489 research outputs found

    Developing an Affect-Aware Rear-Projected Robotic Agent

    Get PDF
    Social (or Sociable) robots are designed to interact with people in a natural and interpersonal manner. They are becoming an integrated part of our daily lives and have achieved positive outcomes in several applications such as education, health care, quality of life, entertainment, etc. Despite significant progress towards the development of realistic social robotic agents, a number of problems remain to be solved. First, current social robots either lack enough ability to have deep social interaction with human, or they are very expensive to build and maintain. Second, current social robots have yet to reach the full emotional and social capabilities necessary for rich and robust interaction with human beings. To address these problems, this dissertation presents the development of a low-cost, flexible, affect-aware rear-projected robotic agent (called ExpressionBot), that is designed to support verbal and non-verbal communication between the robot and humans, with the goal of closely modeling the dynamics of natural face-to-face communication. The developed robotic platform uses state-of-the-art character animation technologies to create an animated human face (aka avatar) that is capable of showing facial expressions, realistic eye movement, and accurate visual speech, and then project this avatar onto a face-shaped translucent mask. The mask and the projector are then rigged onto a neck mechanism that can move like a human head. Since an animation is projected onto a mask, the robotic face is highly flexible research tool, mechanically simple, and low-cost to design, build and maintain compared with mechatronic and android faces. The results of our comprehensive Human-Robot Interaction (HRI) studies illustrate the benefits and values of the proposed rear-projected robotic platform over a virtual-agent with the same animation displayed on a 2D computer screen. The results indicate that ExpressionBot is well accepted by users, with some advantages in expressing facial expressions more accurately and perceiving mutual eye gaze contact. To improve social capabilities of the robot and create an expressive and empathic social agent (affect-aware) which is capable of interpreting users\u27 emotional facial expressions, we developed a new Deep Neural Networks (DNN) architecture for Facial Expression Recognition (FER). The proposed DNN was initially trained on seven well-known publicly available databases, and obtained significantly better than, or comparable to, traditional convolutional neural networks or other state-of-the-art methods in both accuracy and learning time. Since the performance of the automated FER system highly depends on its training data, and the eventual goal of the proposed robotic platform is to interact with users in an uncontrolled environment, a database of facial expressions in the wild (called AffectNet) was created by querying emotion-related keywords from different search engines. AffectNet contains more than 1M images with faces and 440,000 manually annotated images with facial expressions, valence, and arousal. Two DNNs were trained on AffectNet to classify the facial expression images and predict the value of valence and arousal. Various evaluation metrics show that our deep neural network approaches trained on AffectNet can perform better than conventional machine learning methods and available off-the-shelf FER systems. We then integrated this automated FER system into spoken dialog of our robotic platform to extend and enrich the capabilities of ExpressionBot beyond spoken dialog and create an affect-aware robotic agent that can measure and infer users\u27 affect and cognition. Three social/interaction aspects (task engagement, being empathic, and likability of the robot) are measured in an experiment with the affect-aware robotic agent. The results indicate that users rated our affect-aware agent as empathic and likable as a robot in which user\u27s affect is recognized by a human (WoZ). In summary, this dissertation presents the development and HRI studies of a perceptive, and expressive, conversational, rear-projected, life-like robotic agent (aka ExpressionBot or Ryan) that models natural face-to-face communication between human and emapthic agent. The results of our in-depth human-robot-interaction studies show that this robotic agent can serve as a model for creating the next generation of empathic social robots

    A Photo-realistic Voice-bot

    Get PDF
    Technology is at the point where systems are capable of synthesizing video of human actors indistinguishably from ones in which the actor is present. This research investigates whether or not it is possible to use this technology in order to create a system which, allows video generation of a human actor, that is able to interact with a user through speech in real-time, whilst also remaining indistinguishable from a real human actor. In other words, a photo-realistic voicebot. The work discusses the motivations and ethics, but also presents and tests a prototype system. The prototype aims to take advantage of the latest in real-time video manipulation software to create a natural sounding conversation with an artificially synthesized video

    A Retro-Projected Robotic Head for Social Human-Robot Interaction

    Get PDF
    As people respond strongly to faces and facial features, both con- sciously and subconsciously, faces are an essential aspect of social robots. Robotic faces and heads until recently belonged to one of the following categories: virtual, mechatronic or animatronic. As an orig- inal contribution to the field of human-robot interaction, I present the R-PAF technology (Retro-Projected Animated Faces): a novel robotic head displaying a real-time, computer-rendered face, retro-projected from within the head volume onto a mask, as well as its driving soft- ware designed with openness and portability to other hybrid robotic platforms in mind. The work constitutes the first implementation of a non-planar mask suitable for social human-robot interaction, comprising key elements of social interaction such as precise gaze direction control, facial ex- pressions and blushing, and the first demonstration of an interactive video-animated facial mask mounted on a 5-axis robotic arm. The LightHead robot, a R-PAF demonstrator and experimental platform, has demonstrated robustness both in extended controlled and uncon- trolled settings. The iterative hardware and facial design, details of the three-layered software architecture and tools, the implementation of life-like facial behaviours, as well as improvements in social-emotional robotic communication are reported. Furthermore, a series of evalua- tions present the first study on human performance in reading robotic gaze and another first on user’s ethnic preference towards a robot face

    Facial Expression Rendering in Medical Training Simulators: Current Status and Future Directions

    Get PDF
    Recent technological advances in robotic sensing and actuation methods have prompted development of a range of new medical training simulators with multiple feedback modalities. Learning to interpret facial expressions of a patient during medical examinations or procedures has been one of the key focus areas in medical training. This paper reviews facial expression rendering systems in medical training simulators that have been reported to date. Facial expression rendering approaches in other domains are also summarized to incorporate the knowledge from those works into developing systems for medical training simulators. Classifications and comparisons of medical training simulators with facial expression rendering are presented, and important design features, merits and limitations are outlined. Medical educators, students and developers are identified as the three key stakeholders involved with these systems and their considerations and needs are presented. Physical-virtual (hybrid) approaches provide multimodal feedback, present accurate facial expression rendering, and can simulate patients of different age, gender and ethnicity group; makes it more versatile than virtual and physical systems. The overall findings of this review and proposed future directions are beneficial to researchers interested in initiating or developing such facial expression rendering systems in medical training simulators.This work was supported by the Robopatient project funded by the EPSRC Grant No EP/T00519X/

    Blinking in Human Communicative Behaviour and it's Reproduction in Artificial Agents

    Get PDF
    A significant year-on-year rise in the creation and sales of personal and domestic robotic systems and the development of online embodied communicative agents (ECAs) has in parallel seen an increase in end-users from the public domain interacting with these systems. A number of these robotic/ECA systems are defined as social, whereby they are physically designed to resemble the bodily structure of a human and behaviorally designed to exist within human social surroundings. Their behavioural design is especially important with respect to communication as it is commonly stated that for any social robotic/ECA system to be truly useful within its role, it will need to be able to effectively communicate with its human users. Currently however, the act of a human user instructing a social robotic/ECA system to perform a task highlights many areas of contention in human communication understanding. Commonly, social robotic/ECA systems are embedded with either non-human-like communication interfaces or deficient imitative human communication interfaces, neither of which reach the levels of communicative interaction expected by human users, leading to communication difficulties which in turn create negative association with the social robotic/ECA system in its users. These communication issues lead to a strong requirement for the development of more effective imitative human communication behaviours within these systems. This thesis presents findings from our research into human non-verbal facial behaviour in communication. The objective of the work was to improve communication grounding between social robotic/ECA systems and their human users through the conceptual design of a computational system of human non-verbal facial behaviour (which in human-human communicative behaviour is shown to carry in the range of 55% of the intended semantic meaning of a transferred message) and the development of a highly accurate computational model of human blink behaviour and a computational model of physiological saccadic eye movement in human-human communication, enriching the human-like properties of the facial non-verbal communicative feedback expressed by the social robotic/ECA system. An enhanced level of interaction would likely be achieved, leading to increased empathic response from the user and an improved chance of a satisfactory communicative conclusion to a user’s task requirement instructions. The initial focus of the work was in the capture, transcription and analysis of common human non-verbal facial behavioural traits within human-human communication, linked to the expression of mental communicative states of understanding, uncertainty, misunderstanding and thought. Facial Non-Verbal behaviour data was collected and transcribed from twelve participants (six female) through a dialogue-based communicative interaction. A further focus was the analysis of blink co-occurrence with other traits of human-human communicative non-verbal facial behaviour and the capture of saccadic eye movement at common proxemic distances. From these data analysis tasks, the computational models of human blink behaviour and saccadic eye movement behaviour whilst listening / speaking within human-human communication were designed and then implemented within the LightHead social robotic system. Human-based studies on the perception of naïve users of the imitative probabilistic computational blink model performance on the LightHead robotic system are presented and the results discussed. The thesis concludes on the impact of the work along with suggestions for further studies towards the improvement of the important task of achieving seamless interactive communication between social robotic/ECA systems and their human users

    MorphFace: a hybrid morphable face for a robopatient

    Get PDF
    Physicians use pain expressions shown in a patient’s face to regulate their palpation methods during physical examination. Training to interpret patients’ facial expressions with different genders and ethnicities still remains a challenge, taking novices a long time to learn through experience. This paper presents MorphFace: a controllable 3D physical-virtual hybrid face to represent pain expressions of patients from different ethnicity-gender backgrounds. It is also an intermediate step to expose trainee physicians to the gender and ethnic diversity of patients. We extracted four principal components from the Chicago Face Database to design a four degrees of freedom (DoF) physical face controlled via tendons to span 85% of facial variations among gender and ethnicity. Details such as skin colour, skin texture, and facial expressions are synthesized by a virtual model and projected onto the 3D physical face via a frontmounted LED projector to obtain a hybrid controllable patient face simulator. A user study revealed that certain differences in ethnicity between the observer and the MorphFace lead to different perceived pain intensity for the same pain level rendered by the MorphFace. This highlights the value of having MorphFace as a controllable hybrid simulator to quantify perceptual differences during physician training

    People Interpret Robotic Non-linguistic Utterances Categorically

    Get PDF
    We present results of an experiment probing whether adults exhibit categorical perception when affectively rating robot-like sounds (Non-linguistic Utterances). The experimental design followed the traditional methodology from the psychology domain for measuring categorical perception: stimulus continua for robot sounds were presented to subjects, who were asked to complete a discrimination and an identification task. In the former subjects were asked to rate whether stimulus pairs were affectively different, while in the latter they were asked to rate single stimuli affectively. The experiment confirms that Non-linguistic Utterances can convey affect and that they are drawn towards prototypical emotions, confirming that people show categorical perception at a level of inferred affective meaning when hearing robot-like sounds. We speculate on how these insights can be used to automatically design and generate affect-laden robot-like utterances

    Accessibility requirements for human-robot interaction for socially assistive robots

    Get PDF
    Mención Internacional en el título de doctorPrograma de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: María Ángeles Malfaz Vázquez.- Secretario: Diego Martín de Andrés.- Vocal: Mike Wal

    To Affinity and Beyond: Interactive Digital Humans as a Human Computer Interface

    Get PDF
    The field of human computer interaction is increasingly exploring the use of more natural, human-like user interfaces to build intelligent agents to aid in everyday life. This is coupled with a move to people using ever more realistic avatars to represent themselves in their digital lives. As the ability to produce emotionally engaging digital human representations is only just now becoming technically possible, there is little research into how to approach such tasks. This is due to both technical complexity and operational implementation cost. This is now changing as we are at a nexus point with new approaches, faster graphics processing and enabling new technologies in machine learning and computer vision becoming available. I articulate the issues required for such digital humans to be considered successfully located on the other side of the phenomenon known as the Uncanny Valley. My results show that a complex mix of perceived and contextual aspects affect the sense making on digital humans and highlights previously undocumented effects of interactivity on the affinity. Users are willing to accept digital humans as a new form of user interface and they react to them emotionally in previously unanticipated ways. My research shows that it is possible to build an effective interactive digital human that crosses the Uncanny Valley. I directly explore what is required to build a visually realistic digital human as a primary research question and I explore if such a realistic face provides sufficient benefit to justify the challenges involved in building it. I conducted a Delphi study to inform the research approaches and then produced a complex digital human character based on these insights. This interactive and realistic digital human avatar represents a major technical undertaking involving multiple teams around the world. Finally, I explored a framework for examining the ethical implications and signpost future research areas
    corecore