720 research outputs found

    Energy Efficient In-network RFID Data Filtering Scheme in Wireless Sensor Networks

    Get PDF
    RFID (Radio frequency identification) and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication. These duplications can be eliminated at the base station, but unnecessary transmissions of duplicate data within the network still occurs, which consumes nodes’ energy and affects network lifetime. In this paper, we propose an in-network RFID data filtering scheme that efficiently eliminates the duplicate data. For this we use a clustering mechanism where cluster heads eliminate duplicate data and forward filtered data towards the base station. Simulation results prove that our approach saves considerable amounts of energy in terms of communication and computational cost, compared to existing filtering schemes

    A Framework for the Automatic Physical Configuration and Tuning of a Mysql Community Server

    Get PDF
    Manual physical configuration and tuning of database servers, is a complicated task requiring a high level of expertise. Database administrators must consider numerous possibilities, to determine a candidate configuration for implementation. In recent times database vendors have responded to this problem, providing solutions which can automatically configure and tune their products. Poor configuration choices, resulting in performance degradation commonplace in manual configurations, have been significantly reduced in these solutions. However, no such solution exists for MySQL Community Server. This thesis, proposes a novel framework for automatically tuning a MySQL Community Server. A first iteration of the framework has been built and is presented in this paper together with its performance measurements

    Indexing Uncertain Categorical Data over Distributed Environment

    Get PDF
    International audienceToday, a large amount of uncertain data is produced by several applications where the management systems of traditional databases incuding indexing methods are not suitable to handle such type of data. In this paper, we propose an inverted based index method for effciently searching uncertain categorical data over distributed environments. We adress two kinds of query over the distributed uncertain databases, one a distributed probabilis-tic thresholds query, where all results sastisfying the query with probablities that meet a probablistic threshold requirement are returned, and another a distributed top k-queries, where all results optimizing the transfer of the tuples and the time treatment are returned

    Text-Mining in Streams of Textual Data Using Time Series Applied to Stock Market

    Get PDF
    Each day, a lot of text data is generated. This data comes from various sources and may contain valuable information. In this article, we use text mining methods to discover if there is a connection between news articles and changes of the S&P 500 stock index. The index values and documents were divided into time windows according to the direction of the index value changes. We achieved a classification accuracy of 65-74 %.O

    Streaming Coreset Constructions for M-Estimators

    Get PDF
    We introduce a new method of maintaining a (k,epsilon)-coreset for clustering M-estimators over insertion-only streams. Let (P,w) be a weighted set (where w : P - > [0,infty) is the weight function) of points in a rho-metric space (meaning a set X equipped with a positive-semidefinite symmetric function D such that D(x,z) <=rho(D(x,y) + D(y,z)) for all x,y,z in X). For any set of points C, we define COST(P,w,C) = sum_{p in P} w(p) min_{c in C} D(p,c). A (k,epsilon)-coreset for (P,w) is a weighted set (Q,v) such that for every set C of k points, (1-epsilon)COST(P,w,C) <= COST(Q,v,C) <= (1+epsilon)COST(P,w,C). Essentially, the coreset (Q,v) can be used in place of (P,w) for all operations concerning the COST function. Coresets, as a method of data reduction, are used to solve fundamental problems in machine learning of streaming and distributed data. M-estimators are functions D(x,y) that can be written as psi(d(x,y)) where ({X}, d) is a true metric (i.e. 1-metric) space. Special cases of M-estimators include the well-known k-median (psi(x) =x) and k-means (psi(x) = x^2) functions. Our technique takes an existing offline construction for an M-estimator coreset and converts it into the streaming setting, where n data points arrive sequentially. To our knowledge, this is the first streaming construction for any M-estimator that does not rely on the merge-and-reduce tree. For example, our coreset for streaming metric k-means uses O(epsilon^{-2} k log k log n) points of storage. The previous state-of-the-art required storing at least O(epsilon^{-2} k log k log^{4} n) points
    • …
    corecore