205 research outputs found

    Synthetic biology and microdevices : a powerful combination

    Get PDF
    Recent developments demonstrate that the combination of microbiology with micro-and nanoelectronics is a successful approach to develop new miniaturized sensing devices and other technologies. In the last decade, there has been a shift from the optimization of the abiotic components, for example, the chip, to the improvement of the processing capabilities of cells through genetic engineering. The synthetic biology approach will not only give rise to systems with new functionalities, but will also improve the robustness and speed of their response towards applied signals. To this end, the development of new genetic circuits has to be guided by computational design methods that enable to tune and optimize the circuit response. As the successful design of genetic circuits is highly dependent on the quality and reliability of its composing elements, intense characterization of standard biological parts will be crucial for an efficient rational design process in the development of new genetic circuits. Microengineered devices can thereby offer a new analytical approach for the study of complex biological parts and systems. By summarizing the recent techniques in creating new synthetic circuits and in integrating biology with microdevices, this review aims at emphasizing the power of combining synthetic biology with microfluidics and microelectronics

    Bionanomaterials from plant viruses

    Get PDF
    Plant virus capsids have emerged as useful biotemplates for material synthesis. All plant virus capsids are assembled with high-precision, three-dimensional structures providing nanoscale architectures that are highly monodisperse, can be produced in large quantities and that cannot replicate in mammalian cells (so are safe). Such exceptional characteristics make plant viruses strong candidates for application as biotemplates for novel and new material synthesis

    Controlling the charge transfer flow at the graphene/pyrene-nitrilotriacetic acid interface

    Get PDF
    The fabrication of highly efficient bio-organic nanoelectronic devices is still a challenge due to the difficulty in interfacing the biomolecular component to the organic counterparts. One of the ways to overcome this bottleneck is to add a self-assembled monolayer (SAM) in between the electrode and the biological material. The addition of a pyrene-nitrilotriacetic acid layer to a graphene metal electrode enhances the charge transfer within the device. Our theoretical calculations and electrochemical results show that the formation of a pyrene-nitrilotriacetic acid SAM enforces a direct electron transfer from graphene to the SAM, while the addition of the Ni2+ cation and imidazole reverses the charge transfer direction, allowing an atomic control of the electron flow, which is essential for a true working device. © 2018 The Royal Society of Chemistry

    Design and production of protein nanostructures for biomolecular detection

    Get PDF
    Particulate nanostructures are increasingly used for analytical purposes. Such particles are often generated by chemical synthesis from non-renewable raw materials. Generation of uniform nanoscale particles is challenging and particle surfaces must be modified to make the particles biocompatible and water-soluble. Usually nanoparticles are functionalized with binding molecules (e.g., antibodies or their fragments) and a label substance (if needed). Overall, producing nanoparticles for use in bioaffinity assays is a multistep process requiring several manufacturing and purification steps. This study describes a biological method of generating functionalized protein-based nanoparticles with specific binding activity on the particle surface and label activity inside the particles. Traditional chemical bioconjugation of the particle and specific binding molecules is replaced with genetic fusion of the binding molecule gene and particle backbone gene. The entity of the particle shell and binding moieties are synthesized from generic raw materials by bacteria, and fermentation is combined with a simple purification method based on inclusion bodies. The label activity is introduced during the purification. The process results in particles that are ready-to-use as reagents in bioaffinity. Apoferritin was used as particle body and the system was demonstrated using three different binding moieties: a small protein, a peptide and a single chain Fv antibody fragment that represents a complex protein including disulfide bridge.If needed, Eu3+ was used as label substance. The results showed that production system resulted in pure protein preparations, and the particles were of homogeneous size when visualized with transmission electron microscopy. Passively introduced label was stably associated with the particles, and binding molecules genetically fused to the particle specifically bound target molecules. Functionality of the particles in bioaffinity assays were successfully demonstrated with two types of assays; as labels and in particle-enhanced agglutination assay. This biological production procedure features many advantages that make the process especially suited for applications that have frequent and recurring requirements for homogeneous functional particles. The production process of ready, functional and watersoluble particles follows principles of “green chemistry”, is upscalable, fast and cost-effective.Siirretty Doriast

    Multifunctional virus scaffolds fore energy applications : nanomaterials synthesis and two dimensional assembly

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.Includes bibliographical references.Biological systems inherently posses the ability to synthesize and assemble nanomaterials with remarkable precision, as evident in biomineralization. These unique abilities of nature continue to inspire us to develop new approaches of nanobiotechnology to integrate advanced materials into medicine and electronics. Particularly, peptides are believed to play an important role in biotemplating and biological self-assembly. In order to understand the interface between inorganic materials and peptides and realize biological self-assembly, this work adopted M13 virus as a model system. The genetic engineering of M13 viruses enables us to grow various nanomaterials and achieve virus monolayer assembly on charged polyelectrolyte multilayers. The fundamental understanding and new discoveries obtained by this work can mature into an engineering discipline demonstrating that biological approaches may represent a new paradigm to provide novel technological advantages. The use of a biological template for a nanostructured battery electrode ramps up the device's performance and scales down its overall size. This work presents a new way of exploiting biological entities for the bottom-up assembly of battery devices by utilizing biological self-assembly and biotemplating. Viruses are genetically engineered such that they function as a toolkit for constructing the battery.by Ki Tae Nam.Ph.D

    Nanotechnology applications: the future arrived suddenly

    Get PDF
    There is already a significant time, but it gives the sensation of an extremely short period – nanotechnology has become one of the most promising scientific hopes in innumerable human domains. Now the hope became reality. Countless scientific studies in several areas of knowledge have been made since the nanoscale emergence, carrying their contribution to the nanoscience development. The recent researches in this field allowed the union of interests among several areas, such as physical sciences, molecular engineering, biology, biotechnology, and medicine, contributing to the investigation of biosystems at a nanoscale. This chapter begins by discussing nanotechnology in a general way. Then nanotechnology and its applications in industry, in electronics, and in medicine are presented, and some discussion is proposed in order to define the boundaries for the advances in those areas. In the end, nanotechnology is discussed in terms of ethics and the borders that nanotechnology applications must satisfy, and concluding notes are presented, highlighting the results of the analysis. Important considerations are made about the close connection between ethics and the nanotechnology and the effects over the society and values. Some future directions for the research are suggested.info:eu-repo/semantics/acceptedVersio

    Nanotechnology: The Emerging Science in Dentistry

    Get PDF
    Predicting the future of any major technology is difficult. Nanotechnology or nanoscience refers to the research and development of an applied science at the atomic or molecularlevel (i.e. molecular engineering, manufacturing). Although the nanoscale is small in size, its potential is vast. Almost every area of human activity will be affected by futurenanotechnologies. Nanotechnology is also applied to various medical fields like pharmacological research, clinical diagnosis, supplementing immune system, cryogenic storage of biological tissues. The growing interest in the dental applications of nanotechnology is leading to the emergence of a new field called nanodentistry
    corecore