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ABSTRACT Recent technological advances in robotic sensing and actuation methods have prompted
development of a range of new medical training simulators with multiple feedback modalities. Learning
to interpret facial expressions of a patient during medical examinations or procedures has been one of the
key focus in medical training. This paper reviews facial expression rendering systems in medical training
simulators that have been reported to date. Facial expression rendering approaches in other domains are also
summarised to incorporate the knowledge from those works into developing systems for medical training
simulators. Classifications and comparisons of medical training simulators with facial expression rendering
are presented, and important design features, merits and limitations are outlined. Medical educators,
students and developers are identified as the three key stakeholders involved with these systems and their
considerations and needs are presented. Virtual-physical (hybrid) approaches provide multimodal feedback,
present accurate facial expression rendering, and can simulate patients of different age, gender and ethnicity
group; makes it more versatile than virtual and physical systems. The overall findings of this review and
proposed future directions are beneficial to researchers interested in initiating or developing such facial
expression rendering systems in medical training simulators.

INDEX TERMS Facial expressions, Facial expression rendering, Medical simulators, Medical training,
Robotic patients, Human-Machine Interaction

I. INTRODUCTION

RETROSPECTIVE medical record reviews in British
hospitals [1] show that approximately 10% of pa-

tients admitted to a hospital experience unintended injuries
caused by medical management. A report by the Institute
of Medicine [2] showed that up to 98,000 hospital deaths
occur in the United States of America as a result of medical
errors each year. Enhancement of techniques available to
train medical professionals to integrate multiple sources of
information to make correct conclusions can reduce such
accidents. Some physical examination procedures such as
palpation [3] require years of experience to acquire the right
motor skills, perceptual strategies, and therapeutic attitudes
for general practitioners (GPs) [4], [5]. Effective education of
practical skills can positively influence clinician behaviour,
reducing the risk of patient harm [6], [7]. Traditional teaching

methods, such as live demonstrations followed by students
practising under tutor supervision, are often perceived in-
effective due to class time being consumed by teaching
and demonstration of practical skills, availability of teaching
staff, and resource considerations [8].

Medical procedures such as physical examinations involve
physician-patient interaction, a process involving multiple
feedback modalities, and is affected by the intrinsic and
extrinsic factors of both parties. Intrinsic factors such as the
patient’s pathological conditions and mood states; Extrinsic
factors such as gender, age, and ethnicity have been shown
to affect how the patient expresses the feeling of pain [10].
Fig. 1 shows an overview of this interaction system, where
the interaction points occur between phase 2 and 3, and
phase 5 and 1. Physicians can learn some of the extrinsic
factors from the patient’s appearance and medical history,
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FIGURE 1. Example of physician-patient interaction system diagram during
physical examination (adapted from Prkachin, 1994 [9]).

whilst some of the intrinsic factors that directly relate to the
patient’s current health conditions remain unknown. Physi-
cians attempt to engage with the patient’s experience and
the encoding process by decoding and interpreting verbal
response, and combine with the visual and haptic feedback
to determine the unknown factors to make diagnoses.

Visual feedback, including static information conveyed by
the patient’s general appearance, and dynamic information
such as changes in the patient’s facial expressions, communi-
cate more information than verbal and vocal messages [11].
Mehrabian [12] found 55% of the total impact of a message
is from the non-verbal component of communication, and
Pease [13] found non-verbal messages can be conveyed by
a person’s general appearance, personal hygiene, clothes
and etc. Visual perception through facial expressions during
primary medical examination such as manual palpation is
often used as a feedback modality to assess a range of
medical hypotheses for diagnosis. When patients experience
discomfort or pain, they communicate their feelings and
emotions through verbal and non-verbal channels, including
facial expressions [3]. Pain is one of the most commonly
exhibited reactions during medical examinations. It can be
communicated through facial expressions, which has been
the most direct method for humans to communicate their
feelings and emotions since infancy [14]. When properly
interpreted, information related to the pain experienced by
the patient conveyed to the examiner by facial expressions
is sometimes more accurate than verbal responses [15]. But
if the observer wrongly diagnoses the severity of one’s pain,
it could result in mistreatment or even mortality [16]. The
intrinsic and extrinsic factors in both the patient and the
physician increases perceptual subjectivity when perceiving
visual feedback. Hence it is important for the students to
experience treating patients of different demographics and
backgrounds, as misjudgments in visual feedback due to
subjectivity could result in distrust between patients and
health workers [17], [18].

Simulation-based education (SBE) is frequently used in
recent years, as it can provide safe and effective learning
environments for students [19]. Its central tenet is student-
tailored making and learning from mistakes and errors, which
are prevented or immediately terminated to protect the patient
in clinical settings [20], [21]. Using SBEs, the causes of
mistakes made during the training can be reviewed openly
without liabilities, allowing students to confront the mistakes
and recognise the importance and value of the experience,
and possibly improving the quality of event reporting [20],
[22]. Standardized patients (SPs), physical training simula-
tors such as manikins, and computer-based simulation or
virtual training simulators [23] are the main SBE types
employed by medical educators. They range from low to
high fidelity for different medical specialties such as internal
medicine, emergency medicine, surgery and dentistry.

SPs are healthy people acting as a patient in a consistent
and standardized manner [24]. They are of the highest fidelity
as a simulator but are difficult to train, and are unable to
exhibit desired physiological conditions and symptoms at
their will. Moreover, it is difficult to find SPs to represent
some demographic groups such as children and infants [25].
Physical and virtual training simulators do not generate all
types of feedback SPs do. Haptic, auditory, and visual feed-
back are often regarded as the most important modalities
when it comes to learning and training of medical operations.
Many physical training simulators, such as manikins, are
designed to provide accurate haptic feedback to help improve
clinicians’ motor skills, and many guidelines and design
considerations were provided for haptic response and haptic
visualisation [26]. Manikin simulators with haptic feedback
can be classified by its fidelity, where low-fidelity manikins
[27] are used to train specific tasks or procedures, and high
fidelity manikins [28] can be used to simulate a greater
variety of medical conditions. Although manikin simulators
are widely used in medical training and students are more
comfortable with using manikin simulators than SPs [29],
they cannot be easily customised to simulate patients of
different demographic characteristics. On the other hand, sys-
tems such as computer-based simulators and virtual patients
provide great flexibility in simulating patients of different
sex, age, and ethnicity. But they often lack in compatibility
with physical sensing and haptic feedback.

As previously emphasised, it is important to render ac-
curate facial expressions in medical training simulators ir-
respective of the types. An overview of the implementa-
tion of a medical training simulator with visual feedback
through facial expression rendering is shown in Fig. 2A. This
closed-loop process has two main interaction points: facial
expressions generated by the simulator and perceived by the
student, and the subsequent reaction generated by the student
and exerted on the simulator. The facial expression rendering
system can encode inputs from the sensors embedded in the
simulator and display real-time dynamic facial responses.
Fig. 2B shows the stakeholders involved in this system. Re-
searchers and developers should consider both the educator
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FIGURE 2. (A) A conceptual overview of a typical medical training simulator with facial expression rendering system. (B) Main stakeholders (i.e: medical educators,
students and simulator developers) involved in such system.

and student needs when designing the system.
The primary focus of this paper is to review facial expres-

sion rendering techniques used in medical training simulators
that have been reported to date, and to identify important
design features, merits and limitations of these systems. The
literature review on facial expression rendering in medical
training simulators was performed based on search terms
medical training simulators with pain expressions, eye move-
ments, and facial expressions using Google and Google
Scholar, and both commercial products and research projects
were included. Alternative versions of the same system were
excluded, and the systems that sorted out were classified into
physical, virtual and hybrid systems. Even though there are
many reviews of SBEs [19], [30] and medical training sim-
ulators with feedback methods such as haptic feedback [31],
[32], to the best of our knowledge, no attempts have yet been
reported on in-depth reviews of facial expression rendering
approaches in medical training simulators. A timely writ-
ten review paper on facial expression rendering in medical
training simulators may help, not only to identify the current
status of the research, but also to provide information to
future researchers interested in developing such systems.

The paper is organized as follows: Section II presents
an overview of facial expressions, specifically pain expres-
sions, as it is one of the most common and useful feedback
modalities of the patient during physical examinations, and
facial expression models. Section III reviews existing facial
expression rendering systems in medical training simulators

with classifications and comparisons. Section IV presents a
brief review of facial expression rendering approaches in
other research domains to explore the potential to incorpo-
rate the knowledge from these works into developing facial
expression rendering systems for medical training simulators.
Sections V and VI summarise the findings of this review,
and concludes the paper with a discussion of design consid-
erations for facial expression rendering systems in medical
training simulators and potential future directions.

II. FACIAL EXPRESSIONS
Many of the practical skills clinical students need to acquire
are based on sensory-motor coordination, which consists in
generating, accessing and evaluating useful sensory informa-
tion through actions. The key difference in diagnostic skills
between an experienced doctor and a student is the ability to
focus, identify and distil perceptual and haptic information
that can justify hypotheses in a short time. Therefore, medical
simulators should prompt students to use active perception
in conjunction with information gain from haptic feedback,
and this can be done by incorporating visual feedback into
the system. Visual feedback via facial expressions is an
important source of information in medical examination. It
is one of the most direct methods for the patient to commu-
nicate emotions and feelings, sometimes involuntarily [15].
Needless to say, understanding facial expressions is particu-
larly important when the patient is unable to utilise verbal
communication [33]. However, the challenge is to train a
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physician to extract examination-related information out of
a complex repertoire of expressions with subjectivity and
biases. In this section, we will explore theoretical frameworks
of facial expression generation, common features of facial
expression across ethnic groups, the facial expressions of
pain, and facial action coding systems.

A. MECHANISMS OF FACIAL EXPRESSION
GENERATION

FIGURE 3. Map of core affect (adapted from Russell and Barrett, 1999 [34]).

Emotions are typically conveyed via facial expressions,
voice intonation, gestures, postures and behaviour [35]. In
everyday life, people differentiate between a variety of emo-
tional episodes, such as resentment, guilt, sadness, anger, or
happiness [36], and rely on the idea that faces reveal what
others feel inside (i.e., emotional expressions), as well as
what information is inferred from facial expressions (i.e.,
emotion perception) [37]. The vast majority of the literature
in psychology and neuroscience has relied on the common
or classical view of emotions, assuming they have distinct
boundaries and neural pathways observed in the brain and
body representing reactions to behavioural or contextual
stimuli [38]. For example, emotions are presumed to be
“read” via prototypical facial configurations representing
discrete universal categories such as anger, fear, disgust,
happiness, sadness and surprise [37], [39], [40]. Researchers
often use Facial Action Coding Systems or FACS, which are
schemes that allow for combining various parts of the face
into emotional prototypes, where participants are asked what
the person on the picture is feeling. For example, the pain
expression may include brow lowering, skin drawn tightly
around the eyes, and a horizontally stretched open mouth
with deepening of the nasolabial furrow, and anger includes
furrowed brows, wide eyes, and tightened lips [41], [42].

Nonetheless, assumptions about configurations of emo-
tional expressions have not been reliably replicated across
samples, cultures, nor situations/contexts [37]. In terms of
other measurement modalities, two recent large meta analy-

ses on emotions and brain locations indicate large discrep-
ancies between individuals, as emotions such as disgust,
sadness, anger, fear and happiness cannot be pinpointed
to activity in specific regions of the brain using classical
tasks of measurement [43], [44]. In addition, the experience
of emotional events (a common way to identify emotional
states) does not take into account individuals who experience
emotional events without direct awareness, nor those who
struggle with words to express and describe their own and
others’ emotions, such as alexithymics [37]. Despite an expo-
nential increase in applications modelling human emotions in
areas such as affective computing, these models provide low
predictive capability, often resulting in inaccurate emotion
detection in computerised systems [45], [46].

The constructionist view is an opposing framework where
emotions represent dimensions rather than categories. Com-
monplace mental states including perceptions, cognitions,
and emotions are assumed to be constructed from a combina-
tion of fundamental psychological operations [47]. Viewed
as so-called core affect, emotions can be described as a
linear combination of two underlying, largely independent
neurophysiological systems known as valence and arousal
(depicted in a circumplex Cartesian space in Fig. 3, where
the inner circle shows a schematic map of core affect and
the outer circle shows where several prototypical emotional
episodes typically fall). The valence system determines the
degree to which an emotion is pleasant or unpleasant, and
the arousal system determines the degree to which it is
behaviourally activating. Consequently, a 90 degrees distance
(e.g., “happy” and “tense”) represents independent, whereas
a 180 degrees distance represents opposite affective expe-
riences (e.g., “happy” and “sad”). Importantly, experiences
of emotions are considered to be ambiguous, overlapping
sensations that are the product of activity in neural pathways
subserving valence and arousal, but which become contex-
tualized and classified through the processing of relevant
situational, historical, behavioural, and physiological cues
that people use to safely navigate the world [48].

Thus, rather than being ‘caused’ by external or internal
events, emotional experiences are instead predicted based on
information from core affect and context [49]. In this view,
the brain is a probabilistic prediction processor or engine
[50], and core affect can be used to predict the precision (or
granularity) of emotional experiences [48]. One illustration
of this is that viewing Serena Williams celebrating a Wim-
bledon victory allows viewers to identify her joy (a form of
happiness) only after viewing the picture with a tennis racket
in full gear (i.e., with contextual information indicating a
win). Evaluating a close-up of her face without knowing
the context would produce an entirely different emotional
evaluation, such as that of rage [46]. This ambiguity is
also seen in people with mental health problems and in
chronic pain [51], [52]. Thus, emotions should be modelled
as likelihoods of emotional reality rather than reactions to
environmental stimuli. This has direct implications for com-
putational modelling forming the basis for development of
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accurate emotion mapping of pain, as lack of universality
in emotional expression as well as the context of medical
examination need to be taken into account.

B. FACTORS UNDERPINNING THE DIVERSITY OF
FACIAL EXPRESSIONS
Current literature in psychology and neuroscience show large
inconsistencies in findings on the foundation as well as uni-
versality of human emotions, with growing work indicating
that people are not always good at recognising emotions
from faces without prior contextual clues [49]. In addition,
problems with reliability, specificity, generalizability, and
validity are largely present in studies based on the view that
emotions are categorical [37].

For instance, a seminal study by Ekman [53] identified
commonality in different cultures for six displayed emotions:
happiness, sadness, fear, disgust, surprise and anger; suggest-
ing understanding one’s emotion and feeling by observing
facial expression is a reliable method when there are barriers
in verbal communication. Izard [54] supported this idea of
universality in facial expression and took inspiration from
Tomkin [55] who proposed the Discrete Emotion Theory,
stating that there is a limited number of pancultural basic
emotions.

Nevertheless, the authority of this work has been ques-
tioned, as subsequent studies removing clues about con-
text have found less congruence across cultures in emo-
tion perception from facial information [37]. For instance,
there are differences in interpretations of certain emotional
expressions. Despite assuming that emotions such as anger
will be easily identifiable by participants using behavioural
and/or physiological measures (e.g., via facial or auditory
expressions, or brain scans), there is low correspondence
across such measures to reliably indicate a universal instance
of emotions in the brain or body [38]. Comparing East Asian
and Western cultures, Chen et al. [56] found differences in
perceptual discrimination of facial expression of pain and
orgasm based on facial actions. Such inconsistencies are
also obvious in recent attempts at technological applications
(e.g., Microsoft’s Emotion API), with no emotion recognition
algorithm thus far reliably predicting either people’s emotion
expressions or perception from facial information alone [37].

In sum, facial expressions can be viewed as a communi-
cation medium with embedded subjectivity in the observer’s
perception caused by differences in demographic attributes
such as gender, age, and ethnicity [57]–[59]. In medical
training, therefore, the trainees should be exposed to patients
of a great variety of demographic characteristics to increase
perceptual objectivity.

C. PAIN EXPRESSIONS
Pain is defined as "an abstract concept which refers to (1)
a personal, private sensation of hurt; (2) a harmful stimulus
which signals current or impending tissue damage; (3) a pat-
tern of responses which operate to protect the organism from
harm" [60]. Clinicians and doctors rely on pain as a feedback

modality to adjust their examination procedure accordingly
to minimise the discomfort the patient experiences [61].

Pain expressions have been identified as common and
useful feedback to the clinician. They are subjective by
nature and the intensity of pain have been proven to be
more accurately measured by analysing facial expressions
than self-reports of the patient [15], [61], [62]. It is crucial to
understand how pain is generated, expressed, observed and
understood. If the observer wrongly diagnoses the severity of
one’s pain, it could result in mistreatment or even mortality
[16]. Pain intensity can be measured using the verbal rating
scale (VRS-4), the visual analog scale (VAS) and the numeric
rating scale (NRS-11). Breivik [63] showed VRS-4 was less
sensitive than VAS and NRS-11, and VAS showed similar
sensitivity in relation to the pain intensity, highlighting the
importance of analysing facial expressions in evaluating pain.
There are also pain scales for assessing children’s pain such
as the Faces Pain Scale-Revised [64], and the Wong-Baker
FACES Pain Rating Scale [65]. These scales are based on
facial expressions as children are less able to express their
feelings verbally.

Pain can be communicated and interpreted via nonverbal
communication methods. Rosenthal et al. [66] presented a
nonverbal communication model as a three step process: A:
internal state of an experience. B: encoding A into expressive
behaviours. C: observers draw inferences about the sender’s
experience. Ekman’s Neurocultural Theory [67] suggested
that the facial affect program (one-to-one map between felt
emotion and displayed facial expression) is the same for
all people in all cultures. But people use "management
techniques" to control and sometimes override the operation
of the universal facial affect program under some social
settings. Prkachin included the social stimuli in Rothenthal’s
model and proposed a general model of a pain episode [9],
which is composed of three stages: Experience, Encoding
and Decoding. This model outlined the variability of the
relationship between the intensity and quality of pain, and
one’s expression of pain.

Many researchers evaluated how pain is translated to facial
expressions. Chapman and Jones [68] evaluated reactions to
pain stimulus with heat. They found similarities between
peoples’ facial expressions such as the contraction of the
eyelids, and noted that the majority of the subjects were
unable to constrain that muscle movement when asked to.
Prkachin [16] found similarities in facial features when peo-
ple experience pain.

Therefore, medical training simulators should be able to
render the facial expressions of pain to a high level of
similarity of the human expression to stimulate the visual
information integration process of the trainee. This can be
achieved by synthesising specific facial features and muscle
groups. The next section introduces systems and frameworks
for describing facial expressions.
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TABLE 1. Facial Expression Evaluation Methods

Reference Use FACS Methodology and Remarks

Suwa et al., 1978 [69] No One of the first studies on automatic facial expression analysis.
Terzopoulos, 1990 [70] No Used anatomical models of the facial muscle actuators to identify expressions, enabling accurate

synthesis of transient expression by computing muscle actuator controls.
Mase et al., 1991 [71] No Used optical flow to extract muscle actions, and categorised the image sequences into classes of facial

expression using a feature vector of time and local spatial area of the variance.
Neely et al., 1992 [72] No A recognition method focused on facial movements of forehead wrinkling, eye closing, nose wrin-

kling, and mouth smiling, by computing intensity of pixels in the predefined regions from subtracting
frames of the facial motion from a reference image.

Wood, 1994 [73] No Used video microscaling to determine distances in facial movements by superimposing a computer-
generated measuring scale over a video recorded image of facial movements.

Yacoob and Davis, 1996 [74] No Used optical flow in model building, with a focus on identifying the direction of motions caused by
facial expressions.

Curtis and Garrison, 1996 [75] No A emotion recognition system using feed-forward neural networks to detect six basic emotions by
analysing static images.

Roenblum and Yacoob, 1996 [76] Yes High success rate in correctly identifying facial expressions using a radial basis function network.
Yuen et al., 1997 [77] No Used Moiré topography to evaluate the degree of facial palsy as an objective method in addition to

other subjective macroscopic evaluation methods.
Essa et al., 1997 [78] and Fukui et al.,
1998 [79]

Yes Esed shape matching and pattern recognition. Facial motions are encoded with geometric models and
that distinctive features such as pupils, nostrils, and mouth edges are extracted.

Cohn et al., 1999 [80] Yes Quantitatively measured image sequences and encoding facial expressions into FACS AUs.
Donato, 1999 [81] Yes Used optical flow, principal component analysis and Gabor wavelet transform for automatic facial

action recognition with FACS using image sequences.
Zhang, 1999 [82] Yes A two-layer approach to capture geometric positions of fiducial points and Gabor wavelet coefficients

at those points. Both computational efficiency and generalisation performance could be improved by
discarding points that carry little information such as the ones on cheeks and on forehead.

Lien et al., 2000 [83] Yes Used feature extraction and FACS classification. Accurately decoded facial expressions of subjects of
varied ethnicity.

D. FACIAL EXPRESSION MODELS

As previously mentioned in Section II-A, FACS was one of
the first framework to systematically decode facial expres-
sions. FACS divides common facial expressions into smaller
movement primitives known as action units (AUs), allowing
facial expressions to be analysed quantitatively. The Emo-
tional Facial Action Coding System (EMFACS) was later
developed to improve computational efficiency of FACS.
There are also other facial action coding systems. Izard cre-
ated the Maximally Discriminative Facial Movement Coding
System (MAX) [84], which is commonly used to examine
infants’ facial expressions. The System for Identifying Affect
Expressions (AFFEX) [85] is another facial action coding
system for children, which makes direct judgements of the
affective meaning of the patterns of facial muscle movements
in infants and young children. Ekman’s system was more
quantitative and it was later widely used in automatic facial
expression recognition systems, whereas Izard’s was more
qualitative and was more commonly used in medical training.

Many models and systems for analysing and generating
facial expressions were developed using the facial action
coding frameworks and data analysis and image processing
techniques. Deception means to retrieve information from
one’s expression [15], and it can be classified into two
categories: subjective and objective [86]. Objective methods
rely on taking measurements and evaluating numerical dif-
ferences to determine changes and states of various facial
expressions. Many objective methods were developed using

signal processing and data analysis methods as summarised
in Table 1. Subjective methods correspond to various facial
nerve grading systems, and the most common system is the
House-Brackmann facial nerve grading system [87]. Subjec-
tive methods are esteemed to be less reliable than objective
methods due to variations caused by observer bias, and is not
commonly used in facial expression decoding systems.

Researchers found the pain expression could be identified
as a combination of at least four AUs using FACS. Patrick
[88] used FACS to evaluate peoples’ responses to a broad
range of pain stimuli and found significant increase in 4
AUs with pain intensity across all categories of pain: brow
lowering, orbit tightening, upper-lip raising/nose wrinkling,
and eye closure. Craig and Patrick [89] conducted what is
known as the cold pressor test and found six AUs associated
with pain. Craig [90] analysed all the AUs that activate during
pain experience and found lower facial actions more likely to
occur during severe pain. Table 2 summarises some of the
significant work and findings on pain stimulus, intensity and
facial expression up to date.

Fig. 4A shows that some AUs are more frequently shown
in pain expressions than others, the colours classify AUs
based on their appearing frequency in previous studies. The
result shows AU4, 6 and 10 are most likely to be present in
pain expression, and this finding is comparable to findings
by other researchers. Prkachin [95] found using AU4, 6, 7,
9, and 10 are sufficient to exhibit pain expression at varying
intensity levels. Chen et al. [56] found AU4, 6, 9, 10, and 20
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TABLE 2. Pain Intensity Evaluation using FACS

Reference Experimental Method Related AUs Remarks

Craig & Patrick, 1985 [89] Cold pressor test. AU7, AU10, AU12, AU25, AU26
and AU43 or AU45

Social models had potent impact on verbal
report and pain tolerance but not on facial
expression.

LeResche, 1982 [41] Examine candid images of acute
pain.

AU4, AU6, AU11, AU17, AU20,
AU25, AU26, AU43

High degree of regularity was shown in
facial movements associated with intense,
acute pain. Acute, severe pain in adults is
characterised by a pattern of facial behav-
ior distinct from patterns shown in disgust,
anger, fear or sadness.

Patrick et al., 1986 [91] Electric Shock. AU4, AU6, AU10, AU45 Nonverbal expression yields information
that is non-redundant with self-report.

Craig et al., 1991 [90] Examine patients with real, sup-
pressed and fake chronic low back
pain.

AU4, AU6, AU7, AU10, AU25,
AU43

AU4, 6 and 12 were displayed more fre-
quently in faking pain. Attempt to suppress
pain was not successful as residual facial
activity persisted.

LeResche and Dworkin,
1988 [92]

Compare FACS analysis with self-
report in TMD patients.

AU4, Au6, AU7, AU9, AU10,
AU20, AU25, AU26, AU43, AU45

Facial expressions can reliably measure pain
and is not disturbed by psychological dis-
tress.

Prkachin and Mercer, 1989
[93]

Analyse pain intensity of patients
with gleno-humeral joint pain using
FACS.

AU4, AU6, AU7, AU9, AU10,
AU12, AU20, AU25, AU43

Facial actions are consistent with sensory
and affective pain scales. AU4,6, 9 and 12
showed correlation with subjective pain rat-
ings.

Prkachin, 1992 [88] Expose subjects to electric shock,
cold, pressure and muscle ischemia.
Measure facial expressions with
FACS.

AU1, AU2, AU4, AU6, AU7, AU9,
AU10, AU12, AU14, AU17, AU20,
AU24, AU25, AU26, AU27, AU38,
AU41, AU43, AU45

AU4, 6, 7, 9, 10 and 12 showed increase in
activation with pain intensity.

Simon et al., 2008 [94] Compare pain and basic emotions
using FACS.

AU4, AU6, AU7, AU9, AU10,
AU12, AU20, AU24, AU25, AU26,
AU27

Facial displays of pain are distinctive from
basic emotions.

Prkachin, 2008 [95] Examine facial expression of pain
in patients with shoulder pain using
FACS.

AU4, AU6, AU7, AU9, AU10,
AU12, AU20, AU24, AU26, AU43

AU4, 6, 7, 9, 10 and 43 consisted of a core
expression of pain with unitary properties.

Lucey et al, 2011 [96] Use FACS to code the UNBC-
McMaster shoulder pain expression
archive database.

AU4, AU6, AU7, AU9, AU10,
AU12, AU20, AU25, AU26, AU43

A large FACS coded pain expression
database with self-report and observer mea-
sures.

FIGURE 4. (A) Action Units (AU) employed in studies (n=10) presented in Table 2. AU4, AU6 and AU10 were seen as the frequently used AUs to represent the pain
facial expressions (B) Rendered facial expressions of pain with different AU activation intensity. Facial muscle groups driven by the assigned AUs are highlighted by
the ellipses.
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to be the most frequent AUs for pain expression in Western
and East Asian cultures. This plot also suggest the simplest
pain expression model can be built by synthesising AU4, 6,
and 10, as shown in Fig. 4B. By using different numbers
of AUs, researchers and developers can build systems of
different degrees of realism, though the individual activation
intensity and activation orders should be experimented and
tested for dynamic simulations.

III. MEDICAL TRAINING SIMULATORS WITH FACIAL
EXPRESSION RENDERING

FIGURE 5. Classification of the facial expression rendering systems based on
methods of implementation

The facial expression rendering systems designed for med-
ical training simulators range from fully virtual to fully phys-
ical, as classified in Fig. 5. Virtual systems rely on mediums
such as computer monitors, televisions or projections on flat
screens to render the facial expressions. Physical systems
can be active manikins or robotic heads/faces that mechan-
ically render facial expressions. And hybrid facial expression
rendering systems are consisted of both virtual and physical
components to synthesize the facial expressions. Thus far,
different approaches or solutions have been proposed for
rendering facial expressions in medical training simulators,
as summarised in Table 3.

A. PHYSICAL FACIAL EXPRESSION RENDERING
SYSTEMS
Full body manikins can simulate many different symptoms.
SimMan 3G [28] from Laerdal Medical, an adult patient
simulator for advanced training in emergency care, and Pedi-
atric HAL [97] from Gaumard Scientific, an pediatric patient
simulator are established commercial manikin simulators.
Both simulators render facial expressions mechanically, and
can simulate a variety of neurological and physiological
symptoms. HAL can simulate emotions through dynamic
facial expressions, movement and speech, whereas SimMan
3G is limited to eye movements only. Although only eye
movements are implemented as SimMan’s facial expression
feedback, the state of the eye is a critical factor in recognition
of consciousness in emergency situations. SimMan can be
customised using wigs to simulate patients of different gen-
der but the skin colour cannot be changed. HAL can be made

in three skin colours: light, medium and dark, but the ethnic
features of the face do not differ.

Dentistry is another area where simulators are used to im-
prove motor skills and hand-eye coordination of the students,
which are essential clinical skills [107]. There are two main
dental simulation systems: SIMROID [98] and DENTAROID
[99], which are designed by Japanese researchers with physi-
cal facial expression rendering. SIMROID can simulate stress
or discomfort the patient feels during the procedure. The
face of SIMROID is actuated by air cylinders to physically
display facial expressions of discomfort, pain and positive
acknowledgements. Its eyes can rotate about the vertical and
horizontal axis, and the eye lids can exhibit different degrees
of opening. Its mouth can open and close, and its head can
rotate about the vertical and horizontal axis. DENTAROID
has automatic dialogue patterns, which gives students a more
realistic clinical training experience. It helps students to learn
to avoid accidents and improve communication competency
with patients. DENTAROID is capable of performing differ-
ent reaction movements that simulate accidents which can
occur during treatment, such as reaction to pain. It can also
perform facial movements such as eye blinking to make the
simulation more realistic. Both robots have skin textures
closely resembles the human skin, and their ethnicity and
gender cannot be changed or customised.

In addition to the commercial products, many platforms
and systems are being explored by different research groups.
Baldrighi et al. [100] proposed a bio-inspired facial expres-
sions rendering system for a medical manikin. Their system
was able to synthesise 7 emotions including happy, sad,
angry, surprised, suspicious, disgusted and sarcastic expres-
sions. The skin of the face was made of silicone elastomer to
replicate the texture and appearance of real human skin, and
the underlying structure was consisted of 13 DOFs driven by
motors. The system was able simulate eyes movements such
as blinking, iris dilation, and object tracking. The neck of the
manikin was realized with a 6 DOF Stewart platform.

B. VIRTUAL FACIAL EXPRESSION RENDERING
SYSTEMS
Another approach of facial expression rendering is virtual
simulations. In 2014, Moosaei et al. [102] reported an ap-
proach for synthesizing naturalistic pain on virtual patients.
They used the UNBC-McMaster pain archive and MMI
database for acquiring source videos of anger and disgust. A
Constrained Local Model (CLM) based face tracker was used
to extract 68 feature points frame-by-frame from each source
video. To render three different expressions: pain, anger and
disgust, they mapped the extracted feature points to control
points of an animated virtual character using Steam Source
SDK. The authors also claimed that the naturally driven pain
synthesis they used in the study was comparable to FACS
based pain synthesis. In 2017, Moosaei et al. [106] performed
a study on using facially expressive robots to calibrate clin-
ical pain perception. In this study, they developed a virtual
patient to synthesise facial expressions of pain, anger and
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TABLE 3. Medical Training Simulators with Facial Expression Rendering

Product / Study Application
Type

Type Commercial
Availability

Synthesized Facial Ex-
pressions

Additional Feedback
Capabilities

Diversity Options

SimMan 3G [28] Patient
simulator

Physical Yes Slow, normal, fast
blinks and winks,
Partially open papillary
accommodation.

Variable lung compliance,
airway resistance, breath-
ing patterns, patient voice
playback.

One body shape
with a beige skin
tone. Can be
customised using
wigs.

Pediatric HAL [97] Pediatric
robotic
patient

Physical Yes Facial expressions such
as Anger, Transient Pain,
Ongoing Pain, Amazed,
Quizzical, Worried,
Anxious, Crying,
Yawning and advanced
eye movements.

Heart, lung and bowel
sounds, breathing patterns.

One body shape
with light, medium
and dark skin tones.

SIMROID [98] Dental
robotic
patient
simulator

Physical Yes Discomfort or
pain, and positive
acknowledgement
through facial
expressions.

Hand, leg movements, and
speech.

Asian female avatar
only.

DENTAROID [99] Dental
robotic
patient
simulator

Physical Yes Reaction to pain, cough
reflex, vomiting reflex.

Hand movement and
speech.

Asian female avatar
only.

Baldrighi et al., 2014
[100]

Medical
manikin

Physical No 7 emotions including
happy, sad, angry,
surprised, suspicious,
disgusted and sarcastic,
Simulate papillary
reaction.

Neck movement and object
tracking with the eyes.

Pale silicone elas-
tomer skin with a
black wig.

Wandner et al., 2010
[101]

Virtual
3D human
avatar

Virtual No Pain expression for vari-
ous intensities.

No additional feedback Variable sex (male,
female), race
(Caucasian, African
American) and age
(young adult, older
adult).

Moosaei et al., 2014
[102]

Virtual 3D
patient

Virtual No Pain, Anger and Disgust. No additional feedback Variable sex (male,
female)

Maicher et al., 2017
[103]

Virtual
Patient

Virtual No Happiness, Anger, Sad-
ness, Fear, Surprise, Dis-
gust, Contempt, Pain and
Character diversity.

Speech-based conversation
and virtual gestures.

Not reported

Kotranza et al., 2008
[104]

Mixed
reality
human
for breast
examination

Hybrid No Pain and discomfort. Speech-based conversation,
virtual gestures, facial and
verbal feedback based on
verbal input and sensor
data.

Variable race.

Rivera-Gutierrez et al.,
2012 [105]

Shader
lamps
virtual
patients

Hybrid No Eye movements. No additional feedback Not reported.

Daher et al., 2020 [106] Physical-
virtual
patient
simulator

Hybrid No Facial expressions could
be adjusted to fit different
scenarios.

Speech, visual head, arms,
and finger movement

Not reported.

VOLUME 4, 2016 9



Lalitharatne et al.: Facial Expression Rendering in Medical Training Simulators: Current Status and Future Directions

disgust, and compared it with the same facial expression
rendered on a Philip K. Dick (PKD) humanoid robot. The
study found that it was easier for observers to detect pain in
a virtual patient than in the high-fidelity, facially expressive
PKD humanoid robot patient simulator. In addition, their ap-
proach allowed accurate generation of virtual human avatars
of various demographic features.

In 2017, Maicher et al. [103] developed a conversational
virtual standardized patient to help students practice history-
taking skills. Character models in the simulator were created
with Autodesk Character Generator and refined using Au-
todesk Maya. The virtual characters were able to synthesise
various emotions via facial expressions such as happiness,
anger, sadness, fear, surprise, disgust, contempt and pain.
This system also allowed skin color and the gender of the
character to be changed during sessions.

Wandner et al. [101] used virtual human (VH) technology
with the People Putty software program to generate human
avatars of different demographic attributes with various pain
intensity expressions. The benefits of using virtual avatars
are that the facial features and pain expressions can be stan-
dardised without biases from the construction of the stimuli,
and that patients of different sex, race, age and pain intensity
can be generated rapidly. Using this novel method they found
the characteristics of the VHs influenced the ratings of pain
assessment and treatment recommendations. This finding
suggests that medical training systems should give students
exposure to patients with different demographic attributes to
minimise the effect of biases in treating real patients.

C. HYBRID FACIAL EXPRESSION RENDERING
SYSTEMS
Facial expression rendering methods are not only limited
to virtual and physical approaches. In 2008, Kotranza et al.
[104] proposed a mixed reality human platform for breast
cancer examinations which we classify as a hybrid approach.
Mixed reality or hybrid systems preserve features of both
the physical and virtual approaches, often done by projecting
virtual models onto physical objects. The physical systems
consisted of a full-body physical embodiment, in the form of
a plastic manikin. The left breast of the manikin was a soft
phantom simulating the feel of breast skin, tissue, underlying
breast masses, and contains twelve pressure sensors to detect
the user’s touch. The virtual system was realized using a head
mounted display (HMD) and wireless microphone. Head
orientations and positions of the user were tracked using
a combination of infrared-marker based tracking and ac-
celerometers in the HMD. The user was able to interact with
the mixed reality model through a combination of verbal,
gestural, and haptic inputs. The proposed system was able
to generate virtual female characters of different ethnicity to
represent the patient. During the pilot experiments conducted
in this study, the facial expression of the mixed reality human
showed discomfort during any touching of the breast, and
pain when the user pressed in an area that was designated
as painful.

In 2012, Rivera-Gutierrez et al. [105] developed a physical
virtual patient for medical students to conduct ophthalmic
exams. The proposed system was based on a concept called
Shader Lamps Virtual Patients (SLVP) where combination of
shader lamps avatars and conversational virtual patients, as a
means to achieve such physical presence were utilized. The
physical system consisted of a styrofoam head with retro-
reflective markers attached on the back, a pan-tilt unit for
head motion control, and a static manikin body. A virtual
character’s head realized using virtual human software was
projected onto the styrofoam head using a front-mounted
Mitsubishi XD300U projector (1024 X 768 resolution). To
correctly register the head of the virtual character onto the
physical styrofoam head, a closed-loop process using the
pan-tilt unit and an Eight-Natural-Point OptiTrack infrared
camera tracking system was used. Results from the study
suggested that proposed SLVP has an advantage over a
SP because it can simulate pathological conditions such as
restricted motion of one eye which a person with healthy eyes
cannot exhibits.

The most recent hybrid approach was the physical vir-
tual patient simulator by Daher et al. in 2020 [106]. An
interchangeable translucent plastic shell was used as the
physical structure of the patient body and face. And a virtual
patient was rear-projected onto the shell using 2 AAXA P300
Pico projectors which provide imagery for the patient’s head
and body, respectively. The proposed physical-virtual patient
simulator could display a range of multi sensory cues, in-
cluding visual cues such as capillary refill, facial expressions,
appearance changes as well as auditory and tactile cues.

IV. A BRIEF REVIEW ON FACIAL EXPRESSION
RENDERING SYSTEMS REPORTED OUTSIDE MEDICAL
TRAINING SIMULATOR DOMAIN
Research projects and insights from other fields such as
robotics and computer graphics can also contribute to the
developments of facial expression rendering systems in med-
ical training simulators. This section reviews studies reported
on virtual, physical and hybrid facial expression rendering
approaches in those other research fields and discusses ap-
proaches and features that may be applicable to current and
future developments of medical training simulators.

A. PHYSICAL FACIAL EXPRESSION RENDERING
APPROACHES
Extensive amount of work have been carried out in the
field of robotics to develop robots with human-like faces or
facial expressions. The majority of these work are related
to social robots or human-robot interaction (HRI) domains.
Fig. 6 shows physical robotic systems that can synthesis
facial expressions from abstract, low fidelity to human-like,
high fidelity levels.

The number of facial expressions these robots can simulate
are directly proportional to the degrees of freedom (DOFs)
they have. For example, AILA [108], Pepper Robot [109] and
M3-Neony [110] have low numbers of DOFs and can only
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FIGURE 6. Examples of physical facial expression rendering systems reported in Robotics. (A) AILA [108], (B) Pepper robot [109], (C) M3-Neony [110], (D)
KASPAR [111], (E) Zeno [112], (F) Telenoid R1 [113], (G) HRP-4C [114], (H) RoMAN [115], (I) Flobi [116], (J) Diego-San [117], (K) Philip K Dick Research Robot
[118], (L) HUBO [119], (M) Sophia [120], (N) Geminoid HI-5 [121], (O) Erica [122]

execute basic head and eye movements. Some researchers
explored the possibility of synthesising facial expressions
using cartoon-like robotic faces such as Zeno [112] and
Flobi [116]. Though the appearance of these robots resemble
fictional characters, their facial expressions and emotions
were similar to a human’s. This fictional character design
approach allows features such as modularity to be added. For
instance Flobi’s modular structure allows easy access to the
underlying hardware, and the visual features of the robot such
as hairstyle and facial features can be altered easily.

Robots with high numbers of DOFs such as Sophia [120],
Erica [122], HUBO [119], Geminoid HI-5 [121], PKD [118]
and Diego-San [117] have greater expressiveness and more
human-like appearances. In most designs [114], [117], [119],
[120] servo motors were used as the actuators and in other
robots [122], [121] actuation was realized using pneumatic
actuators. The skins of the majority of the more human-like
robots were made out of elastomer materials such as Frubber
[120] and silicone rubber [121], [122], making their surface
finishes visually similar to human skin.

Mechanical humanoid robots give great sense of realism
but many may fall into the uncanny valley, a sudden decrease
of the sense of affinity prompted by the realisation that the
user is interacting with a robot [123]. The "creepiness" and
uneasy feeling induced by this realisation may have drastic
effect on the perception of facial expressions generated by the
robot. Some robot designs tackle this problem by focusing on
generating human-like facial expressions and emotions rather
than replicating the human-like appearance. For instance the
social robot Kismet [124] has an interactive emotion system
and is capable of displaying multiple facial expression, but
its appearance remains mostly mechanical.

B. VIRTUAL FACIAL EXPRESSION RENDERING
APPROACHES
Advancement in graphical processing and real-time render-
ing enabled researchers to build virtual human avatars with
realistic and detailed facial features. To animate the facial
expression of a virtual human avatar, both the morphologi-
cal and dynamic characteristics of the virtual face must be
considered [125]. Facial expressions generation of virtual
avatars were based on methods either consist of exploiting the
empirical and theoretical research such as FACS or the study
of annotated corpus containing the expressions of emotions
displayed by humans and virtual characters [125]. Many
of the software solutions used FACS based methods and
were made open-source to allow easy access for researchers
and developers. Table 4 lists reported FACS-based software
platforms for generating facial expressions.

TABLE 4. Open Source Applications and Platforms for Virtual Facial
Expression Rendering

Software Platform Number of controllable AUs

openFACS [126] 18
FACe! [127] 66
FACSGen 1.0 and 2.0 [128] [129] 58
HapFACS 1.0 and 3.0 [130] [131] 49
FACSHuman [132] 72

FACSe! [127] was the first 3-D face rendering software
developed to use FACS to define bone system movements. It
was built on the 3DSTUDIO MAX platform and controlled
the bone rig of the face to change the activation intensity
of different AUs to generate different facial expressions.
Inspired by this application, FACSGen [128], [129] and
HapFACS [130], [131] were developed with more functions
including dynamic facial expressions that can be exported
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TABLE 5. Examples of Hybrid Facial Expression Rendering Approaches

System/Study System Snapshot Virtual System Implementation Physical System Implementation

Furhat [133] Custom wide-angle (180 deg) projector (rear
projection).

3 DOF head movements (Pan, tilt and roll).

Socibot [134] Rear-fitted internal projector head with LED
pico projector (rear projection).

3 DOF head movements (Pan, tilt and roll).

Mask-bot [135] LED projector with a fish-eye conversion
lens mounted behind the face mask (rear
projection).

2 DOF head movements (Pan and tilt).

Bermano et al., 2013 [136] 3 Projectors and 5 cameras (front projec-
tion).

Deformable silicone skin attached to an underlying
rigid articulated structure with 13 DOF and is driven
by a set of motors.

as video clip, and bilateral AU activation. Game engines
and computer graphics (CG) improved drastically in recent
years, leading to the development of OpenFACS [126] and
FACSHuman [132], which were built using gaming engines
and CG software. OpenFACS was built with Unreal Engine
[137] and could be used in multiple operating systems. Its hu-
man face rendering is very realistic, and offers the functions
FACSGen and HapFACS have. However, a high performance
computer is needed to meet the graphical processing require-
ment of the application or the frame rate drops significantly
and the software becomes unresponsive. FACSHuman is a
FACS-based plug-in for Makehuman [138], a Python-based
human model generation software emerged from Blender
[139]. It offers all the functions those other applications have
and allows the human face models to be exported in many
3-D object formats.

There are many facial expression databases to help re-
searchers to train, build and validate their models. Some
databases only have static images, such as the Karolinska
Directed Emotional Faces [140], which includes 4900 pic-
tures of human facial expressions; and the Cohn-Kanade
AU-Coded Facial Expression Database [141], which has 500
image sequences with FACS AU annotation and emotion-
specific expressions. Other databases have images and
videos. The MMI Facial Expression Database [142] contains
2900 videos and still images of 75 subjects, with AUs an-
notated on frame-level. The UNBC-McMaster Shoulder Pain
Expression Archive Database [96] has 200 video sequences,
48398 FACS coded frames and associated pain scores with
self-report and observer measures.

C. HYBRID FACIAL EXPRESSION RENDERING
APPROACHES
Lastly, Table 5 lists some of the hybrid facial expression
systems that have both virtual and physical components.

Furhat [133] is a social robot that synthesises facial ex-
pression by having a virtual face projected onto a physical
shell using a custom wide-angle projector. The physical head
with the shell has 3 DOFs: pan, tilt and roll, which are
controlled by servo motors. Using a 3-D animation software,
Furhat is capable of synthesising faces of different ethnicity
and gender. Similar hybrid approach was used in Socibot
[134] and Mask-bot [135] which have 3 and 2 DOFs head
movements in the physical system respectively. In all three
aforementioned works, rear-projection method (a projector
is mounted behind a physical shell) is used with no active
components in the physical shell.

Bermano et al. [136] proposed an augmented physical
avatar using projector-based illumination. This model has
a high number of DOFs, and as mentioned previously the
number of expressions physical systems can produce are
directly proportional but also limited by the DOFs they
have. To make this model synthesise more expressions, the
authors introduced a system that decomposed the motion into
low-frequency motions that were physically reproduced by
the physical robotic head, and high-frequency details that
were added using projected shading. The physical head was
implemented using a layer of silicone skin attached to an
underlying rigid articulated structure with 13 DOFs actuated
by a set of motors. 5 cameras and 3 projectors were mounted
in front of the physical face to reconstruct and project the
virtual face. The authors in this study claimed that result
of their system was a highly expressive physical avatar that
features facial details and motion otherwise unattainable due
to physical constraints.

V. DISCUSSION AND FUTURE DIRECTIONS
Given a haptic task such as physical examination, our pre-
vious work showed that the brain takes two broad classes
of actions – one to condition the body such as searching
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for the best finger stiffness [143], and the other to control
movements and forces [144], [145]. In the case of physical
examination of patients, the process of combining visual
perception with haptic feedback plays a critical role in the
motor control pathways. For instance, subjective interpreta-
tion of facial reactions during physical examination such as
palpation can lead to reduced levels of indentation. This may
require a different finger speed regulation method to gain
haptic information about a physiological condition. Misper-
ception of constraints associated with palpation behavioural
variables can therefore lead to sub-optimal diagnostic meth-
ods. Medical training poses the challenge of finding best
design methods for patient simulators to prompt the learning
of multi-modal sensor integration and sensory-motor coordi-
nation.

The face is one of the most expressive areas of the body
which is capable of producing about twenty thousand dif-
ferent facial expressions [146]. Naturally, this makes facial
expressions of patients one of the powerful non-verbal feed-
back modalities that medical personnel should account for
during medical training and practice. As such, this paper
reviewed the developments and current implementations of
facial expression rendering approaches in medical training
simulators. We reviewed models describing facial expres-
sion generation, explained the advantages and significance in
analysing facial expressions in clinical practice, highlighted
the relationship between pain reaction and facial expressions,
and introduced systems and frameworks for classifying facial
expressions.

A. DESIGN CHALLENGES
We highlighted the debates around the psychological basis
of tracing facial expressions to pain. It became clear that
the context cannot be separated from the facial expression to
interpret them. In medical education, the patients’ medical
history and cultural background are important factors to
interpret, in conjunction with facial expressions to diagnose
a physiological condition. Moreover, other feedback modal-
ities such as vocal and muscle tension also provide useful
clues together with facial expressions. Therefore, potential
simulators should be able to present a fair variety of medical
contexts in order to give a well rounded preliminary training
to trainees for generalizeable skills.

We then reviewed medical training simulators with facial
expression rendering systems and classified them to three
categories: physical, virtual and hybrid. Their application
domains, commercial availability, implementation methods,
and facial expression simulation abilities were evaluated.
Facial expression rendering approaches and systems in other
research fields were also discussed, as some of the proposed
methods and insights can be transferred to develop such
systems for medical training simulators. It became clear
to us that hybrid approaches have the advantage of being
able to achieve a higher level of agency while offering the
flexibility to present a variety of patient contexts. This is very
important because empathetic connection is an important

factor during medical examinations. Ethnic appearance is one
such important contextual factor that can be easily changed in
a hybrid approach. At a higher level of complexity, it would
be interesting to explore how the physical morphology of a
hybrid patient simulator can be controlled to render gender
and ethnicity interactions.

The challenge for designers would be to maximise the ef-
ficacy of such designs using material, actuators, and graphics
rendering tools to manage the level of agency of the medical
training simulator with facial expression rendering without
crossing over to the uncanny valley. Certain medical scenar-
ios especially those involving the examination of the face
itself can pose extra challenges for designers. For example in
a dental or emergency treatment training simulator, the mouth
of the simulated patient plays an important role and the face is
directly involved in the training process. Fig. 7 gives a list of
such considerations for all stake holders: medical educators,
students and simulator developers.

To further improve the realism of the training experience,
the robotic system could utilise multimodal fusion by cap-
turing the state of the examiner, such as facial expressions,
speech, force profiles and body movements. Sentic blending
strategies [147] can be used to integrate quantitative data such
as the force profile with abstract information such as facial
expressions and speech to derive how the examiner feels at
any given time. As mentioned previously, intrinsic factors
affect how the patient reacts to pain, and the cognitive and
affective information received by the patient is affected by the
state of the examiner. Cameras and microphones can be used
in the hybrid systems to capture the examiner’s movements,
facial expressions and speech data, and these information
can be projected into a common AffectiveSpace through a
fuzzy classifier [148]. Future development of hybrid systems
may benefit from sentic blending and multimodal fusion to
improve the realism of the training experience, and to capture
more insightful information of the student’s performance.

B. FUTURE DIRECTIONS
This review highlights the need to have controllable medical
training simulators such as robotic patient simulators that can
present multiple physiological conditions of patients from
different gender and ethnic backgrounds. This will allow
instructors to assist medical students to learn robust tech-
niques and efficient methods to combine visual and haptic
feedback when performing medical procedures on patients
from diverse backgrounds. For instance, in the case of a
physical examination simulator, this requires such robotic
simulators to consist of 1) controllable sensorized internal
organs that can present several classes of symptoms and
measure palpation behaviours, 2) a facial expression render-
ing method to present essential features of visual feedback
relevant to the training context, and 3) methods to quantify
trainee’s examination behaviors to provide focused feedback
for peer assisted learning [149] and to optimize a given set of
training criteria.
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FIGURE 7. Considerations and needs for three stakeholders of medical
training simulators.

VI. CONCLUSION
Being able to present a variety of patient contexts is an
open design challenge for patient simulators. Out of the
currently available methods, physical simulators provide ac-
curate haptic feedback but lacks patient customisation and
detailed facial expression simulation. Virtual systems on the
other hand provide facial expression simulations with fine
detail and realism, and can simulate patients with different
demographic attributes, but they often do not provide haptic
feedback or interface with hardware sensors to take physical
inputs. Hybrid systems integrate features from both physical
and virtual systems and are capable of delivering accurate
haptic and visual feedback. Based on this review we conclude
that there are several opportunities for technology advances
to maximise the efficacy of patient simulators with facial ex-
pressions. New methods can be found to control the physical
morphology of the robot to render gender and ethnic diver-
sity. This can be backed by animated solutions to overlay de-
tailed nuances representing the patients’ medical and cultural
context. This poses an opportunity for AI techniques such
as deep neural networks to parameterize complex linguistic
phenomena such as culture, gender, and ethnic interactions.
In this regard, considerations to determine the responsibility
sharing between the physical and virtual rendering methods
has become a key future challenge.
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