"
"

"

"

"""

"

""" """
"

"""
"

"""""""""
"

""""""
"

WriteFull
WriteFree
WriteThru �

�

�

�

�

���

�

��� ���
�
���

�
���������

�
������

�

ideal

Figure ��	� Record�size variation for write pattern gw�

�We use these record sizes because they divide the ���� blocks into an integral number of �xed�size records�

��� CHAPTER
� BUFFERING FOR WRITE ACCESS

The results for lw� are shown in Figure ���� The high execution times were due to reduced I�O
parallelism� because one process could not keep �
 disks busy� even with an �
�block cache� In fact�
one process could only keep ���
 disks busy at any one time� a limitation due to the overhead of
�lling bu
ers and queuing them for disk I�O� With non�integral record sizes this time was increased
due to repeated accesses to some blocks� Thus� the time varies widely for non�integral record sizes�
WriteBack was usually slowest� because it delayed the write too long� WriteThru was also slower for
small non�integral record sizes� especially for the smallest record size� due to the rewrite mistakes�
No other method could have rewrite mistakes� No method had reread mistakes �since only one
process wrote the �le� and sequentially� no block could leave the cache early�� WriteFree tied
WriteFull� although in a pattern with computation it would be slower for some record sizes �see
page �����

	

�	

�	

�	

	

�	

�	

	 � � �
 � �
 � � �	

Total
Time
�sec�

Record size �blocks�

Record�size variation for lw�

WriteBack ""

""

"

"
"

"

"

"

""" "

"

"
"

"

""
" " " "

"
"

" "
"

"

WriteFull
WriteFree
WriteThru �

�

�
�

�

�
�

�

�

�

����

�

�

�
�

��
� � � �

�
�
� �

�
�

ideal

Figure ���� Record�size variation for write pattern lw��

��� RESULTS ���

The record�size variation for the seg pattern �Figure ���� shows that
WriteThru was much slower than the others� This was due to WriteThru�s extreme number of
rewrite mistakes� Due to the sequential access pattern on each processor� none of the others had
rewrite mistakes� and none had reread mistakes� WriteFree delayed the writes a little more than
WriteFull or WriteBack� and was thus a little slower�

	

�

�	

��

�	

��

�	

	 � � �
 � �
 � � �	

Total
Time
�sec�

Record size �blocks�

Record�size variation for seg

WriteBack "

"""""""""""" " " "" " "" " " " " "" " " " "

WriteFull
WriteFree
WriteThru �

�

�

�

�

���

�

�����

�

��

�

��� � � �
�
�� � �

�

ideal

Figure ���� Record�size variation for write pattern seg�

Summary� The record size was an important factor in the performance of our write methods�
because partial�block writes could lead to rewrite and reread mistakes� This was especially bad for
records smaller than one block� where WriteThru�s de�ciency stands out� It was also signi�cant for
other non�integral record sizes larger than one block� For integral record sizes� all methods were
essentially independent of record size� WriteFull was the most successful� never making mistakes
regardless of record size�

��� CHAPTER
� BUFFERING FOR WRITE ACCESS

���� The WriteFree Method

The performance of the WriteFree method was tied to the choice of the local RU�set size� since this
size determined when a block left the local �and hence global� RU�set �page ���� As a demonstration�
consider Figure ���
� With one�block records �essentially� any integral record size�� it was important
not to delay in issuing the write� so a small RU�set size was better� For quarter�block records �a
non�integral record size�� a larger RU�set size helped to delay the block from leaving the set until it
was fully written� thus reducing the number of reread and rewrite mistakes� Thus� the best choice
would depend on the record size�

�

�

�

�	

��

��

� � �

Total
Time
�sec�

Local RU�set�size �blocks�

RU�set�size variation for gw under WriteFree

�

�
�block records
��block records

ideal

Figure ���
� Demonstration of the e
ect of RU�set size on the WriteFree style� Pattern is gw�
cache size is �
 blocks�

�� Conclusion

Given the types of write�only access patterns we expect to be common� our exploration of four
methods shows that WriteFull� the most sophisticated of the methods� was consistently at or near
the best performance in all situations� In the lw� pattern with one�block records� WriteThru and
WriteFree did run slightly faster� but these methods were not nearly as successful in other cases�

A fairly small cache ��
��
 blocks� i�e�� ��� blocks per process� was su�cient to obtain the best
performance� except in the seg pattern� where larger caches helped mask the disk contention�� The
gw pattern had the fastest total execution time �nearly ideal�� and the �sequential� lw� pattern was
signi�cantly slower� High�performance parallel �le writing is de�nitely possible with these caching
techniques�

�With faster processors
 larger caches would be needed to cover seg�s disk contention�

Chapter ��

The File System Interface

Most of this dissertation concentrates on the ability of caching and prefetching to deliver the
performance of parallel disk I�O hardware to the application� We assume that the application uses
a conventional �le system interface� through operations like open� close� read� write� and seek� to
access a �le that is interleaved across multiple disks� This interface hides the underlying parallel
nature of the �le and the �le system� so that the application programmer need not be concerned
with the details of these issues� Our results show that automated caching and prefetching in the
�le system can bridge the gap between the application� which has no knowledge of the underlying
parallelism� and the parallel disks� leading to increased performance� Indeed� they could successfully
use parallel disks even when the access pattern was not parallel �i�e�� from a single process�� More
success� however� was possible when the application used a parallel access pattern �Section �����
Based on these results� we can now consider interface issues� ��� how convenient it is for the
programmer to specify parallel �le access patterns� ��� whether and how the �le system interface
should be changed to make such speci�cations more convenient and more amenable to caching
and prefetching� and ��� whether entirely di
erent paradigms �such as memory�mapped I�O� are
needed to realize performance� The success of prefetching and caching suggests that we consider
the �rst two issues� since it does not seem that entirely di
erent I�O paradigms are necessary
for performance reasons� Our discussion of ���� in the next section� indicates that some interface
changes are needed for programmer convenience� if not for performance�

For concreteness� we use the Unix �le system interface �RT	�� as an example of a conventional
interface� The Unix �le system interface is in widespread use� even in multiprocessors �e�g�� those
made by Sequent� Encore� BBN� and Intel�� Note that some of these implement the Unix �le system
interface without the Unix �le system or the rest of the Unix operating system� The advantages to
using the Unix �or similar� interface for a multiprocessor include application portability� program�
mer familiarity� and simplicity� This interface does not� however� directly support parallel disk I�O�
and thus sometimes impedes the use of parallel disks� Thus� we believe that a change is needed for
parallel systems� We propose an extension to the conventional interface that allows the use of the
conventional interface without modi�cation to existing software� Thus� all �les can be accessed by
parallel applications using the new extensions as well as by unmodi�ed traditional applications�

In the next section we outline many problems with using the Unix interface for programming
parallel �le access patterns� Note that our complaints are not with Unix speci�cally� but with
the Unix �le system model �which was never intended for a multiprocessor environment�� Then
we describe our proposed extension to the conventional �le system interface� which simpli�es the
speci�cation of parallel access patterns and which can provide valuable information to the �le system
to be used in caching and prefetching decisions� We also discuss optional semantic information that

��	

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

the user can give to the �le system to help it do better caching and prefetching�

���� The Conventional Interface

In the Unix �le system a �le is modeled as an addressable sequence of bytes �sometimes referred
to as a �seekable stream��� The interface is de�ned by the kernel �le system calls �RT	��� not by
the stdio library package� The operations provided are open� create �called creat in Unix�� close�
read� write� and seek �called lseek in Unix�� The open and close operations mark the start and end
of activity on a given �le� Create creates a �le if necessary� Open is provided a �le name and an
intention �read� write� append� or read�write�� and returns a �le descriptor that is used in all of
the other operations� Associated with the �le descriptor is an implicit �le pointer that maintains
the current �le position� The �le pointer is used and updated by read and write� and reset by seek�
Read and write take a �le descriptor� a user bu
er� and a length in bytes� and return the actual
number of bytes read or written �zero at end of �le�� The data are written at the �le position
indicated by the �le pointer� and the �le pointer is updated to point just after the last byte read
or written� Seek requires a �le descriptor� a byte o
set� and a mode indicating that the o
set is
relative to the beginning of the �le� to the end of the �le� or to the current �le position� Seek
returns the new �le position� Extra features� such as support for logical records and indexed �les�
are not part of the basic Unix �le system�

Depending on the particular multiprocessor implementation of the Unix interface� there are
many di�culties in using the interface to program a parallel �le access pattern� In some cases�
the Unix �le system operations are not atomic� leaving synchronization and atomicity to the user�
Thus� many of the di�culties involve synchronization among the cooperating processes� Sometimes
other features of Unix �or some versions of Unix� can be used to satisfy the needs of parallel I�O
programming� but only in an awkward way� We discuss several problems here� sometimes by
considering how one would specify our parallel �le access patterns using the Unix interface�

In our model of parallel applications� all processes that are part of a single parallel program
access a common �le� Unless a single open operation opens the �le once for all processes in the
application� each process must open the �le independently� This requires all processes to have
access to the �le name and read�write intention� It also generates many open requests that must
be processed by the �le system� Thus� it is both inconvenient and ine�cient to depend on a
single�process open operation�

Note that with Unix process semantics� not necessarily included in a system supporting Unix�
like �le semantics� a �le open at the time of a fork is also open in the new process created by the
fork ��LMKQ���� page �	��� They also share the same �le pointer� For systems supporting this
or some other form of open��le inheritance� the multitude of single�process open operations can be
avoided� It is� however� limited to �les open before the fork� and thus to closely related process
groups� It is not a general�purpose mechanism for opening �les in arbitrary process groups� In Unix
���BSD� an open �le can be shared with an arbitrary process by passing it through a Unix�domain
socket ��LMKQ���� page �	��� although this mechanism is complicated�

Our global access patterns arise when the processes read or write the �le in a self�scheduled
order� The ideal mechanism for this is a �le pointer that is shared by all processes� and atomically
updated by the read and write operations� The Unix �le system interface does not directly provide
shared �le pointers� With Unix process semantics� however� a �le pointer can be shared when an
open �le is inherited after a fork operation or passed through a Unix�domain socket� Unfortunately�
there is not enough concurrency control in implementations of this mechanism to make accesses to

����� THE CONVENTIONAL INTERFACE ���

the shared �le pointer atomic�� Unix ���BSD supports an atomic�append mode ��LMKQ���� page
�	��� which handles one common case� but not the general case�

As an example of the di�culties programmers have with global access patterns� consider the
case of a local programmer who wanted to create a new �le and have several processes append
records �lines of text� to the �le� The order of the records was not important� Using the Unix
interface� all processes independently opened the �le for �append�� and proceeded to write to the
�le� Since each process had an independent �le pointer� however� a record appended by one process
did not a
ect the �le pointers in other processes� Thus� each appended record was later overwritten
by other processes� and the �le ended up containing only garbage� This programmer needed an
�atomic�append� mode supported by the �le system interface� As we mentioned� some versions of
Unix do support atomic append�

A general self�scheduled access order can be implemented using only the Unix �le system se�
mantics �which do not include the shared �le pointers provided by Unix process semantics�� A
shared counter is used to indicate the next byte of the �le to be read or written� The counter
is atomically incremented by the length of the record a process wishes to read �write�� using a
fetch�and�add operator�� The original value of the counter� obtained from the fetch�and�add� is
used in a seek operation� which is followed by the read or write� There are two problems with
this implementation� First� it requires care by the programmer to properly maintain the atomicity
of the overall operation� Second� the record length must be known in advance� which is di�cult
when reading variable�length records� This case requires either a separate record index or more
serialization� Note that a strictly interleaved pattern� which is a special case of the self�scheduled
pattern� avoids the fetch�and�add and some of the atomicity problems� but still forces the user to
compute �le positions for seek � It also has the problem with variable�length records� Finally� if
the global pattern has sequential portions �i�e�� is not gw�� additional synchronization is needed to
detect the end of a portion� to choose the next portion� and to reset the shared counter used above�

We assume that each �le is interleaved� or at least declustered �page ��� across many disks in
the system� If the �le system does not maintain the declustering information for each �le� forcing
the programmer to specify the set of disks� disk �les� or disk blocks� then transparency is lost and
the interface is much harder to use� An example of this situation is in �Cro���� Another example is
the NCUBE �le system� which does not distribute a single �le across disks �PFDJ���� Instead� the
user must explicitly manage single��le parallelism� We believe that it is important to have a single
name �e�g�� Unix pathname� that de�nes the parallel �le� and to leave the rest to the �le system�

Now consider programming the read�only seg access pattern� In this pattern� the �le is divided
into disjoint segments� one per process� Each process must open the �le� then locate and read its
segment� The process �or some master process� must �nd the length of the �le� use the length to
compute the length of the segments� determine the segment it is to read� seek to the beginning
of its segment� and read bytes of the �le until the end of its segment is reached� If the division
into segments is a simple matter of dividing the �le length by the number of processes� then little
work is needed� If� however� the �le contains logical records� care must be used to divide the �le at
record boundaries� Another problem is assigning segments to processes� which may be facilitated
by a shared counter or by predetermined process identi�ers� In all� this is not too di�cult� but is
not convenient�

Now consider programming the write�only seg access pattern� Here� each process writes a
separate segment of the �le� The assignment of segments to processes is similar to the read�only

�One would expect the individual read and write operations to be atomic
 but we found that this was not always
true� File locking is supported by some Unix versions
 and could be used to enforce atomic access�

�Fetch�and�add is described in �GLR
��� Note that it can
 if necessary
 be implemented on top of an existing lock
primitive�

��
 CHAPTER ��� THE FILE SYSTEM INTERFACE

case� but this time it is much more di�cult to determine the starting position and length of each
segment� Unless the eventual length of each segment is known in advance� the starting positions
of the segments are impossible to compute� The alternative is to create a separate �le for each
process� but this �lls the �le system with many more �les than is really necessary� and makes later
manipulation of the data more di�cult� It would be easier if the �le system supported the idea of
segmented �les�

Finally� note that user�level bu
ering� such as that in the Unix stdio interface� can lead to
incorrect results� If the user�level bu
ers are allocated on a per�process� per��le basis� then bu
er
consistency problems arise� For example� one process writes some data to a �le� but the data
remains in the user�level bu
er� Another process then tries to read that part of the �le� and
receives outdated data since it �and the �le system� has no knowledge of the new data in the �rst
process�s bu
er� This same e
ect could occur with a poor implementation of kernel�level bu
ers�
Thus� any user�level bu
ering must be carefully integrated with the �le system caching mechanism�

Overall� the Unix �le system interface and semantics either cannot support our expected par�
allel I�O access patterns� or can only support them with great di�culty� For example� with Unix
���BSD �LMKQ��� a �le can be opened by one process� passed to a group of processes through a
Unix�domain socket� and then accessed atomically using �le locking� but the interface and mecha�
nisms are complex� not usually known to the average programmer� and not portable� A higher�level
interface is needed for programmers to more easily take advantage of parallel I�O� Certainly� an
implementation of the high�level interface could use these Unix facilities where available�

���� Our Proposed Interface

Our experiments show that high performance �le I�O is possible with the conventional interface�
when assisted by caching and prefetching� The previous section demonstrates� however� that the
conventional interface is di�cult to use for programming parallel I�O access� It is thus for program�
mer convenience� rather than performance or functionality� that some new interface constructs are
needed� Extensions to the conventional interface retain the performance bene�ts of caching and
prefetching while adding convenience for the programmer� There are several goals for the new
interface�

� The conventional interface should still work� We want to support programs ported from other
systems� and programmers who do not require the expressive power of the extended interface�

� The parallel extensions should be easy to use� One reason for extending the interface is
programmer convenience�

� The common parallel access patterns should be supported�

� Details of the underlying parallel disk structure should be hidden from most applications� to
enhance portability�

� The interface should be consistent with caching and prefetching� Since we can depend on
caching and prefetching for high performance� our interface concentrates on convenient mech�
anisms for parallel �le access patterns� In some places the interface actually helps prefetching
e
orts by exposing the programmer�s access pattern intentions to the �le system� Thus� in
some cases the new interface should further improve performance�

We describe the basic concepts� along with a few implementation notes� Each concept directly
addresses one or more of the problems outlined in the previous section� The syntax of the interface�

����� OUR PROPOSED INTERFACE ���

operation names� and parameter types depend on the language and operating system� and so ours
are only a rough sketch�

������ Concepts

Directory Structure� There should be a single �le�naming directory structure for the entire
parallel �le system� This hides the disk layout from the user and programmer� In some parallel �le
systems� the user must specify the list of disks involved �Cro��� or the list of local disk �les �PFDJ���
when opening a �le� since each disk has a separate directory structure� This is too burdensome for
the programmer� and also makes the program less adaptable to changes in the disk resources� disk
load� and so on� The name structure should be the same for parallel applications as for sequential
applications �such as �le�maintenance and directory�listing tools��

Note that a single directory structure can be physically distributed across multiple �le servers
without a central bottleneck� In the Sprite �le system� for example� the tree�structured name
space is partitioned among the disk servers� and all clients maintain a pre�x table that maps
�le pathname pre�xes to disk server locations �OCD����� Intel� whose Concurrent File System
has a single directory structure� chose to use a centralized directory manager for simplicity� since
optimizing opens and closes was not a priority �Pie����

Multiopen� For a �le to be accessed by all processes in an application� it must somehow be
opened for all processes in that application� Every process could open the �le independently� This�
as we pointed out� is inconvenient and ine�cient� Alternatively� if the process�creation mechanism
includes open��le inheritance �as does Unix�s fork�� the �le could be opened before all the processes
are created� and the open �le inherited by all processes� This is insu�cient for our purposes� since
it is limited to �les that are open before the processes are created� to process groups that are
created from one master process� and to systems that have open��le inheritance� We would like a
mechanism that is not dependent on such process semantics�

We propose adding a multiopen operation� which opens the �le for the entire parallel application
when run from any process in the application� This assumes a way to group the processes into
an �application�� presumably more general than the set of children of one parent process� Most
signi�cantly� the multiopen is executed after the process group exists� so the group is not limited
to pre�opened �les� In most applications the multiopen would be executed in the �master� pro�
cess� Multiopen opens the �le only once� avoiding repeated directory searches and other overhead�
and gives each process in the application its own �le descriptor �through some implementation�
dependent mechanism� e�g�� shared memory or Unix�domain sockets�� Multiopen can optionally
create a �le if it does not exist� In addition to the parameters required by open� multiopen requires
a pointer to the �le descriptor variable� the �le pointer type� discussed next� the access mode �and
possibly associated parameters�� discussed below under Type Coercion� and �nally� a list of optional
hints�

File pointer� When a �le is opened with multiopen� the programmer speci�es whether the �le
pointer should be local �providing each process with an independent� local �le pointer�� or global
�providing a single shared �le pointer for all processes�� These two choices correspond directly to
our local and global access patterns� A global �le pointer provides the synchronization needed to
implement global �le access patterns� a read or write operation on a global �le pointer combines
the transfer and �le pointer update into a single atomic action� facilitating self�scheduled access

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

patterns�� The �le system can ensure this atomicity without sacri�cing concurrency� Either type
of �le pointer can be changed with the seek operation�

The global �le pointer provides for atomic access to a shared �le pointer� Because this imple�
ments self�scheduled access to the �le� the process has no control over exactly which record is read
or written when it uses read or write on a global �le pointer� Since it may need to know the position
of the transfer �to know� for example� the record number of the data just read�� the original value
of the �le pointer should be returned after the transfer is complete� along with the number of bytes
transferred� For compatibility� we do not change the interface of read and write� We de�ne the
readp and writep operations� which are the same as read and write� respectively� except that they
also return the original �le pointer position�

Portion support� The global �le pointer supports simple self�scheduled access� such as that in
gw read or write patterns� For global patterns that need more than sequential access �i�e�� that
have multiple portions�� more synchronization support is necessary to handle the transition between
portions� It is not clear how common these pattern types will be� If it is determined that they are
commonly used� we have a mechanism to support them� Otherwise� this new mechanism can be
omitted with no e
ect on the rest of the interface� Note that its use is optional to the programmer�
and that although it is intended for global �le pointers and read�only patterns� it also works for
local �le pointers or write patterns�

The problem is to control portion skips when using self�scheduled access within each portion�
A process examining the global �le pointer may satisfy itself that the �le pointer is still within the
current portion� but a subsequent read may occur outside of the portion due to concurrent read
operations incrementing the �le pointer� Unless the processes have some external mechanism to
limit their access to the current portion� they will read past the end of the portion� With readp
they can detect the condition� but only after reading data that they did not need� What is needed
is a way to tell the �le system where the portion ends�

The idea is to provide the �le system with the position of the beginning and end of the current
portion� The global �le pointer is moved to the beginning of the portion� and subsequent reads or
writes atomically increment the �le pointer through the portion� At the end of the portion� reads
or writes block until the next portion has been speci�ed� If the next portion is fully speci�ed before
the end of the current portion� there is no delay or loss of concurrency between portions�

The primary method for specifying the next portion is through a user�speci�ed upcall func�
tion �Cla���� When necessary� the �le system calls the function to request the position of the next
portion� Normally� the function returns this information� Alternatively� it may specify that there
is no next portion �which is treated as an end of �le�� that the current portion should be extended�
or that the portion mechanism should be disabled� All of these release blocked read and write
operations�

As an optimization� the nextportion operation speci�es the next portion�s bounds before the up�
call is needed� Another optimization allows the �le system to use the upcall prematurely� although
the application need not make a decision until it is necessary� The purpose of these optimizations
is to avoid delay at portion transitions�

Logical Records� Dibble �Dib�
� argues for direct support for logical records in the �le system�
The Unix �le system does not have any built�in support for logical records� in contrast to some
traditional systems �typi�ed by commercial mainframes�� Such support increases the complexity

�Note that an alternative is to add a �le�position argument to the read and write operations� This does not help

though
 to make a self�scheduled pattern�

����� OUR PROPOSED INTERFACE ���

of the �le system� but there are good reasons for logical record support in a parallel �le system�
even when not supported in a similar uniprocessor �le system�

� The record support can be combined with global �le pointer synchronization to provide atomic
operations for reading and writing records� This is particularly useful if the records have
variable length�

� By understanding logical records� the �le system can avoid splitting a record over two blocks�
In some parallel access patterns� this increases concurrency �justi�ed by the results in Sec�
tion ����� It can also increase performance in random access patterns �at the cost of wasted
space��

� The �le system can provide record locks as a convenience to the programmer�

In our interface� then� we divide the �les into byte �les and record �les� The �le type is an
attribute of the �le� All references to �position� in a record �le are record numbers instead of
byte o
sets� This a
ects the read� readp� write� writep� seek� and portion operations� Fixed�size
logical records are trivial to support� since the location of any record is easily calculated from the
record number� Variable�sized records are more di�cult� since an implementation must be able to
atomically read the next record and update the �le pointer� with high concurrency�

Multi�les� In most parallel programs� a data set is divided among the processes in the program�
In the conventional �le system� however� a single data set is usually represented as a single �le� For
a parallel program to use a conventional �le system� the individual process subsets of the data set
must either be combined into one �le or stored in separate �les� one per process� Neither option
is convenient� as we showed in our examples using the seg patterns� We provide a new type of
�le called a multi�le for these situations� To the �le system a multi�le is a single �le� with one
directory entry� but it is di
erent from a plain �conventional� �le in that it is not a single sequence
of bytes� Instead� it is a collection of sub�les� each of which is a separate sequence of bytes� A
multi�le is created by a parallel program with a certain number of sub�les� usually equal to the
number of processes in the program� Once created� the number of sub�les is �xed� Each process
writes its own sub�le� Later� when the multi�le is opened for reading� each process reads its own
sub�le� �Note that a multi�le implies local �le pointers�� Each process has the illusion of reading
an independent small �le� since each sub�le is independently addressed with its own �rst byte and
end�of��le marker� Each sub�le can be extended or truncated without a
ecting the addressing
in any of the others� Thus� a multi�le combines the advantages of a single �le �single name for
a single data set� with those of multiple �les �independently addressable and extendible� easily
located beginning and end��

When opening an existing multi�le� an optional mapping may be speci�ed that indicates the
assignment of sub�les to processes� With the default mapping� the number of sub�les must match
the number of processes� and an arbitrary one�to�one mapping is used� With a user�speci�ed
mapping� there is no requirement on the number of processes� In fact� the mapping may specify
that some sub�les are not used� or that some processes have no sub�le� For applications that want
to manipulate many sub�les with few processes� we provide a newsub�le operation that switches
the mapping for that process to a given sub�le� Although a multi�le is de�ned to be an unordered
set of sub�les� the sub�les should be given some �xed� if not deterministic� order� This allows the
sub�les to be numbered� which is needed for specifying mappings and for the newsub�le operation�

Multi�les are most useful between parallel programs� so data can be written as separate subsets
and later read as separate subsets� They are also useful for output intended for sequential programs�
An example is a single �le that contains debugging output� with a separate sub�le for each process�

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

There are two primary possibilities for the storage of multi�les in a parallel disk system� in�
terleaved� where all sub�les are interleaved over all disks� and localized� where the sub�les are
distributed over all disks� but with each sub�le stored entirely on a single disk� The localized
approach reduces contention and communication delays� but su
ers if the �le is read as a plain
�le by a single process �see coercion below�� since there is no way to use the disks concurrently�
The interleaved approach spreads the load over all disks� at the risk of increased contention and
communication delays� Our experiments with the seg access pattern indicate the danger of starting
all subpatterns on the same disk �page ���� so the interleaved multi�le format begins each sub�le�s
interleaving pattern on a di
erent disk� This helps to start the pipeline� The storage mode for a
multi�le defaults to interleaved� unless indicated by the user in a storage hint�

Type Coercion� Our �le system interface supports four �le types�

byte record
plain byte plain �le record plain �le

multi�le byte multi�le record multi�le

Note that the �byte plain �le� is the same as conventional �les� Every �le in the �le system is
stored as one of these four types� These �le types also represent four access modes that can be
speci�ed at the time the �le is opened� For compatibility� all �les in the �le system can be read as
a byte plain �le� In fact� for convenience we allow any �le to be read in any mode� with the �le
system coercing the stored �le into that mode� Note that coercion is just a mapping operation the
stored �le does not change� We do not allow a �le to be opened for writing if coercion is necessary�
since it is not always clear how to map some write operations�

Although most coercions are done transparently� some applications may want to adjust them�
selves to the stored �le type� The type operation can be used to request information about �le type
�plain or multi�le� byte or record�� This operation may be merged with existing mechanisms that
query other �le attributes �stat in Unix��

To coerce a record �le into a byte �le� we ignore record boundaries� fragmentation overhead
�empty space in blocks�� and any other overhead� such as length �elds or indexes� To coerce a byte
�le into a record �le� the user provides either a �xed record size or a record delimiter character
�e�g�� newline�� The details depend on the particular implementation of records�

To coerce a multi�le into a plain �le� the sub�les are ordered in some way �for sanity the same
order is used every time�� and concatenated together to form the illusion of one long �le� A plain
�le can also be coerced into a multi�le� This is a useful way to divide a �le�s data into contiguous
chunks for a variable number of processes� The user speci�es the desired number of sub�les �usually
the number of processes�� and the �le is divided roughly evenly among the sub�les� with each sub�le
assigned a contiguous portion of the original �le� If the �le is a byte �le� the division is by bytes
if the �le is a record �le� or coerced into a record �le� the division is made at record boundaries�
In any case� the end of a coerced sub�le appears as an end�of��le to the process assigned to the
sub�le�

������ Implications

Note that this interface has few implications for the underlying parallel �le system� The parallel
�le system must support �les interleaved across all disks� optionally restrict a �le to a single disk�
and provide a simple block interface to the �les� The interface� including the directory hierarchy�
multiopen� global and local �le pointers� portion support� multi�les� and logical records� can all be
built on top of this primitive parallel �le system� For good performance� it is best for the caching

����� ADDITIONAL SEMANTIC INFORMATION ���

and prefetching mechanisms to be integrated with the interface� or at least to allow the interface
implementation to interact closely with the caching and prefetching mechanisms� so that knowledge
of record size� portion length� etc�� can be used for caching and prefetching policy decisions�

Within the interface� there are many synchronization issues� In particular� the support of global
�le access patterns requires atomic access to a shared �le pointer� This is particularly complicated
if the �le�pointer update involves checking for the end of a portion� or �nding the length of the
next logical record� The latter may require reading data from disk� unless there is a separate record
index�

Note that most of the functionality we propose in our interface is already supported by some
Unix systems� or could be added in a relatively transparent way through Unix operations such as
ioctl� This would not� however� accomplish the primary goal of our interface� to encourage parallel
I�O programming by making it easier to use�

������ Examples� Our Access Patterns

Every one of our parallel �le access patterns can be easily supported by the new interface� The
local or global �le pointer choice is clearly intended to support local and global access patterns�
Thus� all of the local access patterns �including the rnd access pattern� involve a multiopen with
a local �le pointer� and use read� write� and seek to access the portions of the �le� One special case
is the seg access pattern� which clearly motivates multi�les� The seg pattern �read or write� is
directly supported by the multi�le construct� whether coerced or not� Another special case is the
lw� pattern� for which the original open operation su�ces�

The global �le access patterns �the gw� grp� and gfp read patterns� and the gw write pattern�
are supported by the global �le pointer construct� The global �le pointer and the semantics of
the new read and write operations directly support self�scheduled access within portions� and the
portion mechanism supports portion skips�

���� Additional Semantic Information

Often the programmer has knowledge about the access pattern that would help the �le system�s
caching and prefetching e
orts� If the �le system interface provides a way for the programmer to
communicate this information to the �le system� then the performance may increase� It is optional
for the programmer to provide this information� and it is optional for the �le system to use it� but
its use may help improve performance� When the information is not guaranteed to be correct� it
is called a hint� The hint may be explicitly provided by the programmer� or implicit in other �le
system calls or parameters� We �rst describe the types of information that are useful� then some
mechanisms for providing it to the �le system�

������ Types of Information

There is much optional information that a programmer can provide� The inspiration can be from the
�le system documentation� which describes the factors that a
ect performance� the characteristics of
access patterns� and the kind of information that can be helpful to the �le system� Inspiration may
also come from the �le system itself� in the form of statistics and other feedback� The information
that can be supplied by the programmer includes�

� Local or global access pattern� This is implicit in the choice of a local or global �le pointer�

� Sequential or random access pattern� Prefetching can be avoided in random patterns�

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

� Whole �le access pattern� If it is known in advance that the whole �le will be read� a bold�
simple prefetching method �such as IBL or GW� can be used�

� Speci�c access pattern style� Knowing the access pattern style �e�g�� lfp� allows the �le system
to choose an appropriate predictor�

� Access pattern details� The location and length of portions are invaluable prefetching infor�
mation� and are implicit in the portion support operations�

� Speci�c predictor� Here the user explicitly states which predictor or write method to use�

� Record size� The logical record size is useful in global pattern prefetching� This is implicit
when record�mode access is used� but is useful even when the application manages its own
records�

� Amount of data sharing� Whether any data will be used by more than one process�

� Rate of data use� An estimate of the data throughput needs of the application�

� Phase change is coming� This hint warns that the access pattern is changing� An example is
a jump to a new portion� or a change from one pattern to another� A seek is an implicit hint
of a phase change �although a little late to help prefetching much��

� Preallocate� Knowing the eventual size of a new �le can cut the overhead used for repeated
automatic extensions�

� Do not cache� There are times when caching is not appropriate�

� Do not prefetch� There are times when prefetching is not appropriate�

� Prefetch this record� A speci�c request useful in non�sequential patterns� This is more
general than the common asynchronous read operation� which is limited to one outstanding
asynchronous read� The prefetch hint could be arbitrarily mixed with normal read operations�

� Done with this record� Encourages removing this record from the cache� possibly causing a
write to disk�

� Storage� Disk storage recommendations� such as which disks to use� interleaving unit size�
and so on�

This information can help choose the right predictor� provide key information for prefetching� avoid
mistakes� or make storage recommendations� Thus they can increase performance�

������ Mechanisms

The mechanism for providing semantic information varies with the rest of the implementation
details� We propose the hint operation� with parameters code and value� to supply one hint with
its associated argument� The hintv operation accepts a hintlist � which is a vector of �code� value	
pairs� In addition� the multiopen operation accepts a �possibly empty� hintlist as a parameter�

Note that a hintlist is stored by the �le system with the other �le system attributes� and is
loaded when the �le is opened� The stored hintlist is constructed by the �le system from information
that the �le system accumulates while managing a �le� the predictor used� the type of access
pattern and parameters� and the general success of prefetching� This is essentially a long�term

����� RELATED WORK ��	

prediction mechanism� These hints should be considered less trustworthy than any provided by the
application� since they may be based on information from entirely di
erent uses of the �le� The
�le system should be able to provide this accumulated information �and more� including statistics�
to the user on request� perhaps in a human�readable report format� to suggest hints or changes to
the application�

���� Related Work

������ Interface

Several researchers have discussed parallel I�O interfaces for MIMD multiprocessors� Dibble� in
his design of the Bridge �le system �Dib�
�� de�nes three interfaces� standard� which is essentially
our conventional interface parallel open� in which a control process issues all the read and write
requests� automatically transferring one record in or out of every process and tools� Tools have
transparent access to the local �le systems of each disk� allowing the data on each disk to be
handled by the attached processor� minimizing data �ow in the processor interconnection network�
The standard interface is there for compatibility� the tools for performance� and the parallel�open
interface is a compromise� Our proposed interface hides the underlying disk layout �unlike Dibble�s
tools�� and has powerful constructs for expressing parallel access patterns� with the �le system
handling much of the optimization�

Intel�s �le system for their iPSC�� multiprocessor� CFS �Pie���� also provides three inter�
faces �AS���� standard �conventional� random�sequential access� which uses a self�scheduled global
�le pointer and coordinated� which is for interleaved access with either a �xed or variable record
size� The last is interesting� since it uses some serialization when the record size is variable� essen�
tially implementing atomic append�

Another parallel �le system is based on ways to lay out a �le on parallel disks �Cro��� Cro����
One interface provides self�scheduled access with a global �le pointer� Another provides local �le
pointers� A �uni�ed� access mode provides the standard interface for compatibility� One de�ciency
in this interface is that the user must supply a list of disks to the open operation�

The �le system for the NCUBE hypercube multiprocessor ��PFDJ���� is primitive� in the sense
that each disk has a local �le system independent of the others� and no global �le system is provided�
Parallel I�O must be managed explicitly by the user� using separate �les on each disk�

The CUBIX �le system for the CrOS system on hypercubes �FJL���� connects a sequential
�le server to a parallel application program� It has two interfaces� singular� in which all processes
simultaneously write the same data� and multiple� in which variable�length records are interleaved
by process� Variable�length records are bu
ered until complete� then atomically written to the �le�

Our interface grew out of an understanding of parallel I�O as determined by the results of our
experiments with caching and prefetching� It is designed to conveniently support what we think will
be common parallel access patterns� by combining many ideas from these other researchers along
with several new ideas� supporting both sequential and parallel I�O� local and global pointers�
logical records� and multi�les�

������ Hints

The idea of hints is not a new one� One distributed �le system proposal uses the �le type �deter�
mined by directory and �le name extension� to make caching decisions �whether to cache� what
replacement algorithm to use�� based on past knowledge of access patterns for each �le type �Kor�
��
A similar system is used in �THY�
�� where the �le type is either random or sequential� and either

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

temporary or permanent� File caching is controlled by the system administrator in �Gro���� decid�
ing what �les to cache� and in what way� Intel�s CFS �AS��� allows the user to choose the disks to
use and to preallocate �les� The Casper distributed �le system �FE�
� Flo��� associates a property
list with each �le� which could contain �le usage information and hints�

���� Summary

Our new interface allows for parallel open �with multiopen�� synchronization for global �le access
�including portion support�� support for logical records� and a new �le organization �multi�les��
All of the new features are compatible with the conventional interface� so that a �le can be used by
both a sophisticated� high�performance parallel application and a general�purpose sequential �le�
maintenance tool� Our interface also allows the user to provide hints that may improve performance�
and the �le system to provide feedback in the form of suggestions and statistics� We believe that
this interface would make the task of programming parallel disk applications much easier� and
would also increase performance�

Chapter ��

Conclusions and Future Work

We built a �le system testbed called RAPID�Transit� which runs on a BBN GP�

 multiprocessor�
and used it to evaluate prefetching and caching techniques for parallel �le�access patterns in a
scienti�c workload� In this chapter we outline the key results� and list some possible areas for
future work�

���� Summary of Results

The bene�ts of caching and prefetching depended on the workload and other parameters� Fortu�
nately� the best performance was often in �what we expect to be� the most common access patterns�
lw� lw�� and gw�

������ Single�Process Access Patterns

In applications that are directly ported from a uniprocessor� or in which the programmer has not
bothered to explicitly use parallel I�O� �les may be read or written by a master process while other
processes idle waiting for data� In a �le system where �les are spread over many disks� the full
multi�disk bandwidth is not used by these simple access patterns� Prefetching� however� can be
provided transparently by the �le system and attain signi�cant speedup ����� in a �
�process� �
�
disk experiment� on an otherwise sequential part of the computation� by exercising the parallelism
in the disk system� In a similar experiment �Chapter �� where a single process wrote a �le to �

disks� intelligent bu
er replacement improved performance by ��!� Despite our short study of
these lw� patterns� we believe they will be commonly used in a parallel �le system� so these results
are encouraging�

������ Read�only Parallel Access Patterns

In parallel applications where all processes read the �le� caching and prefetching can sometimes
signi�cantly improve disk performance� We �rst established the potential for improvements due to
prefetching using the EXACT predictor� Then we de�ned and evaluated several local and global
on�line predictors� We varied the access pattern� synchronization style� computation load� record
size� cache size� disk�access time� number of disks� and number of processors� These are the main
conclusions�

� Caching alone can have a tremendous a
ect on performance� particularly when the record size
is less than the block size �Section ����� It does this by reducing the number of disk accesses

���

�	
 CHAPTER ��� CONCLUSIONS AND FUTURE WORK

when there is strong locality �caused� for example� by sequential access to small records� or
by inter�process data re�use� as in lw��

� The best prefetching improvements were for the lw� seg� and gw patterns� Since these will
probably be the most common parallel access patterns� this is encouraging� Prefetching was
less successful for the other patterns �lfp� lrp� gfp� and particularly grp�� but then these will
probably be less common� Thus� the common case has the best improvements�

� IOPORT appeared to be the best general�purpose local predictor� in that it provided high
performance to a wide variety of patterns without causing poor performance for any pattern�
Its performance was often better when supplied with a larger cache� In half of our test cases
IOPORT was within �! of the best predictor�

� The GAPS� RGAPS� and GW predictors each managed to successfully reduce the execution
time of global access patterns in most cases� They also approached the best time� represented
by the EXACT predictor� closely in many cases� GW was e
ective only for the gw and lw

patterns� but may be useful because we expect these two patterns to be commonly used�

� The RGAPS and IOPORT predictors were fairly robust across all parameter variations� Al�
though our initial experiments found that the RGAPS and GAPS predictors were essentially
equivalent� the parameter�variation experiments show that RGAPS was usually superior to
GAPS�

� An automatic switch mechanism was devised that was able to quickly determine whether a
pattern was local or global� and switch to either IOPORT or GAPS� respectively� It added
little overhead�

� Prefetching helped to overlap I�O with computation� �le system overhead� and other I�O�
Nearly ideal execution times were observed in some cases�

� In the less�predictable grp and lrp patterns� conservative predictors were more successful�
When computation was mixed with I�O� it was better to be a little less conservative� to take
advantage of the potential for overlapping I�O and computation�

� All of our experiments accessed �

 blocks ��

 for lw� in the �le� which corresponds to
� MBytes of data transferred� Certainly many scienti�c applications use larger data �les�
Our results should scale to larger �les� with the bene�ts of prefetching probably increasing
as the start�up overhead �e�g�� recognizing the pattern� early mistakes� is amortized over the
longer pattern� In no case should the bene�ts of prefetching decrease�

� When there were fewer processors than disks� the disks were better utilized with prefetching
than without� In this case� the execution time with prefetching was often close to the ideal
execution time� When there were more processors than disks� it was often faster to not
prefetch at all� The parallelism alone was able to keep the disks busy� with less overhead and
no mistakes�

� With fast enough disks �relative to processor speed�� the overhead of prefetching was not
worth the small bene�ts� That is� prefetching was sometimes slower than not prefetching�
We expect� however� that increasing processor speeds will avoid this e
ect by lowering the
cost of overhead�

����� FUTURE WORK �	�

� Our study of slower disks simulates the increased gap in speed between future processors and
future disk drives� In this case prefetching was an important bene�t in managing the disk
bottleneck�

In short� prefetching was most useful when there were fewer processors than disks� when there
was some computation to be performed in addition to the I�O� or when the lw pattern was used�

Our experiments were limited by the size of the machine available to us� We believe� however�
that prefetching will scale to larger machines� For high performance the number of processors and
the number of disks must be increased simultaneously� The precise ratio between the number of
disks and the number of processors depends on their relative speeds and on the I�O and computation
requirements of the workload�

������ Write�only Access Patterns

Given the types of write�only access patterns we expect to be common� our exploration of four
methods shows that WriteFull� the most sophisticated of the methods� was consistently at or near
the best performance in all situations� It timed the disk writes correctly� without making any
mistakes that caused extraneous disk I�O�

������ Interface

Our proposed �le system interface should make it easier to use parallel disks� and would aid auto�
matic prefetching� It has many new features� including multiopen� synchronization for global �le
access� logical records� and a new �le organization called multi�les� All of the new features are
compatible with the traditional interface� Our interface also allows the user to provide hints that
may improve performance� and the �le system to provide feedback in the form of suggestions and
statistics�

���� Future Work

Although prefetching is well explored by this dissertation� there are many possible extensions that
examine architecture and workload alternatives� new prefetching and caching techniques� and issues
such as fault tolerance�

������ Techniques

In this dissertation we concentrate on one replacement algorithm and one prefetching technique
�with several predictors�� There are inevitably more algorithms and techniques that we have not
yet discovered� One general idea is to loosen the replacement algorithm� so that mistakes may be
removed without an explicit request from the predictor� This may decrease the complexity and
increase the concurrency of some predictors� at the expense of accuracy� Currently� for example�
a prefetched block is not removed from a bu
er until it is either used or speci�cally marked as a
mistake by the predictor� A heuristic technique could use aging to �ush unused prefetched blocks�
relieving the predictor from catching its own mistakes�

������ Workload

The workload we use with our testbed is entirely synthetic� consisting of a set of likely access
patterns� Its composition is based on our knowledge of uniprocessor access patterns and on discus�
sions with parallel applications programmers� A study of parallel �le access patterns is necessary to

�	� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

improve our understanding of the workload� Unfortunately� parallel access patterns are probably
in�uenced by the interface and �le system architecture� so general characterization may be di�cult�

This study leaves out �les that are open for both reading and writing because we believe
that they are less commonly used� In addition� it is not clear what read�write patterns would be
used� and therefore what prefetching or write�back techniques might be useful� A related subject is
overwriting �les� This study assumes that all �les open for writing are new �les and are preallocated
to their full size� We should consider disk�block allocation overhead and �le�overwriting issues�

Finally� this study concentrates on scienti�c applications� General�purpose systems and
transaction�processing systems have di
erent workload characteristics� possibly requiring di
er�
ent caching and prefetching techniques� For example� program�development systems tend to have
single�process applications� small �les� and hence small transfers� Parallelism comes from running
many sequential applications rather than a few parallel applications� Multiprogramming is more
important� Caching commonly�used small �les is more important than caching blocks within a
large �le� In another example� transaction�processing systems have large databases with unusual
access patterns� In this case� caching and prefetching may be best left to the programmer� A
low�level interface to the disks and simple caching support might be helpful to the programmer�

������ Architecture Changes

Our techniques are intended for shared�memory MIMD multiprocessors� with disks attached inde�
pendently to several processors� There are many architectural issues� some changing those assump�
tions�

� How can these techniques be used on a non�shared�memory machine� Would entirely new
techniques be necessary� or simply a new implementation� Our implementation of global
predictors depends on centralized� shared data structures these predictors may need to be
relaxed for a non�shared�memory machine� Indeed� the self�scheduled global access patterns
may be more di�cult to implement interleaved patterns may be more common� Bu
ers may
need to be localized to particular processors� Blocks from a disk would be read into a bu
er
on the processor attached to the disk� then copied to a bu
er in the requesting processor� If
several processors need the block� replication or migration of the block among their caches
might be useful �although consistency issues arise��

� What if some processors are dedicated to I�O� and some to processing� In this case� the I�O
nodes would probably handle the prefetching and caching decisions� The pattern might then
be viewed from the disk �I�O node� instead of from the process� which may be bene�cial in
scheduling disk accesses�

� What is the e
ect of Non�Uniform Memory Access �NUMA�� as compared to UMA� Here�
NUMA refers to either memory access times or disk access times�

� How much of a bottleneck is the disk controller� Do we really need one controller per pro�
cessor�disk pair� Or could we put several disks on one controller on one processor� To some
extent� this is a hardware balance issue�

� Our experiments use a �xed disk access time� What is the e
ect of a more realistic variable
disk access time� To answer this question a disk layout must be determined�

� What disk layout is important� Should �les be stored contiguously� Contiguous �les are
bene�cial for sequential access� particularly for large �les� since the sequential disk access

����� FUTURE WORK �	�

time is much lower than random access times� How would this a
ect our prefetching results�
The prefetching strategy should account for this kind of layout with new techniques� For
example� a common technique for prefetching in contiguously�stored �les is to piggyback
prefetches on each disk access� saving disk overhead�

� We assume that a parallel program consists of a set of processes� each assigned to its own
processor� There is no multiprogramming� If multiprogramming were used� the idle time we
currently use for prefetching could be �lled by switching to another process� What are the
tradeo
s here� When do we switch contexts and when do we prefetch�

������ Multiple Files

In this study we concentrate on a single application reading or writing a single �le� with no outside
contention for the disks� In many applications� of course� several �les are in use simultaneously�
And� of course� the disks may be busy with other tra�c� There are many di�cult issues involving
bu
er allocation� prefetching� and disk scheduling�

� How does one allocate bu
ers between the �les� Should bu
er allocation be local �one pool
per �le� or global �one pool for all �les�� If local� should one �le have more bu
ers than
another �le� Is a static allocation su�cient� or should a complex dynamic assignment be
used�

� How should prefetching e
orts be divided between �les� How do you determine what �le to
prefetch �rst�

� When a disk is used for several �les at once� can you control the disk schedule to increase
performance�

������ Reliability

One of the major problems with parallel disk systems is the reduced hardware reliability� Roughly
speaking� if n disks are involved in one �le system� the �le system breaks n times sooner than a
single�disk �le system� The Berkeley RAID project �PGK��� solves this problem by using parity
blocks to recover information lost when a disk fails� Since any real parallel I�O system must use
some error�recovery technique� what is the best way to incorporate both prefetching and fault�
tolerance techniques in a single system�

������ Implementation

Certainly the current implementation can be improved and tuned� My testbed is a research pro�
totype� and could be streamlined with careful tuning� It is not directly useful as a �le system
component� since it is intended only for research purposes� An interesting future project� however�
would add my techniques �perhaps using some of the same code� to a working �le system� and
evaluate the system experimentally using real workloads and real disks� In a real implementation�
concurrency is critical to performance� Ideally� all aspects of the �le system would be highly con�
current� �le opens and closes� directory management� cache initialization� and so on� Reliability
would be a key concern� Some of the architectural issues would need to be resolved �e�g�� disk
layout��

�	� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

���� Conclusion

We believe that high�performance parallel �le systems can �and should� be built for MIMD multi�
processors� and that e�cient caching and prefetching methods can boost �le system performance�
Most of these �le system e
orts are transparent to the user� We propose an interface that helps pro�
grammers to make the most of parallel I�O� with several parallel constructs as well as a sequential
compatibility interface� and a mechanism to give hints to the �le system� All of these techniques
can alleviate the I�O crisis by scaling �le system performance with multiprocessor performance�

Glossary

For some de�nitions� the page number with more information or �rst de�nition is given in paren�
theses�

access pattern ���� The list of logical records of the �le� in the order they are accessed by the
program� The predictors see the block access pattern� which is a list of blocks in the order
that they are accessed�

ADAPT ���� Local predictor� ADAPT uses statistical methods to predict the eventual length of
the current portion given its current length�

average block read time The average amount of time required to read one block from the �le
system� This averages the cost of cache misses and cache hits together�

block ���� A block is a contiguous set of bytes of the �le� The size is determined by the disk� The
logical blocks of the �le are mapped to physical disk blocks� although we do not specify the
mapping� Contrast this with a bu�er � which is a space in memory that can hold one block�
Also contrast with a record�

bu�er ���� A space in memory that is exactly the size of one block� The cache is a collection of
bu
ers�

cache ���� A collection of bu
ers in main memory to hold blocks of the �le�

cache hit ���� A block is hit in the cache if the block�s data is currently resident in some bu
er
in the cache� A cache hit is this event� See cache miss�

cache miss ���� A block misses in the cache if the block�s data is not currently resident in some
bu
er in the cache� A cache miss is this event� In this case� the block will be demand�fetched
from the disk� See cache hit and demand fetch�

coe�cient of variation ���� The standard deviation divided by the mean� abbreviated as cv�
We use this as a simple measure of measurement error� For example� cv �
�
� means that
the standard deviation was �! of the mean� Note cv �
�

cv See coe
cient of variation�

declustered ��� The blocks of a �le are scattered among the disks� The disks are accessed inde�
pendently� though they may be connected to the same disk controller� This does not imply
interleaving�

demand fetch When a block is read from the disk into the cache after a cache miss�

�	�

�	� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

each�x� ��
� Synchronization style� Barrier synchronization after reading x blocks each� Contrast
with total�x	�

EXACT ���� The predictor that is given full knowledge of the access pattern in advance� For
local and global patterns� Contrast with on�line predictors�

free list ���� In our testbed� the bu
ers available for replacement are kept on a free list� which is
implemented as two queues� the ready queue and the unready queue�

GAPS ��
� Global predictor� GAPS tries to detect sequentiality in a global access pattern� and
then to use it to do prefetching much like IPORT�

gfp ���� Global read�only access pattern �Global Fixed�length Portions�� In this pattern� proces�
sors cooperate to read what appears globally to be sequential portions of �xed length and
spacing�

global predictor A predictor for global patterns�

global access pattern ���� A global access pattern is a globally�sequential access pattern� That
is� all processes in an application cooperate together to read the �le �or sequential portion�
in a roughly sequential order� Contrast with local access pattern�

greedy�process problem ��	� In local patterns� where one fast process uses most of the bu
ers�
and the other processes slow down due to lack of bu
ers� Then all wait at the next barrier
for the slowest process�

grp ���� Global read�only access pattern �Global Random Portions�� Processors cooperate to
globally read sequential portions with random length and spacing�

gw ���� Global read�only access pattern �Global Whole �le�� This global pattern reads the entire
�le from beginning to end� the processors reading distinct blocks from the �le� so that globally
the entire �le is read exactly once� but locally each processor only reads some small subset of
the �le with no discernible portions�

gw ���� Write�only access pattern� This pattern writes records of the �le in a self�scheduled order�
roughly sequentially from start to �nish� with all processes cooperating to write the �le�

GW ���� Global predictor� GW predicts that the whole �le will be accessed� much like IBL� but
for global patterns�

hit See cache hit�

hit�wait ���� The amount of time spent waiting for a cache hit� due to uncompleted I�O�

IBL ��
� Local predictor� in�nite�block lookahead� IBL predicts that every block following the
most recent access will be used in the future�

ideal execution time ���� The absolute lower bound on the execution time� assuming no over�
head and perfect load balance of the processors and disks�

interleaved ��� This refers to the way the blocks of the �le are partitioned among the disks� The
blocks are allocated to the disks in a round�robin fashion� the �rst block on the �rst disk� the
next block on the second disk� and so on� This is a special case of declustering� and does not
imply striping�

����� CONCLUSION �		

IOBL ���� Local predictor� hybrid of IBL and OBL� IOBL begins as IBL but then switches to
OBL if a non�sequential access is detected�

IPORT ���� Local predictor� hybrid of IBL and PORT� IPORT begins as IBL but switches to
PORT when a non�sequential access is detected�

IOPORT ���� Local predictor� hybrid of IBL� OBL� and PORT� IOPORT begins as IBL but
switches to OBL when a non�sequential access is detected� If regular portions are detected�
PORT is used�

jump�back �	�� In a sequential pattern� the block numbers should be nondecreasing� A jump�
back is the point where a process�s pattern is decreasing� i�e�� where a block number is less
than the previous block number�

lfp ���� Local read�only access pattern �Local Fixed�length Portions�� In this local pattern� the
sequential portions have regular length and spacing �although at di
erent places in the �le
for each process��

local access pattern ���� A local access pattern is a locally�sequential access pattern� That is�
each process is independently reading the �le in a sequential manner� It is represented as a
set of per�process access patterns� Contrast with global access pattern�

local predictor A predictor for local patterns�

lrp ���� Local read�only access pattern �Local Random Portions�� This local pattern uses portions
of irregular �random� length and spacing� Portions may overlap by coincidence�

lw ���� Local read�only access pattern �Local Whole �le�� In this local sequential pattern� every
process reads the entire �le from beginning to end�

lw� ���� Write�only access pattern� A single process writes the entire �le from start to �nish�

MaxDist A parameter to the PORT� IPORT� IOPORT� ADAPT� GAPS� and RGAPS predictors�
that controls the maximum distance they will predict into the future�

MIMD ��	� Multiple instruction stream� multiple data stream� A class of parallel architecture�

mirror ��� To store identical data on two independent disk drives� All writes are sent to both
drives� and reads can be serviced by either drive� A mirrored disk is also called a shadow
disk�

miss See cache miss�

mistake See prefetch mistake�

neighbor�x� ��
� Synchronization style� Pairwise synchronization� where each processor synchro�
nizes with its neighbor after reading x blocks�

none ��
� Synchronization style� No explicit inter�process synchronization�

NONE ���� The name of the predictor that predicts nothing� Thus� it is the same as not prefetch�
ing�

NUMA ��	� Non�Uniform Memory Access� A class of shared�memory architecture�

�	� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

OBL ��
� Local predictor� one�block lookahead� OBL predicts that block i " � will follow a
reference to block i�

on�line predictor ���� A predictor required to predict the future in real time� based on the access
pattern seen so far�

overrun ���� The amount of delay added to a process idle period by a prefetching action that
took longer than the time available�

parallel� independent disks ��� Multiple disks attached to multiple processors so that the disks
are completely independent� having separate controllers and paths to memory�

pattern See access pattern�

PFO ��	� Prefetch For Others� a possible solution to the greedy�process problem�

PID See parallel� independent disks�

PPL ��	� Private Prefetch Limits� a possible solution to the greedy�process problem�

PORT ��
� Local predictor� PORT is able to track sequential portions� and use any regularity to
predict the end of the current portion and possibly blocks in future portions�

portion ���� A contiguous set of blocks in the �le� Although a single block is technically a portion�
for prefetching purposes we do not usually consider it to be a portion�

predictor ���� A policy algorithm that analyzes the access pattern and predicts the future access
pattern� It accepts requests from the prefetching code for a block number to be prefetched�

prefetch ��� To read a block from the disk into the cache before any part of the block is requested
by the application�

prefetch limit ���� In our testbed� we limit the number of bu
ers in the cache holding blocks
that have been prefetched but not yet used� This limit is the prefetch limit�

prefetch mistake ���� An incorrect prediction� or a block prefetched into the cache based on an
incorrect prediction�

RAPID�Transit ���� Name of the testbed� RAPID stands for �Read�Ahead for Parallel
Independent Disks��

read ahead See prefetch�

ready queue ���� A queue of free bu
ers that have no outstanding I�O activity� and are thus
available for immediate replacement� Part of the free list� See unready queue�

record ���� The unit that is requested by the application from the �le system� The record size is
not necessarily the same as the block size�

replacement strategy ���� The algorithm used to select blocks for removal from the cache when
a free bu
er is needed for another block� Ours moves bu
ers to the free list when they leave
the global RU�set�

RGAPS ���� Global predictor� This is similar to GAPS� except that it assumes the pattern is
sequential unless it appears random�

����� CONCLUSION �	�

rnd ���� Local and global access pattern� Accesses random blocks of the �le�

RU�set ���� The recently�used set of blocks for either one process or all processes in the applica�
tion�

seg ���� Local read�only access pattern �Segmented�� In this local pattern� the �le is divided into
a non�overlapping set of contiguous segments� one per process� Each process thus has one
sequential portion�

seg ���� Write�only access pattern� This pattern divides the �le into segments� one per process�
and each process writes its segment from start to �nish�

self�scheduled access ���� When asynchronous processes access the �le by atomically accessing
the globally �next� record� The global interleaving of processes in the order is determined by
dynamic run�time �uctuations�

sequential access pattern ���� An access pattern consisting of sequential portions�

sequential portion ���� A portion that is read or written sequentially� Note that a global access
pattern using self�scheduled access only follows a loose sequential ordering�

shadow ��� See mirror�

striped ��� The blocks of the �le are interleaved among the disks� and the disks are controlled by a
single controller� which reads a block from all disks simultaneously� Each disk may contribute
as little as one bit at a time� There are two varieties� depending on whether the disks are
rotationally synchronous�

SWITCH ��
�� Local and global predictor� SWITCH watches the early stages of the access
pattern� switching to either a local or global predictor as appropriate�

synchronization style ��
� The mode of inter�process synchronization� One of none� each�x	�
total�x	� and neighbor�x	�

total�x� ��
� Synchronization style� Barrier synchronization after reading x blocks total� Contrast
with each�x	�

unready queue ���� A queue of free bu
ers that have some outstanding I�O activity� either due
to a disk write �ushing dirty data to disk� or to a disk read from a prefetch mistake� Part of
the free list� See ready queue� We also track the soonest time that a bu
er in the queue is to
become ready� so that we know when not to search the queue for ready bu
ers�

WriteBack ���	� Write bu
ering policy� Delays the disk write until the bu
er is needed for
another block�

WriteFree ���	� Write bu
ering policy� Issues a write when the bu
er enters the free list� This
is a compromise between WriteThru and WriteBack�

WriteFull ���	� Write bu
ering policy� Issues the write when the bu
er is �full��

WriteThru ���	� Write bu
ering policy� Forces a disk write on every write request from the
application�

��
 CHAPTER ��� CONCLUSIONS AND FUTURE WORK

Bibliography

�ABS� Jitendre Apte� Jack Briner� and Peter Suaris� Personal communication�

�AS��� Raymond K� Asbury and David S� Scott� FORTRAN I�O on the iPSC��� Is there
read after write� In Fourth Conference on Hypercube Concurrent Computers and
Applications� pages �������� �����

�BAC��
� Haran Boral� William Alexander� Larry Clay� George Copeland� Scott Danforth�
Michael Franklin� Brian Hart� Marc Smith� and Patrick Valduriez� Prototyping Bubba�
a highly parallel database system� IEEE Transactions on Knowledge and Data Engi�
neering� ����� March ���
�

�BBN��� BBN Advanced Computers� The Butter�y RAMFile system� Technical Report �����
BBN Advanced Computers� September �����

�BBN�	� BBN Advanced Computers� Butter�y Products Overview� ���	�

�BBW��� Micah Beck� Dina Bitton� and W� Kevin Wilkinson� Design and evaluation of a
parallel sort utility� In Proceedings of the
��� International Conference on Parallel
Processing� pages �������� �����

�BD��� H� Boral and D� DeWitt� Database machines� an idea whose time has passed� In
Proceedings of the Fourth International Workshop on Database Machines� pages ����
��	� Springer�Verlag� �����

�Ber�
� David Bernholdt� Personal communication� University of Florida� February ���
�

�BG��� D� Bitton and J� Gray� Disk shadowing� In
�th International Conference on Very
Large Data Bases� pages �������� �����

�Bit��� Dina Bitton� Arm scheduling in shadowed disks� In Proceedings of IEEE Compcon�
pages �������� Spring �����

�BKZS��� J��L� Baer� S� C� Kwan� G� Zick� and T� Snyder� Parallel tag�distribution sort� In
Proceedings of the
��� International Conference on Parallel Processing� pages ����
���� �����

�BM��� B� T� Bennett and C� May� Improving performance of bu
ered DASD to which some
references are sequential� IBM Technical Disclosure Bulletin� ���������������� August
�����

�Boz��� G� P� Bozman� VM�XA SP� minidisk cache� IBM Systems Journal� �����������	��
�����

���

��� BIBLIOGRAPHY

�BRW��� Andrew Braunstein� Mark Riley� and John Wilkes� Improving the e�ciency of UNIX
�le bu
er caches� In Proceedings of the Twelfth ACM Symposium on Operating Systems
Principles� pages 	����� December �����

�BS	�� Jean�Loup Baer and Gary R� Sager� Dynamic improvement of locality in virtual
memory systems� IEEE Transactions on Software Engineering� SE������������ March
��	��

�BSTY	�� S� Berbec� A� Shibamiya� S� Togasaki� and H� Yoshida� Use of direct access storage
devices by MVS customers � Guide survey results� In Proceedings of the Guide ��
Conference� pages ���������� November ��	��

�Cab�
� Luis�Felipe Cabrera� Technical summary of the second IEEE workshop on workstation
operating systems� ACM Operating Systems Review� ������	���� July ���
�

�CGKP�
� Peter Chen� Garth Gibson� Randy Katz� and David Patterson� An evaluation of
redundant arrays of disks using an Amdahl ���
� In Proceedings of the
��� ACM
Sigmetrics Conference on Measurement and Modeling of Computer Systems� pages
	����� May ���
�

�Cla��� David D� Clark� The structuring of systems using upcalls� In Proceedings of the Tenth
ACM Symposium on Operating Systems Principles� pages �	����
� December �����

�Cro��� Thomas W� Crockett� Speci�cation of the operating system interface for parallel �le
organizations� Publication status unknown �ICASE technical report�� �����

�Cro��� Thomas W� Crockett� File concepts for parallel I�O� In Proceedings of Supercomputing
���� pages �	���	�� �����

�DEC��� Digital Equipment Corporation� VAX Disk Striping Driver for VMS� December �����
Order Number AA�NY��A�TE�

�DGS��
� David J� DeWitt� Shahram Ghandeharizadeh� Donovan A� Schneider� Allan Bricker�
Hui�I Hsaio� and Rick Rasmussen� The Gamma database machine project� IEEE
Transactions on Knowledge and Data Engineering� ����������� March ���
�

�DHS��� Monty M� Dennau� Peter H� Hochschild� and Gideon Schichman� The switching net�
work of the TF�� parallel supercomputer� Supercomputing Magazine� pages 	��
�
Winter �����

�Dib�
� Peter C� Dibble� A Parallel Interleaved File System� PhD thesis� University of
Rochester� March ���
�

�Die��� Marge Dietz� Personal communication� Duke University� March �����

�DO��� Eliezer Dekel and Istvan Ozsvath� Parallel external merging� In Proceedings of the

��� International Conference on Parallel Processing� pages �������� �����

�DSE��� Peter Dibble� Michael Scott� and Carla Ellis� Bridge� A high�performance �le sys�
tem for parallel processors� In Proceedings of the Eighth International Conference on
Distributed Computer Systems� pages �������� June �����

�FB	�� P� A� Franaszek and B� T� Bennett� Adaptive variation of the transfer unit in a storage
hierarchy� Technical Report RC����
 ��	
���� IBM Yorktown� November ��	��

BIBLIOGRAPHY ���

�FE��� Richard Allen Floyd and Carla Schlatter Ellis� Directory reference patterns in hierar�
chical �le systems� IEEE Transactions on Knowledge and Data Engineering� ���������
��	� June �����

�FE�
� Richard A� Floyd and Carla Schlatter Ellis� Pushing the limits of transparency in
distributed �le systems� Technical Report CS������
�� Dept� of Computer Science�
Duke University� December ���
�

�FH��� Robert J� Flynn and Haldun Hadimioglu� A distributed Hypercube �le system� In
Third Conference on Hypercube Concurrent Computers and Applications� pages ��	��
����� �����

�FJL���� G� Fox� M� Johnson� G� Lyzenga� S� Otto� J� Salmon� and D� Walker� Solving Problems
on Concurrent Processors� volume �� chapter � and ��� Prentice Hall� Englewood
Cli
s� NJ� �����

�Flo��� Rick Floyd� Short�term �le reference patterns in a UNIX environment� Technical
Report �		� Dept� of Computer Science� Univ� of Rochester� March �����

�Flo��� Richard Allen Floyd� Transparency in Distributed File Systems� PhD thesis� University
of Rochester� �����

�FP		� Donald E� Freeman and Olney R� Perry� I�O Design� Data Management in Operating
Systems� Hayden Book Company� ��		�

�FPD��� James C� French� Terrence W� Pratt� and Mriganka Das� Performance measurement
of a parallel input�output system for the Intel iPSC�� hypercube� Technical Report
IPC�TR����

�� Institute for Parallel Computation� University of Virginia� ����� Ap�
peared in� Proceedings of the ���� ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems�

�GHK���� Garth A� Gibson� Lisa Hellerstein� Richard M� Karp� Randy H� Katz� and David A�
Patterson� Failure correction techniques for large disk arrays� In Third International
Conference on Architectural Support for Programming Languages and Operating Sys�
tems� pages �������� April �����

�GLR��� Allan Gottlieb� B� D� Lubachevsky� and Larry Rudolph� Basic techniques for the
e�cient coordination of very large numbers of cooperating sequential processors� ACM
Transactions on Programming Languages and Systems� ������������� April �����

�GMS��� Hector Garcia�Molina and Kenneth Salem� The impact of disk striping on reliability�
IEEE Database Engineering Bulletin� ������������ March �����

�Gro��� C� P� Grossman� Cache�DASD storage for improving system performance� IBM Sys�
tems Journal� ���������������� �����

�Hai��� Chris Haight� ����� Personal communication with engineer at Sequent Computer� Inc�

�Int��a� Intel beefs up its iPSC�� supercomputer�s I�O and memory capabilities� Electronics�
November �����

�Int��b� iPSC�� I�O facilities� Intel Corporation� ����� Order number ��
��
�

��

��� BIBLIOGRAPHY

�Int��� Concurrent I�O application examples� Intel Corporation Background Information�
�����

�Jos	
� M� Joseph� An analysis of paging and program behavior� The Computer Journal�
������������ February ��	
�

�KBK��� Bob Knighten� Joseph Boykin� and Terry Kelleher� ����� Personal communication
with engineers at Encore Computer� Inc�

�KD��� John P� Kearns and Samuel DeFazio� Diversity in database reference behavior� ACM
SIGMETRICS Performance Evaluation Review� �	���������� May �����

�Kim��a� Michelle Y� Kim� Synchronized disk interleaving� IEEE Transactions on Computers�
C���������	������ November �����

�Kim��b� Michelle Y� Kim� Synchronously Interleaved Disk Systems with their Application to
the Very Large FFT� PhD thesis� IBM Thomas J� Watson Research Center� Yorktown
Heights� New York �
���� ����� IBM Report number RC���	��

�Kon��� Alan J� Kondo
� The MPE XL data management system exploiting the HP Precision
architecture for HP�s next generation commercial computer systems� In Proceedings
of IEEE Compcon� pages �������� Spring �����

�Kor�
� Kim Korner� Intelligent caching for remote �le service� In Proceedings of the Tenth
International Conference on Distributed Computer Systems� pages ��
����� ���
�

�Lee�	� Roland Lun Lee� The E�ectiveness of Caches and Data Prefetch Bu�ers in Large�
Scale Shared Memory Multiprocessors� PhD thesis� University of Illinois� May ���	�
CSRD tech report number UILU�ENG��	��

��

�LMKQ��� Samuel J� Le$er� Marshall Kirk McKusick� Michael J� Karels� and John S� Quar�
terman� The Design and Implementation of the ���BSD UNIX Operating System�
Addison�Wesley� �����

�LYL�	� Roland L� Lee� Pen�Chung Yew� and Duncan H� Lawrie� Data prefetching in shared
memory multiprocessors� In Proceedings of the
��� International Conference on
Parallel Processing� pages ������ ���	�

�M���� T� J� M� Now� Parallel storage to match parallel CPU power� Electronics� �����������
December �����

�Man��� Tom Manuel� Breaking the data�rate logjam with arrays of small disk drives� Elec�
tronics� �������	��

� February �����

�Mar��� David Michael Marcovitz� A multiprocessor cache performance metric� Technical
Report UILU�ENG�����
��� University of Illinois� August �����

�Mea��� Wes E� Meador� Disk array systems� In Proceedings of IEEE Compcon� pages ��������
Spring �����

�MH��� Jai Menon and Mike Hartung� The IBM ���
 disk cache� In Proceedings of IEEE
Compcon� pages �������� Spring �����

BIBLIOGRAPHY ���

�Mok�	� Nicholas Mokho
� Parallel disk assembly packs ��� GBytes� runs at � MBytes�s�
Electronic Design� pages ������ November ���	�

�Ng��� Spencer Ng� Some design issues of disk arrays� In Proceedings of IEEE Compcon�
pages ��	����� Spring ����� San Francisco� CA�

�NLS��� S� Ng� D� Lang� and R� Selinger� Trade�o
s between devices and paths in achieving
disk interleaving� In Proceedings of the
�th Annual International Symposium on
Computer Architecture� pages �����
�� �����

�NNI��� H� Nishino� S� Naka� and K Ikumi� High performance �le system for supercomputing
environment� In Proceedings of Supercomputing ���� pages 	�	�	��� �����

�NWO��� Michael N� Nelson� Brent B� Welch� and John K� Ousterhout� Caching in the Sprite
network �le system� ACM Transactions on Computer Systems� ������������� February
�����

�OCD���� John Ousterhout� Andrew Cherenson� Fred Douglis� Michael Nelson� and Brent Welch�
The Sprite network operating system� IEEE Computer� ������������ February �����

�OCH���� John Ousterhout� Herv%e Da Costa� David Harrison� John Kunze� Mike Kupfer� and
James Thompson� A trace driven analysis of the UNIX ��� BSD �le system� In
Proceedings of the Tenth ACM Symposium on Operating Systems Principles� pages
������ December �����

�OD��� John Ousterhout and Fred Douglis� Beating the I�O bottleneck� A case for log�
structured �le systems� ACM Operating Systems Review� ������������ January �����

�O�L�
� Bernard T� O�Lear� Pitfalls and triumphs of mass storage systems� Colloquium at
North Carolina Supercomputing Center� October ���
�

�Pan��� Ricardo D� Pantazis� Personal communication� Duke University� March �����

�PFDJ��� Terrence W� Pratt� James C� French� Phillip M� Dickens� and Stanley A� Janet� Jr� A
comparison of the architecture and performance of two parallel �le systems� In Fourth
Conference on Hypercube Concurrent Computers and Applications� pages ��������
�����

�PGK��� David Patterson� Garth Gibson� and Randy Katz� A case for redundant arrays of
inexpensive disks �RAID�� In ACM SIGMOD Conference� pages �
������ June �����

�Pie��� Paul Pierce� A concurrent �le system for a highly parallel mass storage system� In
Fourth Conference on Hypercube Concurrent Computers and Applications� pages ����
��
� �����

�Pow		� Michael L� Powell� The DEMOS File System� In Proceedings of the Sixth ACM
Symposium on Operating Systems Principles� pages ������ November ��		�

�RB��a� A� Reddy and P� Banerjee� Evaluation of multiple�disk I�O systems� IEEE Transac�
tions on Computers� ������
����
� December �����

�RB��b� A� Reddy and P� Banerjee� An evaluation of multiple�disk I�O systems� In Proceedings
of the
��� International Conference on Parallel Processing� pages I��������� �����

��� BIBLIOGRAPHY

�RBA��� A� L� Reddy� P� Banerjee� and Santosh G� Abraham� I�O embedding in hypercubes�
In Proceedings of the
��� International Conference on Parallel Processing� volume ��
pages �������� �����

�RCCT�
� Randall D� Rettberg� William R� Crowther� Philip P� Carvey� and Raymond S� Tomlin�
son� The Monarch Parallel Processor hardware design� IEEE Computer� ����������
�
April ���
�

�Res�
� Cray Research� DS��� disk subsystem� ���
� Sales literature number MCFS���
	�
�

�RRR	�� Niklaus Ragaz and Juan Rodriguez�Rosell� Empirical studies of storage management
in a data base system� Technical Report RJ����� ���	
��� IBM San Jose� October
��	��

�RT	�� D� M� Ritchie and K� Thompson� The UNIX time�sharing system� The Bell System
Technical Journal� �������
�����
� July�August ��	��

�SBN��� Daniel P� Siewiorek� C� Gordon Bell� and Allen Newell� editors� Computer Structures�
principles and examples� McGraw�Hill� �����

�Sch��� Martin Schulze� Considerations in the design of a RAID prototype� Technical Report
UCB�CSD ������� UC Berkeley� August �����

�SGK���� Russell Sandberg� David Goldberg� Steve Kleiman� Dan Walsh� and Bob Lyon� Design
and implementation of the Sun Network Filesystem� In Proceedings of the
��� Usenix
Conference� pages ������
� �����

�SGM��� Kenneth Salem and Hector Garcia�Molina� Disk striping� In IEEE
��� Conference
on Data Engineering� pages �������� �����

�Smi	�a� Alan Jay Smith� On the e
ectiveness of bu
ered and multiple arm disks� In Proceedings
of the �th Annual International Symposium on Computer Architecture� pages ��������
��	��

�Smi	�b� Alan Jay Smith� Sequential program prefetching in memory heirarchies� IEEE Com�
puter� pages 	���� December ��	��

�Smi	�c� Alan Jay Smith� Sequentiality and prefetching in database systems� ACM Transac�
tions on Database Systems� �����������	� September ��	��

�Smi��a� Alan Jay Smith� Input�Output optimization and disk architectures� A survey� Per�
formance Evaluation� ������
����	� �����

�Smi��b� Alan Jay Smith� Optimization of I�O systems by cache disks and �le migration� A
summary� Performance Evaluation� ������������� �����

�Smi��� Alan Jay Smith� Cache memories� Computing Surveys� �������	����
� September
�����

�Smi��a� Alan Jay Smith� Cache evaluation and the impact of workload choice� In Proceedings
of the
�th Annual International Symposium on Computer Architecture� pages ���	��
�����

BIBLIOGRAPHY ��	

�Smi��b� Alan Jay Smith� Disk cache�miss ratio analysis and design considerations� ACM
Transactions on Computer Systems� ����������
�� August �����

�Sto��� Michael Stonebraker� Operating system support for database management� Commu�
nications of the ACM� ���	���������� July �����

�Sym��� Symult Systems� Monrovia� CA� Programmer�s Guide to the Series ��
� System� �rst
edition� March �� �����

�Tab�
� David Taber� MetaDisk driver technical description� SunFlash electronic mailing list
������ October ���
�

�TCB	�� D� Towsley� K� M� Chandy� and J� C� Browne� Models for parallel processing within
programs� Application to CPU� I�O and I�O� I�O overlap� Communications of the
ACM� ����
���������� October ��	��

�Ter��� DBC��
��� Teradata Corporation Booklet� �����

�THY�
� T� Tokunaga� Y� Hirai� and S� Yamamoto� Integrated disk cache system with �le
adaptive control� In Proceedings of IEEE Compcon� pages �������� Fall ���
�

�TMC�	� Connection Machine model CM�� technical summary� Technical Report HA�	���
Thinking Machines� April ���	�

�Tow	�� Donald F� Towsley� The e
ects of CPU� I�O overlap in computer system con�g�
urations� In Proceedings of the �th Annual International Symposium on Computer
Architecture� pages �������� April ��	��

�TR��� Lewis W� Tucker and George G� Robertson� Architecture and applications of the
Connection Machine� IEEE Computer� ������������ August �����

�Tri	�� K�S� Trivedi� Prepaging and applications to array algorithms� IEEE Transactions on
Computers� C��������������� September ��	��

�Tri		a� Kishor S� Trivedi� Prepaging and applications to the STAR��

 computer� In Proceed�
ings of the Symposium on High Speed Computer and Algorithm Organization� pages
�������� April ��		�

�Tri		b� Kishor S� Trivedi� On the paging performance of array algorithms� IEEE Transactions
on Computers� C�����
��������	� October ��		�

�Tri	�� Kishor S� Trivedi� An analysis of prepaging� Computing� ������������
� ��	��

�Tri��� Kishor S� Trivedi� Probability and Statistics with Reliability� Queueing� and Computer
Science Applications� Prentice�Hall� �����

�TvRvS��
� Andrew S� Tanenbaum� Robbert van Renesse� Hans van Staveren� Gregory J� Sharp�
Sape J� Mullender� Jack Jansen� and Guido van Rossum� Experiences with the
Amoeba distributed operating system� Communications of the ACM� �������������
December ���
�

�WCM��� Andrew Witkowski� Kumar Chandrakumar� and Greg Macchio� Concurrent I�O sys�
tem for the Hypercube multiprocessor� In Third Conference on Hypercube Concurrent
Computers and Applications� pages �������
	� �����

��� BIBLIOGRAPHY

�WSB���� W� W� Wilcke� D� G� Shea� R� C� Booth� D� H� Brown� M� F� Giampapa� L� Huisman�
G� R� Irwin� E� Ma� T� T� Murakami� F� T� Tong� P� R� Varker� and D� J� Zukowski�
The IBM Victor multiprocessor project� In Fourth Conference on Hypercube Concur�
rent Computers and Applications� pages �
���
	� �����

Biography

I was born in Ashton�upon�Mersey� Cheshire� England on July ��� ����� and spent most of my
childhood in Oneonta� New York� My high school diploma� received in ����� is from Choate
Rosemary Hall in Connecticut� I graduated magna cum laude with an A�B� in both Computer
Science and Physics from Dartmouth College in ����� While at Duke University� NSF twice awarded
me honorable mention in their graduate fellowship competition� I was an MCNC graduate fellow
my �rst year� and was awarded a DARPA�UMIACS Parallel Processing Assistantship for my �nal
two years�

I have always loved outdoor activities� including hiking� backpacking� climbing� and skiing� In
high school my backpacking interest expanded with winter expeditions in the Adirondack moun�
tains� Much of my spare time at Dartmouth was spent with the Dartmouth Outing Club� playing
in the mountains of Vermont and New Hampshire� I was leading hiking trips� building trails� skiing�
repairing equipment� competing on the woodsmen�s team� and directing Freshman Trips� I spent
the summer of ���� as a backcountry ranger in Olympic National Park� While at Duke University
I have taken time to explore the Southern Appalachians� the islands of Fiji �where I managed to
break my neck while bodysur�ng�� and the mountains of Washington State�

���

	Prefetching and Caching Techniques in File Systems for Mimd Multiprocessors
	Dartmouth Digital Commons Citation

	book.dvi

