306 research outputs found

    GOLLIC: Learning Global Context beyond Patches for Lossless High-Resolution Image Compression

    Full text link
    Neural-network-based approaches recently emerged in the field of data compression and have already led to significant progress in image compression, especially in achieving a higher compression ratio. In the lossless image compression scenario, however, existing methods often struggle to learn a probability model of full-size high-resolution images due to the limitation of the computation source. The current strategy is to crop high-resolution images into multiple non-overlapping patches and process them independently. This strategy ignores long-term dependencies beyond patches, thus limiting modeling performance. To address this problem, we propose a hierarchical latent variable model with a global context to capture the long-term dependencies of high-resolution images. Besides the latent variable unique to each patch, we introduce shared latent variables between patches to construct the global context. The shared latent variables are extracted by a self-supervised clustering module inside the model's encoder. This clustering module assigns each patch the confidence that it belongs to any cluster. Later, shared latent variables are learned according to latent variables of patches and their confidence, which reflects the similarity of patches in the same cluster and benefits the global context modeling. Experimental results show that our global context model improves compression ratio compared to the engineered codecs and deep learning models on three benchmark high-resolution image datasets, DIV2K, CLIC.pro, and CLIC.mobile

    A new efficient predictor blending lossless image coder

    Get PDF
    In the paper a highly efficient algorithm for lossless image coding is described. The algorithm is a predictor blending one, a sample estimate is computed as a weighted sum of estimates given by subpredictors, here 27 ones, hence the name Blend-2. Data compaction performance of Blend-27 is compared to that of numerous other lossless image coding algorithms, including the best currently existing ones. The compared methods are "classical" ones, as well as those based on Artificial Neural Networks. Performance of Blend-27 as a near-lossless coder is also evaluated. Its computational complexity is lower than that of majority of its direct competitors. The new algorithm appears to be currently the most efficient technique for lossless coding of natural images

    深層学習に基づく画像圧縮と品質評価

    Get PDF
    早大学位記番号:新8427早稲田大

    Contributions to HEVC Prediction for Medical Image Compression

    Get PDF
    Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compression where either near-lossless or lossless coding is required. In this dissertation, two different approaches to improve lossless coding of volumetric medical images, such as Magnetic Resonance and Computed Tomography, were studied and implemented using the latest standard High Efficiency Video Encoder (HEVC). In a first approach, the use of geometric transformations to perform inter-slice prediction was investigated. For the second approach, a pixel-wise prediction technique, based on Least-Squares prediction, that exploits inter-slice redundancy was proposed to extend the current HEVC lossless tools. Experimental results show a bitrate reduction between 45% and 49%, when compared with DICOM recommended encoders, and 13.7% when compared with standard HEVC

    Depth-based Multi-View 3D Video Coding

    Get PDF

    3D Medical Image Lossless Compressor Using Deep Learning Approaches

    Get PDF
    The ever-increasing importance of accelerated information processing, communica-tion, and storing are major requirements within the big-data era revolution. With the extensive rise in data availability, handy information acquisition, and growing data rate, a critical challenge emerges in efficient handling. Even with advanced technical hardware developments and multiple Graphics Processing Units (GPUs) availability, this demand is still highly promoted to utilise these technologies effectively. Health-care systems are one of the domains yielding explosive data growth. Especially when considering their modern scanners abilities, which annually produce higher-resolution and more densely sampled medical images, with increasing requirements for massive storage capacity. The bottleneck in data transmission and storage would essentially be handled with an effective compression method. Since medical information is critical and imposes an influential role in diagnosis accuracy, it is strongly encouraged to guarantee exact reconstruction with no loss in quality, which is the main objective of any lossless compression algorithm. Given the revolutionary impact of Deep Learning (DL) methods in solving many tasks while achieving the state of the art results, includ-ing data compression, this opens tremendous opportunities for contributions. While considerable efforts have been made to address lossy performance using learning-based approaches, less attention was paid to address lossless compression. This PhD thesis investigates and proposes novel learning-based approaches for compressing 3D medical images losslessly.Firstly, we formulate the lossless compression task as a supervised sequential prediction problem, whereby a model learns a projection function to predict a target voxel given sequence of samples from its spatially surrounding voxels. Using such 3D local sampling information efficiently exploits spatial similarities and redundancies in a volumetric medical context by utilising such a prediction paradigm. The proposed NN-based data predictor is trained to minimise the differences with the original data values while the residual errors are encoded using arithmetic coding to allow lossless reconstruction.Following this, we explore the effectiveness of Recurrent Neural Networks (RNNs) as a 3D predictor for learning the mapping function from the spatial medical domain (16 bit-depths). We analyse Long Short-Term Memory (LSTM) models’ generalisabil-ity and robustness in capturing the 3D spatial dependencies of a voxel’s neighbourhood while utilising samples taken from various scanning settings. We evaluate our proposed MedZip models in compressing unseen Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities losslessly, compared to other state-of-the-art lossless compression standards.This work investigates input configurations and sampling schemes for a many-to-one sequence prediction model, specifically for compressing 3D medical images (16 bit-depths) losslessly. The main objective is to determine the optimal practice for enabling the proposed LSTM model to achieve a high compression ratio and fast encoding-decoding performance. A solution for a non-deterministic environments problem was also proposed, allowing models to run in parallel form without much compression performance drop. Compared to well-known lossless codecs, experimental evaluations were carried out on datasets acquired by different hospitals, representing different body segments, and have distinct scanning modalities (i.e. CT and MRI).To conclude, we present a novel data-driven sampling scheme utilising weighted gradient scores for training LSTM prediction-based models. The objective is to determine whether some training samples are significantly more informative than others, specifically in medical domains where samples are available on a scale of billions. The effectiveness of models trained on the presented importance sampling scheme was evaluated compared to alternative strategies such as uniform, Gaussian, and sliced-based sampling

    Remote access computed tomography colonography

    Get PDF
    This thesis presents a novel framework for remote access Computed Tomography Colonography (CTC). The proposed framework consists of several integrated components: medical image data delivery, 2D image processing, 3D visualisation, and feedback provision. Medical image data sets are notoriously large and preserving the integrity of the patient data is essential. This makes real-time delivery and visualisation a key challenge. The main contribution of this work is the development of an efficient, lossless compression scheme to minimise the size of the data to be transmitted, thereby alleviating transmission time delays. The scheme utilises prior knowledge of anatomical information to divide the data into specific regions. An optimised compression method for each anatomical region is then applied. An evaluation of this compression technique shows that the proposed ‘divide and conquer’ approach significantly improves upon the level of compression achieved using more traditional global compression schemes. Another contribution of this work resides in the development of an improved volume rendering technique that provides real-time 3D visualisations of regions within CTC data sets. Unlike previous hardware acceleration methods which rely on dedicated devices, this approach employs a series of software acceleration techniques based on the characteristic properties of CTC data. A quantitative and qualitative evaluation indicates that the proposed method achieves real-time performance on a low-cost PC platform without sacrificing any image quality. Fast data delivery and real-time volume rendering represent the key features that are required for remote access CTC. These features are ultimately combined with other relevant CTC functionality to create a comprehensive, high-performance CTC framework, which makes remote access CTC feasible, even in the case of standard Web clients with low-speed data connections

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems

    An Introduction to Neural Data Compression

    Full text link
    Neural compression is the application of neural networks and other machine learning methods to data compression. Recent advances in statistical machine learning have opened up new possibilities for data compression, allowing compression algorithms to be learned end-to-end from data using powerful generative models such as normalizing flows, variational autoencoders, diffusion probabilistic models, and generative adversarial networks. The present article aims to introduce this field of research to a broader machine learning audience by reviewing the necessary background in information theory (e.g., entropy coding, rate-distortion theory) and computer vision (e.g., image quality assessment, perceptual metrics), and providing a curated guide through the essential ideas and methods in the literature thus far
    corecore