40 research outputs found

    "Pretty strong" converse for the private capacity of degraded quantum wiretap channels

    Full text link
    In the vein of the recent "pretty strong" converse for the quantum and private capacity of degradable quantum channels [Morgan/Winter, IEEE Trans. Inf. Theory 60(1):317-333, 2014], we use the same techniques, in particular the calculus of min-entropies, to show a pretty strong converse for the private capacity of degraded classical-quantum-quantum (cqq-)wiretap channels, which generalize Wyner's model of the degraded classical wiretap channel. While the result is not completely tight, leaving some gap between the region of error and privacy parameters for which the converse bound holds, and a larger no-go region, it represents a further step towards an understanding of strong converses of wiretap channels [cf. Hayashi/Tyagi/Watanabe, arXiv:1410.0443 for the classical case].Comment: 5 pages, 1 figure, IEEEtran.cls. V2 final (conference) version, accepted for ISIT 2016 (Barcelona, 10-15 July 2016

    Strong converse for the quantum capacity of the erasure channel for almost all codes

    Get PDF
    A strong converse theorem for channel capacity establishes that the error probability in any communication scheme for a given channel necessarily tends to one if the rate of communication exceeds the channel's capacity. Establishing such a theorem for the quantum capacity of degradable channels has been an elusive task, with the strongest progress so far being a so-called "pretty strong converse". In this work, Morgan and Winter proved that the quantum error of any quantum communication scheme for a given degradable channel converges to a value larger than 1/21/\sqrt{2} in the limit of many channel uses if the quantum rate of communication exceeds the channel's quantum capacity. The present paper establishes a theorem that is a counterpart to this "pretty strong converse". We prove that the large fraction of codes having a rate exceeding the erasure channel's quantum capacity have a quantum error tending to one in the limit of many channel uses. Thus, our work adds to the body of evidence that a fully strong converse theorem should hold for the quantum capacity of the erasure channel. As a side result, we prove that the classical capacity of the quantum erasure channel obeys the strong converse property.Comment: 15 pages, submission to the 9th Conference on the Theory of Quantum Computation, Communication, and Cryptography (TQC 2014

    Extendibility limits the performance of quantum processors

    Get PDF
    Resource theories in quantum information science are helpful for the study and quantification of the performance of information-processing tasks that involve quantum systems. These resource theories also find applications in other areas of study; e.g., the resource theories of entanglement and coherence have found use and implications in the study of quantum thermodynamics and memory effects in quantum dynamics. In this paper, we introduce the resource theory of unextendibility, which is associated to the inability of extending quantum entanglement in a given quantum state to multiple parties. The free states in this resource theory are the kk-extendible states, and the free channels are kk-extendible channels, which preserve the class of kk-extendible states. We make use of this resource theory to derive non-asymptotic, upper bounds on the rate at which quantum communication or entanglement preservation is possible by utilizing an arbitrary quantum channel a finite number of times, along with the assistance of kk-extendible channels at no cost. We then show that the bounds we obtain are significantly tighter than previously known bounds for both the depolarizing and erasure channels.Comment: 39 pages, 6 figures, v2 includes pretty strong converse bounds for antidegradable channels, as well as other improvement

    Strong converse rates for quantum communication

    Get PDF
    We revisit a fundamental open problem in quantum information theory, namely whether it is possible to transmit quantum information at a rate exceeding the channel capacity if we allow for a non-vanishing probability of decoding error. Here we establish that the Rains information of any quantum channel is a strong converse rate for quantum communication: For any sequence of codes with rate exceeding the Rains information of the channel, we show that the fidelity vanishes exponentially fast as the number of channel uses increases. This remains true even if we consider codes that perform classical post-processing on the transmitted quantum data. As an application of this result, for generalized dephasing channels we show that the Rains information is also achievable, and thereby establish the strong converse property for quantum communication over such channels. Thus we conclusively settle the strong converse question for a class of quantum channels that have a non-trivial quantum capacity.Comment: v4: 13 pages, accepted for publication in IEEE Transactions on Information Theor

    Multiplicativity of completely bounded pp-norms implies a strong converse for entanglement-assisted capacity

    Get PDF
    The fully quantum reverse Shannon theorem establishes the optimal rate of noiseless classical communication required for simulating the action of many instances of a noisy quantum channel on an arbitrary input state, while also allowing for an arbitrary amount of shared entanglement of an arbitrary form. Turning this theorem around establishes a strong converse for the entanglement-assisted classical capacity of any quantum channel. This paper proves the strong converse for entanglement-assisted capacity by a completely different approach and identifies a bound on the strong converse exponent for this task. Namely, we exploit the recent entanglement-assisted "meta-converse" theorem of Matthews and Wehner, several properties of the recently established sandwiched Renyi relative entropy (also referred to as the quantum Renyi divergence), and the multiplicativity of completely bounded pp-norms due to Devetak et al. The proof here demonstrates the extent to which the Arimoto approach can be helpful in proving strong converse theorems, it provides an operational relevance for the multiplicativity result of Devetak et al., and it adds to the growing body of evidence that the sandwiched Renyi relative entropy is the correct quantum generalization of the classical concept for all α>1\alpha>1.Comment: 21 pages, final version accepted for publication in Communications in Mathematical Physic

    Resource theory of unextendibility and nonasymptotic quantum capacity ()

    Get PDF
    In this paper, we introduce the resource theory of unextendibility as a relaxation of the resource theory of entanglement. The free states in this resource theory are the -extendible states, associated with the inability to extend quantum entanglement in a given quantum state to multiple parties. The free channels are -extendible channels, which preserve the class of -extendible states. We define several quantifiers of unextendibility by means of generalized divergences and establish their properties. By utilizing this resource theory, we obtain nonasymptotic upper bounds on the rate at which quantum communication or entanglement preservation is possible over a finite number of uses of an arbitrary quantum channel assisted by -extendible channels at no cost. These bounds are significantly tighter than previously known bounds for both the depolarizing and erasure channels. Finally, we revisit the pretty strong converse for the quantum capacity of antidegradable channels and establish an upper bound on the nonasymptotic quantum capacity of these channels

    Strong Converse for a Degraded Wiretap Channel via Active Hypothesis Testing

    Full text link
    We establish an upper bound on the rate of codes for a wiretap channel with public feedback for a fixed probability of error and secrecy parameter. As a corollary, we obtain a strong converse for the capacity of a degraded wiretap channel with public feedback. Our converse proof is based on a reduction of active hypothesis testing for discriminating between two channels to coding for wiretap channel with feedback.Comment: This paper was presented at Allerton 201

    Strong Converse Rates for Quantum Communication

    Full text link
    © 1963-2012 IEEE. We revisit a fundamental open problem in quantum information theory, namely, whether it is possible to transmit quantum information at a rate exceeding the channel capacity if we allow for a non-vanishing probability of decoding error. Here, we establish that the Rains information of any quantum channel is a strong converse rate for quantum communication. For any sequence of codes with rate exceeding the Rains information of the channel, we show that the fidelity vanishes exponentially fast as the number of channel uses increases. This remains true even if we consider codes that perform classical postprocessing on the transmitted quantum data. As an application of this result, for generalized dephasing channels, we show that the Rains information is also achievable, and thereby establish the strong converse property for quantum communication over such channels. Thus, we conclusively settle the strong converse question for a class of quantum channels that have a non-trivial quantum capacity
    corecore