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Abstract 

 
The implementation of electronic devices and increasing their efficiency has been central 

to science and technology in many ways in the second half of the last century. Molecular 

nanoelectronics have started to gain a growing attention over the last decade. A 

Nanoelectronic concept based on protein-nanoparticle hybrids is implemented throughout 

this work. Here we developed a building block for Lego like fabrication of nanoelectronic 

devices, where gold Nanoparticles (GNP) are embedded in the central cavity of a ring 

shaped like protein that is named stable protein 1 (SP1). The gold-Nanoparticles are with 

diameter of 1.8 nm, and they are the active components of the nanoelectronic device. SP1 

is a ring shaped like protein with outer diameter 10nm, inner diameter 4 nm, and height 

2.5 nm. This protein is a stable, resistant to high temperatures, stress-responsive and 

homo-oligomeric protein isolated from popular trees, genetically engineered to have 

suitable dimensions and characteristics that enable fixing gold nanoparticles into its 

central cavity. Single SP1-GNP unit is built and characterized, in addition ssDNA 

molecules with suitable sequences and lengths are assembled with SP1-GNP complex. 

As a results, long one dimensional nanowires, and a two dimensional arrays that can 

serve as memory device are produced. 

 

A conductive Atomic Force Microscope (AFM) tip is used to investigate, characterize 

and electrically polarize the SP1 molecules and SP1-GNP nanostructures in several 

modes. Tapping mode atomic force microscopy was used for morphological 

characterization of the protein and protein gold nanoparticle hybrids, the cross sectional 

height profiles showed that the height of bare SP1 deposited on solid substrate is 2.5 nm; 

while the height of the SP1-gold nanoparticle is 3.2 nm. Polarizability of the SP1-GNP 

block was studied using Electrostatic Force Microscopy in which both positive and 

negative voltages are applied on the tip of AFM and measure the response of SP1-GNP 

unit toward this voltage; the results showed that the bare SP1 is silent while the SP1 gold 

hybrid is polarizabe.  
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 الملخص

 

من الاهتمامات  أصبحتصنيع القطع الالكترونية ذات الخصائص المطورة و الفاعلية العالية والتكلفة القليلة  إن

في الالكترونيات المتناهية  أنالعلمية والتكنولوجية خلال النصف الثاني من القرن الماضي، آما  للأبحاثالرئيسية 

، لما لها من خصائص الأخيرالصغر المصنعة من الجزيئات الحيوية جلبت المزيد من الاهتمام والترآيز خلال العقد 

جديد للالكترونيات يقوم  أقطع ذات فاعلية عالية وتكلفة قليلة، في هذا البحث قمنا بدراسة مبد إنتاجتمكن الباحثين من 

ين نوع من البروتينات النباتية وجزيئات الذهب، لقد حاولنا في هذا البحث قطع الكترونية من خلال الدمج ب إنتاجعلى 

 أنواعفي مرآز احد ) نانومتر 1.8ذات القطر (للقطع الالكترونية من خلال زرع جزيئات الذهب  أساسيةوحدة  إنتاج

 2.5متر و الارتفاع نانو 4نانومتر، القطر الداخلي  10القطر الخارجي (التي تشبه الحلقة  النباتيةالبروتينات 

النباتات الصحراوية بتكلفة قليلة ويمتاز  أنواعيتم استخراجه من احد   )SP1(البروتين   أنمستفيدين من ) نانومتر

بالثبات مع الوقت و تحمل التغيرات الحرارية والضغط العالي، بحيث تم تعديل جزيئات البروتين جينيا لتصبح ذات 

وحدات من  إنتاجمن خلال هذا البحث تم . آريات الذهب داخل جزيئات البروتين و خصائص تساعد في تثبيت أبعاد

 ذات الترتيب والطول ) DNA(الريبوزي المصنعة  الحمضجزيئات  إضافةوجزيئات الذهب، وبعد ) SP1(بروتين 

روتين صغيرة جدا من وحدات الب أسلاك إنتاجوجزيئات الذهب تم ) SP1(محلول وحدات البروتين  إلىالمناسب 

)SP1 ( مصفوفة من وحدات  إنتاجالنووي الرايبوزي، آما تم  الحمضوجزيئات الذهب مرتبطة معا بواسطة

  .وجزيئات الذهب) SP1(البروتين 

  

اع     ) SP1(تم استخدام مجهر القوى الذرية في فحص و تشخيص وحدات البروتين  ذهب من حيث الارتف وجزيئات ال

ين  والخصائص الكهربائية، من خلال النت  اع   أنائج تب روتين   جزيء ارتف اع     2.5هو  ) SP1(الب ا ارتف انومتر، بينم ن

 التأثيرالخصائص الكهربائية فقد تم دراستها من خلال  أما. نانومتر 3.2وجزيئات الذهب هو ) SP1(وحدة البروتين 

روتين  ) SP1(على جزيئات البروتين  ائي موج      ) SP1(و وحدات الب د آهرب رق جه ذهب  بف ات ال ب وسالب  وجزيئ

ة    تأثيروتسجيل  ى قابلي أين فرق الجهد عل ين          الت ائج تب ة، من خلال دراسة النت ات المختلف ات   أنوالشحن للجزيئ جزيئ

  .للتأينوجزيئات الذهب قابلة ) SP1(، بينما وحدات البروتين للتأينغير قابلة ) SP1(البروتين 
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Chapter ONE 

Introduction and Motivation  

 
Need is the mother of invention. The need of new electronic devices with improved 

characteristics leads the scientists and researchers, in the field of electronic devices 

fabrication, to enter a race interests in fabricating new devices. These new devices must 

have characteristics that overlap the limitations and disadvantages of the existed devices 

fabricated with the common methods. Those researchers try to develop techniques that 

create new devices with smaller size, cost-effective, less energy consumption and efficiently 

operated.  

 

As semiconductors components become very small, their dimensions goes from one metric 

scale “micro” to a smaller one “nano”. A new term is created and spread between the 

semiconductor manufacturer and researcher, which is nano-technology. The first time the 

term “nanotechnology” was used, was in 1976 by Norio Taniguchi, a Tokyo Science 

University professor, and made popular by K. Eric Drexler in his book "Engines of 

Creation", where his seminal work on the topic published in 1986 (NOVA Workforce Board 

2003). The prefix nano representing 10-9 (0.000000001), and the term nanotechnology -

according to NASA Ames Research Center- is defined as the creation of functional 

materials, devices and systems through control of matter in the range of one-tenth to one-

hundred nanometer (0.1-100 nm) and the exploitation of novel phenomena and properties in 

this scale (NOVA Workforce Board 2003). This technology enables a scientific and 

technical revolution based upon the ability to systematically organize and manipulate matter 

at the atomic scale.  

 

It’s believed that the nanotechnology is the next great technology wave, the nexus of 

scientific innovation and industrial revolutions indirectly affect the fabric of society. This is 

because there are various unique properties of matter that are expressed in the nanoscale and 

are quite foreign to our bulk statistical senses (Jurveston 2004). 
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Nanotechnology has the potential to transform materials and manufacturing, and research is 

driven by the need to improve functionality of materials, and it has the potential to have big 

impact. Potential applications include the expansion of increasingly greater amount of data 

storage on an increasingly smaller scale, and the synthesis of all components related to 

computer technology, including wiring and connection (The White House-Office of the 

Press Secretary 2000). 

 

One of the most powerful methods in nanoelectronic devices fabrication technology is e-

beam lithography; which is the practice of using a beam of electrons to generate patterns on 

a surface in the 100 nm size range (Brain 2001). This form of lithography has found wide 

usage in research, but has not yet become a standard technique in industry, this is due to 

many reasons; the most important one is the huge cost of starting up such technique, other 

reason is the physical limitation of the raw materials used in this technique which is silicon 

(ITRS 2001), it is hard to imagine and achieve smaller devices with atomic resolution using 

this technique (Jurveston 2004). 

 

An alternative solution that overlapping the drawbacks of the current technology is biology 

based nanoelectronics, i.e Molecular electronics, because of its three important features 

(Fabio 2004); recognition, structuring and conductivity; this means that biology molecules 

have the ability to bind to one another, recognize each other or external electrode, assemble 

into larger structures, transport efficiently carriers from one point to another. In addition, 

individual molecules are hundreds of times smaller than the smallest features conceivably 

attainable by current semiconductor technology; because it is the area taken up by each 

electronic element that matters, electronic devices constructed from molecules will be 

hundreds of times smaller than their semiconductor-based counterparts.  Moreover, 

individual molecules such as Deoxyribonucleic acid (DNA) and proteins are easily made 

exactly the same by the billions and trillions, which is related to structuring feature of 

biological molecules.  The dramatic reduction in size and the sheer enormity of numbers in 

manufacture are the principle benefits offered by the field of molecular electronics. 
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Self-assembly and applications of DNA in nanoelectronics is investigated through out many 

experiments. Polyakov and his partners report that DNA has the ability to self-assembly on 

the mica surfaces and the Au(111), they use the Atomic Force Microscope in their study 

(Polyakov 2003).  

 

Natural functional characteristics of proteins that result a natural electron transfer activity in 

addition to the self-assembling nanostructures and the strong bonds between the protein 

fibrils (Erika 2003); makes proteins to be believed as a novel and a valuable building blocks 

for nanotechnology applications. Nature has selected, evolved and produced proteins that 

can interact and self-organize to create sophisticated nano-machines and nanostructures 

(Sarikaya 2003). Due to these important features proteins are used in the realization of 

molecular switches and in the implementation of a prototype of protein transistor operating 

in air and in the solid state (Ross 2003). 

 

Tunneling properties of a number of metalloproteins including blue copper protein azurin, 

where the copper atom is situated approximately 7Å from the protein surface, 

asymmetrically embedded in a hydrophobic core (Lontie 1984). Then the ability of binding 

azurin molecule to gold substrate by using the tip of atomic force microscope is studied 

(Davis et al, 2004). In addition, effect on mica after incubation in azurin solution is 

illustrated, and the self-assembly of azurin on mica is clearly visible (Andrea 2003). 

 

Erika and partners produced conducting wires from engineered fibrils bond tightly with gold 

nanoparticles (Erika 2003), these wires can be used in small-scale circuitry, biosensors in 

addition to other applications.  

 

Nanoscale ordered arrays of metal and semiconductor quantum dots are fabricated by 

binding preformed nanoparticles onto crystalline protein templates made from genetically 

engineered hollow double-ring structures called chaperonins, which are subcellular 

structures composed of 14, 16, or 18 subunits called heat shock proteins (HSP60). (Andrew 

2002). 
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In this work, nanoelectronic concepts based on protein-nanoparticle hybrids was 

implemented. SP1 (Stable Protein 1) was used. This protein is a stable one that is isolated 

from popular trees, forming a ring shaped with outer diameter of 10 nm and inner diameter 

of 4 nm (Wang 2003) to make a building block, or in other words, a unit cell consists of 

gold nanoparticles that serves as quantum dot, embedded in the central cavity of an SP1 

protein. The gold nanoparticle-SP1 complex is assembled in nanowires where thiolated 

DNA molecules with different lengths and sequences are assembled with SP1-GNP 

complexes, or monolayer arrays attached to a suitable substrate. A conductive AFM tip is 

used to investigate, characterize and electrically polarize the SP1- gold nanostructures.  

 

My work in this research passes the following main phases, i. Characterization of bare SP1 

protein and the SP1-gold nanoparticle complexes using tapping mode atomic force 

microscopy (AFM) ii.  Electrical Characterization and polarization of the SP1-gold 

nanoparticles complexes using AFM. 

 

This thesis includes five chapters; Chapter one is general introduction and Motivation. 

Chapter two includes methods and materials used through out this work, The SP1 protein, 

gold nanoparticles (GNP) and substrate materials. Also an introduction to the atomic force 

microscopy; the main instrument and technique used in this study available in our 

laboratory; and its different modes of operation are outlined. How to build an electronic 

device such as a nanowire or memory devices from SP1-gold nanoparticle complex is 

explained in chapter three.  

 

Measurements collected throughout the research phases are reported and discussed with 

details in chapter four. Finally, conclusions, suggested future work are registered in chapter 

five.  

 

  



 
 
 
 
 
 
 
 
 

Chapter TWO 
 

Methods and Materials  
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Chapter TWO 

Methods and Materials  

 
2.1 Atomic Force Microscopy 

 

In 1980/81 G. Binnig, H. Rohrer, and coworkers from  IBM Zürich Research Laboratories 

invented a new type of microscope (Binnig 1982) which they called the Scanning 

Tunneling Microscope (STM) (Binng 1985). 

 

When looking back it is evident that the outstanding success of STM is not only due to the 

ultrahigh resolution which can be achieved by this technique. Equally important, if not 

more, is that STM stimulated the development of a whole family of Scanning Probe 

Methods (SPM) which is all based on instrumental principles very similar to that of the 

STM (Hartmann 1997). These scanning probe methods must achieve two essential 

aspects: scanning and operating the scanned probe in near-field (Hartmann 1997). Binnig 

and his partners continue their work to develop new instrument which they named Atomic 

force microscope (AFM) which enables us to have a look on surfaces on a molecular 

level; AFM became later the most popular scanning probe technique because it overcomes 

the limitation of STM in imaging thin samples on electrically conductive materials. In 

addition to the high resolution, atomic force microscope offers the possibility to 

characterize mechanical properties, such as hardness, and surface forces, such as adhesion 

force of the samples in the nanometer scale. 

 

2.1.1 Principle 

 

Like all other scanning probe microscopes, AFM utilizes a sharp probe moving over the 

surface of a sample in a raster scan. The probe is a tip at the end of a cantilever which 

bends in response to the force between the tip and the sample. Figure 2.1 shows the basic 

principle of AFM which is visualized as a cantilever with a spring constant weaker than 

the equivalent spring constant between atoms (Binng 1986).  
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Figure 2.1: Schematic illustration of the meaning of "spring constant" as applied to 
cantilevers. Visualizing the cantilever as a coil spring, its spring constant k directly 
affects the downward force exerted on the sample. 

 

Together with a mass m of the atoms in the order of 10-25 kg, an interatomic spring 

constants k of about 10 N/m is received. By sensing Ångstrom-size displacements of such 

a soft cantilever spring, one can image atomic-scale topography. Furthermore, the applied 

force will not be large enough to push the atoms out of their atomic sites. 
 

 
 
Figure 2.2: Schematic of an Atomic Force Microscope 

  (www.keele.ac.uk/depts/ch/groups/csg/pat/pathome.htm) 
  

 

The tip (that part which directly interacts with the sample) is mounted on the cantilever as 

shown in Figure 2.2 which is a schematic of AFM. Forces between tip and sample deflect 

the cantilever. The cantilever's deflection is detected and converted into an electronic 

signal that is utilized to reconstruct an image of the surface. One of the most utilized 
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methods to detect the cantilever deflections is the optical method: It consists in focusing a 

laser beam on the back of the cantilever and measuring the displacements of the reflected 

beam on a multiple segment photodiode. The corresponding signals are acquired and 

processed by feedback electronics. The feedback system is used to control the cantilever 

deflection and to direct consequently the piezoelectric scanner movements. Usually, the 

sample is mounted onto a piezoelectric translator that moves the sample in the x, y and z 

directions underneath the tip. When the tip translates laterally (horizontally) relative to the 

sample surface, one measures the sample topography. 

 

The cantilever deflection is measured by detecting the related displacement of a laser 

beam reflected off the back of the cantilever. Spatial variations of the reflected laser beam 

are detected by a position-sensitive photo-detector as the one appears in Figure 2.3, 

segmented into four quadrants. When the light beam moves between the upper and lower 

pairs of segments the deflection of the cantilever can be deduced from a proper treatment 

of all individual photocurrents. 

 

 
 

Figure 2.3: Beam-deflection set-up for the simultaneous detection of lateral and vertical 
force components. 
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2.1.2 Probe Sample Interactions 

 

The forces that contribute to the force exerted on the tip can be divided in three groups: (i) 

surface forces, (ii) forces due to the sample deformation and (iii) the elastic force of the 

cantilever. All three forces can be of either sign. Figure 2.4 shows a scheme of the three 

types of the forces that affect the tip-sample explaining the direction of the effect for each.  

 

 
 

Figure 2.4: Scheme of an AFM probe: a sharp tip mounted on a cantilever. 
 

(i) Surface forces (Fs). An elementary constituent of the interaction between a flat, rigid 

substrate and a sharp, rigid tip in vacuum is the pair potential between atoms at the tip and 

the sample. The origin of the intermolecular forces is essentially electromagnetic. At large 

distances (~1-30 nm) the forces are attractive and are described by a van der Waals pair 

potential. 

 

(ii) Forces due to the deformation of samples (Fd). So far the tip of the AFM and the 

sample has been assumed to be rigid. While this is often a good approximation for the tip, 

samples are often significantly deformed elastically by the tip. The simplest approach to 

describe elastic deformation of the sample is the Hertz theory (Israelachvili 1992) 

 

(iii)Elastic force of the cantilever (Fc). The interaction forces between sample and tip are 

balanced by the elastic force due to the cantilever bending. Summarizing, the deflection of 

the cantilever results from a combination of deformation and surface force.  
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The above mentioned forces are for any given experiment since it represents the general 

behavior of two solids brought into sufficiently close proximity. However, a couple of 

additional interactions can result if suitable environmental conditions are chosen or if 

external manipulations are undertaken in a suitable way. If an electrical potential is 

applied between probe and sample, Coulomb interactions provide an additional long-range 

attractive contribution. Charges of equal sign on probe and sample would in contrast lead 

to repulsive forces. If probe and sample consist of ferromagnetic materials the resulting 

long-range magnetostatic interactions can either be repulsive or attractive. Figure 2.5 

summarize the tip-sample forces versus the distance in between. 

 

 
 

Figure 2.5: Typical illustration of forces involved in AFM (www.pacificnano.com/afm-
modes_single.html) 

 

2.1.3 AFM probes (Force Sensors) 

 

In order to detect local forces or closely related physical quantities the sharp probe 

scanning the sample surface at some distance has to be linked to some sort of force sensor. 

A convenient way to precisely measure forces is to convert them into deflections of a 

spring according to Hooke's law.  
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In SFM the force-sensing spring consists of a miniaturized cantilever beam clamped at 

one end and equipped with the probing tip at the other end. While at the beginning tiny 

pieces of thin metal foils were equipped with glued diamond tips (Binnig 1986), 

electrochemically etched metal wires were subsequently found to be easier to handle 

(Lemke et al, 1990). The increasing demand for cantilevers with integrated sharp tips, 

tailored reproducibly, and for the availability of a large number of them soon led to the 

development of microfabrication techniques based on the machining of Si-related 

materials (Albrecht 990). Today a variety of cantilevers with different geometries (mainly 

bar- and V-shaped) and with pyramidal as well as conical tips is commercially available. 

 

 
 

Figure 2.6: SEM images of different tips, (a) Wire cantilever, fabricated by 
electrochemical etching and bending, (b) Microfabricated Si cantilever with integrated 
tip (Albrecht 1990), (c) Electron-beam deposited "supertip" on top of an ordinary Si 
probe, (d) normal tip (3 µm tall) (Keller 1992), (e) supertip, (f) Ultralever (also 3 µm 
tall)( http://www.nanotech-now.com/NanoWorld-release-08262004.htm).  

 

For Morphology characterization of the sample, high resolution non-conductive silicon 

tips from NT-MDT Company (www.ntmdt.ru) was used. These tips are with force 

constant 5.5-22.5 N/m and resonant frequency 190-350 KHz. Figure 2.7 shows this type 

of tips. 
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Figure 2.7: (a)SEM image of NSG10 cantilever holding a tip connected to the holder 
chip, (b) SEM image of NSG10 tip with height (10 -15 µm), cone angle ≤220 and 
curvature radius of 10 nm,(c) schematic of NSG10 chip and cantilever, (d) NSG10 tip 
schematic. (http://www.ntmdt-tips.com/catalog/golden/non/products/NSG10_50.html)  

 

2.1.4 Imaging Modes 

 

The image contrast can be achieved in many ways. The three main operating modes are 

distinguished on the interaction that they experience. Refer to Figure 2.5, which shows the 

different modes’ operation areas in accordance of the tip-sample force curve. The main 

three imaging modes are contact mode, non-contact mode and tapping mode. 

 

a) Contact Mode (CM):  the contact mode where the tip scans the sample in close contact 

with the surface is the common mode used in the force microscope. The force on the tip is 

repulsive with a mean value of 10-9 N. This force is set by pushing the cantilever against 

the sample surface with a piezoelectric positioning element. While the tip scans the 

surface, the cantilever deflection changes due to the surface profile and a feedback loop 

maintains a constant cantilever deflection by changing piezo-voltages. The image is 

obtained displaying the piezo-voltages. Problems with contact mode are caused by 

excessive tracking forces applied by the probe to the sample. The effects can be reduced 

by minimizing tracking force of the probe on the sample, but there are practical limits to 

the magnitude of the force that can be controlled by the user during operation in ambient 

environments. 

 

b) Non Contact Mode (NCM): in this mode the tip hovers 50 - 150 Angstrom above the 

sample surface without touching it. Attractive Van der Waals forces acting between the tip 
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and the sample are detected, and topographic images are constructed by scanning the tip 

above the surface. The image is obtained keeping the amplitude of the detected force since 

the tip-sample height is changed in accordance of the feedback signal constant. 

Unfortunately the attractive forces from the sample are substantially weaker than the 

forces used by contact mode. Therefore the tip must be given a small oscillation so that 

AC detection methods can be used to detect the small forces between the tip and the 

sample by measuring the change in amplitude, phase, or frequency of the oscillating 

cantilever in response to force gradients from the sample.  

 

The advantage of this mode is that it causes less damage to soft samples. While the 

disadvantages includes lower scan speed than contact mode and lower lateral resolution. 

 

c) Tapping mode: which is a key advance in AFM that overcomes the limitations of the 

previous two modes, this technique allows high resolution topographic imaging of sample 

surfaces that are easily damaged, loosely hold to their substrate, or difficult to image by 

other AFM techniques. Tapping mode overcomes problems associated with friction, 

adhesion, electrostatic forces, and other difficulties that an plague conventional AFM 

scanning methods by alternately placing the tip in contact with the surface to provide high 

resolution and then lifting the tip off the surface to avoid dragging the tip across the 

surface. Tapping mode imaging is implemented in ambient air by oscillating the cantilever 

assembly at or near the cantilever's resonant frequency using a piezoelectric crystal. The 

piezo motion causes the cantilever to oscillate with a high amplitude (typically greater 

than 20nm) when the tip is not in contact with the surface. The oscillating tip is then 

moved toward the surface until it begins to lightly touch, or tap the surface. During 

scanning, the vertically oscillating tip alternately contacts the surface and lifts off, 

generally at a frequency of 50,000 to 500,000 cycles per second. As the oscillating 

cantilever begins to intermittently contact the surface, the cantilever oscillation is 

necessarily reduced due to energy loss caused by the tip contacting the surface. The 

reduction in oscillation amplitude is used to identify and measure surface features. 
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When the tip passes over a bump in the surface, the cantilever has less room to oscillate 

and the amplitude of oscillation decreases. Conversely, when the tip passes over a 

depression, the cantilever has more room to oscillate and the amplitude increases. 

 

Tapping Mode inherently prevents the tip from sticking to the surface and causing damage 

during scanning. Unlike contact and non-contact modes, when the tip contacts the surface, 

it has sufficient oscillation amplitude to overcome the tip-sample adhesion forces. Also, 

the surface material is not pulled sideways by shear forces since the applied force is 

always vertical. Another advantage of the Tapping Mode technique is its large, linear 

operating range, i.e large scanning area. This makes the vertical feedback system highly 

stable, allowing routine reproducible sample measurements. 

 

2.1.5 Image Interpretation 

 

One of the most important factors influencing the resolution which may be achieved with 

AFM is the sharpness of the scanning tip, as well the deformability of the object, and the 

smoothness of the substrate (Ding 2006). The best tips may have a radius of curvature of 

only around 5nm. The need for sharp tips is normally explained in terms of tip 

convolution; Which can be defined as in the case, when the radius of curvature of the tip 

is comparable with, or greater than, the size of the feature trying to be imaged. Figure 2.8 

illustrates this problem; as the tip scans over the specimen, the sides of the tip make 

contact before the apex, and the microscope begins to respond to the feature. 

 

 
 
Figure 2.8: Tip convolution effect on the imaged objects, (a) small objects imaged with a 
size relative to the tip, (b) topographic image (orange line) contains the shapes of both 
the tip and the surface and (c) topographic image shows exactly the shape of the tip by 
imaging a relatively small object( Ding, 2006). 
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2.2 Electrostatic Force Microscopy via AFM 

 

2.2.1 Principle 

 

The Electrostatic Force Microscope is a modified AFM where the conductive cantilever is 

connected to an independently controlled bias. The bias is used to create an electrostatic 

field between the tip and the substrate. It is intuitively obvious that the size and form of 

the tip is expected to be a crucial factor limiting the detection and observation of images. 

In contrast to traditional atomic force microscopy (AFM) which relies on the van der 

Waals forces, EFM measures the long range Coulomb interaction between a conducting 

tip and the sample surface, in addition EFM can be used to distinguish conductive and 

insulating regions in a sample (Jespersen 2005). 

 

The EFM operation of a scanning probe microscope (Figure 2.9) is a dual scan technique 

where the topography of each scan line is first obtained by standard tapping mode AFM. 

In the second scan the topographic data is used to retrace the first line with a constant tip-

sample separation h. In the second scan the cantilever is oscillated at its free resonant 

frequency and the EFM signal is the phase difference between the driving force and the 

actual oscillation of the tip (Staii 2001). 

 

 
 

Figure 2.9: EFM schematic setup  

 



 17

In a case when a conductive AFM probe is electrically connected to a conductive 

substrate, creating a capacitor. Spatial variations in the surface charge and dielectric 

properties create a contrast in the electrostatic forces experienced by the probe. The forces 

can be separated into two parts: Columbic forces due to static charges and multipoles  

( coulF ) and capacitive forces due to surface potential and dielectric screening ( capF ), where   

EFM force ( EFMF ) can be written as the algebraic summation of coulF  and capF  as follows 

(Cherniavskaya 2003): 

 

coulcapEFM FFF +=  

tipzEFM QEV
dz
dCF += 2

2
1  

 

where Ez is the z-component of the electric field that is due only to the charges and/or 

multipoles on the surface, where V is the voltage applied between the surface and the 

probe and dC/dz is the derivative of the empty probe-substrate capacitance with respect to 

z, the separation of the probe apex from the conductive plane of the substrate, where local 

dielectric properties, which affect dC/dz, are determined by fitting the measured 

component of the force gradient at ω2  (Nirmal 1999). Qtip is the sum of the charge on the 

capacitor CVtot plus the image charges Qim induced by the static charge distribution on the 

surface, where Qtip is determined from the measured force gradient on the tip at ω  

(Krauss and Brus 1999). If the total voltage drop between the probe and the surface is 

)sin( tVVV acdctot ωϕ ++= . Then one can find that EFM force can be divided into three 

types of force terms, which are a static term, a term whose amplitude oscillates at the 

frequency of the applied voltageω , and a term whose amplitude oscillates at twice that 

frequency, ω2  (Cherniavskaya 2003). We can write the amplitudes of the force 

components at ω  and ω2  as 
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Using suitable electronics setup, )(wF  and )2( ωF  can be measured and recorded, these 

two recorded signals corresponding to the phase and dielectric images, respectively. These 

two types of images are the EFM images that show the electrical behavior sample surface. 

 

2.2.2  Interpretation of the EFM image 

 

The EFM signal is a measure of the force between the tip and the sample surface in the 

electrostatic range, this force can be repulsion or attraction according the sample and tip 

charges. In the case of the polarized surfaces the tip-sample force is always attraction, 

since the voltage on the tip trigger the opposite charge in the sample to be near to the 

surface. In the case of the charged objects, tip-sample force has two possibilities, if the 

sample has the same polarity as the tip then the force is repulsion, and if tip has different 

polarity the force is attraction. 

 

 

Figure 2.10:  Schematic of the EFM “plane mode” operation. A conductive tip is 

connected to a conductive surface thus creating a capacitor like setup. The sample is 

placed between the tip and the conductive surface on a non-conductive material (e.g., 
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mica).Following a topography imaging the tip is raised above the vander Waals range 

where electrostatic forces are dominant. The AFM feed-back is disconnected and a 

phase image is acquired. The image shows the phase shift between the inducing and the 

actual cantilever oscillation frequencies. An attraction between the tip and the sample is 

accompanied by a decrease in the resonance frequency (black dot in the phase image) 

and repulsion leads to positive phase shift (white dot in the phase image). In the case of 

polarization the phase shift is negative for both positive (a) and negative (c) voltages on 

tip, whereas for charging phase shift is positive (white) for similar charges (d) and 

negative for opposite charges (f) on tip and measured object. There is no observed 

signal for zero voltage on tip (b,e). 

 

2.2.3 EFM Modes 

 

a) Plane Mode: Plane Scan is a useful way to measure long range forces which are the 

electrostatic forces. Long-range forces are detected at much longer distances than Van der 

Waals forces. This last interaction is the one felt by the tip to do the feedback cycle. If one 

wants to go far enough to measure the long-range forces, then one cannot use the usual 

feedback system to control the scan. Plane Scan measures the actual plane of the 

topography and records it, and uses it to make the tip go over the sample at a distance high 

enough to measure the long-range forces. 

 

b) 3D Mode: 3D mode is a new way of acquiring data. We usually measure a determined 

property of the sample over a given area of it. In this case, the horizontal direction would 

be what we call the fast channel, the vertical direction would be the slow channel and the 

property measured would be the one represented as an image. Using 3D modes we can 

select some completely different fast and slow channels, such as voltage, frequency or z 

position. 

 

When performing a usual scan, you can change to 3D modes. Let´s say that one chooses 

the Bias/X-Y option for the fast and slow channels, respectively. Then the scan will be 

performed only above one line (which will be the one above which the tip was moving 
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when the 3Dmodes was connected). Each time the tip moves forward one point, the bias 

voltage is varied a quantity that depends on the parameters set by the user. The magnitude 

we have selected will be measured under these conditions of position and voltage. 
 

High resolution silicon tips with Pt conductive coating brought from NT-MDT Company 

(www.ntmdt.ru) that were used for EFM imaging, the used cantilevers are with force 

constant 1.1 N/m and resonant frequency 90KHz. 

 

 
 

Figure 2.11: (a) SEM image of NSG03/Pt tip with height (10 -15 µm), cone angle ≤220 
and curvature radius of 35 nm,(c) schematic of NSG10 chip and cantilever, (d) NSG10 
tip schematic. (http://www.ntmdt-tips.com/catalog/golden/cond/non/pt/products/NSG03_Pt_15.html) 
 

2.3 Force Distance Curves (FZ) via AFM 

 
FZ technique is used to measure the tip-sample distance and analyze the long range 

attractive or repulsive forces between the probe tip and the sample surface, surface 

contaminants' viscosity, lubrication thickness, elucidating local chemical and mechanical 

properties like adhesion and elasticity, and even bond rupture lengths. 

 

Force vs. distance (FZ curves) is a record of the vertical force felt by the cantilever as the 

probe tip is brought close to - and even indented into - a sample surface and then pulled 

away, or in other words it is a plot of the deflection of the free end of the cantilever versus 

the vertical extension of the piezoelectric scanner towards and then away from the sample 

surface, the deflection is measured using a position-sensitive photodetector. This is 

achieved by applying a triangle-wave voltage pattern to the electrodes for the z-axis 
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scanner, which causes the scanner to expand and then contract in the vertical direction, 

generating relative motion between the cantilever and sample. The deflection of the free 

end of the cantilever is measured and plotted at many points as the z-axis scanner extends 

the cantilever towards the surface and then retracts it again.  

 

Resulting distances from FZ-curves may change from one case to another, but in all cases 

they should be in the van der Waals force range which is a range of few nanometers to 

tens of nanometers. The changes in the tip-sample distances are due to changes in the 

force constant of the tip, free amplitude applied on tip and set point value, which is the 

constant force felt by the tip and accordingly tip height is changed to keep it fixed.  

 

 
 
Figure 2.12: F-Z Technique setup (a) tip is approached gradually to the sample 
surface while it feels long range force before making contact with the surface, (b) as 
the probe tip is brought very close to the surface, it may jump into contact if it feels 
sufficient attractive force from the sample, (c) once the tip is in contact with the 
surface, cantilever deflection will increase as the fixed end of the cantilever 
connected to the scanner is brought closer to the sample. If the cantilever is 
sufficiently stiff, the probe tip may indent into the surface at this point, (d) after 
loading the cantilever to a desired force value, the process is reversed. As the 
cantilever is withdrawn, adhesion or bonds formed during contact with the surface 
may cause the cantilever to adhere to the sample some distance past the initial 
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contact point on the approach curve (e) after the tip become free of the adhesion or 
bonds formed during contact with the surface, it completes withdrawing until return 
to its normal position. For all schematics, the blue and red curves are the FZ curves 
acquired. 
  

2.4 Materials 

 

SP1 (Stable Protein 1) 

 

 SP1, a stress-responsive, homo-oligomeric protein is isolated from aspen plants (Wang, 

2002). It represents a novel family of molecular chaperones, forming an extremely stable 

oligomer that is resistant to high temperatures, high levels of ionic detergent and various 

proteases (Wang 2002 and Levy 2002). SP1 is a 12.4 kDa protein with no cystein or 

glycosilation site. Analytical ultra-centrifugation, chemical cross-linking and matrix-

assisted laser-desorption time-of-flight mass spectrometry revealed that SP1 is a 

dodecamer, while electron microscopy and X-ray crystallography studies revealed that 

SP1 is an 10 nm in diameter ring-like protein with a 4 nm central cavity.  

 

The SP1 molecule consists of 12 identical protein subunits (12.4 kDa each), which 

spontaneously assemble into a uniform ring-like shape (10 nm diameter and 2.5 nm width) 

with a central cavity (4 nm diameter) as shown in figure 2.13 (Wang 2003), which can be 

modified and adjusted by using genetic engineering to mutate the N-termini that exposed 

to the central cavity.  
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Figure 2.13: (a) 3-D structure of an SP1 dodecamer elucidation from X-ray 
crystallography "Utrecht University-Utrecht, the Netherlands" (b) Electron 
microscopy of SP1 stained with uranyl-acetate. Average of 313 top-view aligned 
particles (scale bar 10 nm). (c) SP1-protein array prepared by the 
water/phospholipid coating method and observed with TEM. "Electron Microscopy 
Unit, Weizman Institute of Science, Rehovot-Israel" 

 

The N-termini of SP1 are pointing from the central cavity to the opposite planes of the 

ring, in a way that 6 N-termini point to one side and the other 6 N-termini point to the 

opposite side as presented in figure 2.14. Therefore, cystein groups at the N-termini of 

SP1 dodecamer will enable the binding of the SP1 ring in a flat orientation to the gold 

surface underneath and to the gold nanoparticle at the center on top of the SP1 ring.  

 

 

Figure 2.14: Crystal structure of an SP1 dodecamer showing the N-termini of SP1 
pointing from the central cavity to the opposite planes of the ring, in a way that 6 N-
termini point to one side (perpendicular into the screen) and 6 N-termini point to the 
opposite side.(perpendicular out of the screen) (Wang 2003). 
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SP1 protein that is used in the experiment is an initial protein specimen was dissolved in a 

proper deionized water to obtain a solution with concentration of 0.5 µg/ml, this solution 

were purchased from fulcrum SP1 Ltd, at Herzliya, ISRAEL 

 

Gold Nano-particles 

 

The study of gold nanoparticles is very important in the field of nanomaterials because 

they have many potential applications. For example, they could serve as the basis for new 

technologies that will render obsolete the energy intensive methods currently used to 

fabricate computer semiconductors (Tanaka, 1999). Gold nanoparticles having purchased 

size ranging from 2 to 110 nm (Tapan 2001). 

  

The gold nano-particles solution used is of 1.8 nm in dimension and concentration of 2 % 

(w/v) in toluene and density of 0.8737 g/mL at 25 °C, this solution was purchased from 

sigma-Aldrich Ltd. 

 

Mica 

 

At present time available AFM substrates for SP1 imaging are limited in types; the 

conventional support for the biological objects is mica (Hansma 2000).  

 

Mica is hydrous silicates of aluminum and potassium, often containing magnesium, 

ferrous iron, ferric iron, sodium, and lithium and more rarely are containing barium, 

chromium, and fluorine. All crystallize in the monoclinic system, but mica is most 

commonly found in the form of sheets and can split into very thin, elastic laminae (James 

1999). The entire mica surfaces can be easily updated by a simple cleaving, by first 

pressing some adhesive tape against the top mica surface, then peeling off the tape. Some 

varieties are transparent; resistant to heat. Commercially, the most important micas are 

muscovite (potassium mica) and phlogopite (magnesium mica). Muscovite, the commoner 

variety, is usually colorless, but it may be red, yellow, green, brown, or gray. 
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Thin mica sheets with dimensions of 1 cm2 used in the experiment were purchased from 

SPI supplies, USA.   

 

Deoxyribonucleic acid (DNA) 

 

5'-thiolated 22bp ssDNA (Thiol 5'TAACAGGATTAGCAGAGCGAGG3') and its 

complementary strand, and 5'-thiolated 80bp ssDNA (5'TAACAGGATTAGCAG 

AGCGAGGAATCATACGTACTCAACTGCTGGGAGCGAGACGATTAGGACAATA

ACTTGGTATGCT3') and it's partially complementary strand were purchased from 

Biomers Company (http://www.biomers.net). The sequence of the 80bp ssDNA was 

designed to partially anneal to its partially complementary strand leaving sticky ends 

capable of annealing to non annealed end of the other strand, see fig 4.4 for illustration.   
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Architecture of SP1 protein-
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Chapter THREE 

Architecture of SP1 protein-Gold nanoparticle based Nanoelectronics 

devices 
 

3.1 The Basic Building Block 

 

A Gold nanoparticle 1.8 nm in diameter is attached to the central cavity of the ring shaped 

SP1 protein (outer diameter 10nm, inner diameter 4nm, and height 2.5nm) to form a 

building block, i.e unit cell, then these unit are attached to each other   “in a Lego like 

fashion” to form more complicated structures like nanowires and 2 D arrays that serves as 

ultra high density memory. 

 

Assembling GNP in the central cavity of SP1 is done without guidance or management 

from an outside source, this process is known as self-assembly. “Self-assembly is a 

manufacturing method used to construct devices at the nanoscale, which is comprised of 

structures with at least one dimension that is less than 100 nano's. In self-assembly the 

final (desired) structure is 'encoded' in the shape and physical, chemical and electrical 

properties of the molecules that are used, as compared to traditional techniques, such as 

lithography, where the desired final structure must be carved out from a larger block of 

matter (Boncheva 2002). Self-assembly is thus referred to as a 'bottom-up' manufacturing 

technique, as compared to lithography being a 'top-down' technique” (Quintarelli 2006). 

 

Genetic engineering was used to add six-histidine tag to the N-terminal of the SP1, in 

order to enable the binding of the 1.8 nm Ni-NTA GNP to the center of the dodecamer. 

The diameter of the Ni-NTA GNP’s, 1.8 nm, fits well into the diameter of the dodecamer's 

inner pore, which is about 4 nm. The interaction of Ni-NTA and the histidines causes the 

GNP binding in the central cavity of the SP1. 

   

The SP1-GNP hybrid is shown schematically in figure 3.1 and is imaged with high-angle 

annular dark-field scanning transmission electron microscopy (HAADF-STEM) in figure 

3.1(d-f). The top views figure 3.1(d,e) show the gold (bright white contrast) to be centered 
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within the darker round particle. The side views (f) show that both sides of the 

dodecameric ring have gold attached to them, which is consistent with the crystal 

structure, since there are six N-termini on each face. 

  

 
 

Figure 3.1: (a) Crystal structure of an SP1 dodecamer showing the N-termini of SP1 
(b,c)  A computer simulation of the hybrid in a top and side views. (d-f) HAADF-STEM 
images of two top views (d,e) and side view (f) of the SP1-GNP hybrid (scale bar: 10 
nm) "Electron Microscopy Unit, Weizman Institute of Science, Rehovot-Israel".  

 

3.2 Possible nano-Electronic Devices Architecture   

 

3.2.1 Molecular wire 

 

DNA oligos were designed to form either short or very long DNA wires. In case of short 

wires, fully complementary 22bp DNA were purchased. To have longer wires, partially 

complementary 80bp DNA were purchased. To enable binding of the DNA wires to gold 

nanoparticles, the oligomers were thiolated at the 5' end. To prepare dsDNA, equimolar 
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concentration (100nM) of sense and complementary antisense oligos were mixed in triple 

distilled water and annealed in a PCR machine. Mixture was heated to 95 ºC for 4 

minutes, then incubated at 70 ºC for 10 minutes, and finally the temperature was 

decreased  to 4 ºC slowly (0.5 ºC/min), and kept at 4 ºC for 10 minutes (Yao 2007). To 

ensure annealing, samples before and after treatment were analyzed by agarose gel 

electrophoresis. Only after annealing DNA could be seen in ethidium bromide gel, 

confirming the formation of dsDNA, figure 3.2. To bind SP1-GNP to dsDNA nanowires, 

two folds molar excess of SP1-GNP was mixed with dsDNA and incubated at 37 for 3hrs. 

In the case of Short dsDNA-SP1-GNP nanowires only one option could result; two SP1-

GNP linked with 22bp dsDNA wire. In case of long dsDNA-SP1-GNP nanowires, 

different combinations can result; two SP1-GNP   linked with 80bp or its folds dsDNA 

wire, SP1-GNP on long dsDNA wire separated by 22, 54 or 80bps, or a multi connection 

of dsDNA with SP1-GNP blocks, see figure 3.4 for illustration.  

 

 
 

Figure 3.2: (MW) DNA ladder;phi X 174DNA/Hinf I, (a,b) nonannealed ssDNA, (c,d) 
annealed dsDNA "Done at Al-Quds University". 
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Figure 3.3: (a) 80bp ssDNA ended with thiol (b) thiolated 22 bp ssDNA, (c) SP1-GNP 
hybrid, (d) SP1-GNP hybrids connected via long dsDNA (e) SP1-GNP hybrids 
connected via 22bp dsDNA.  
 

 

3.2.2 Ultra High density Memory 

 

The idea behind the high density memory is to form a 2D array of SP1 molecules using a 

Longmuir-Blodgett technique and assembling a gold nanoparticle in each molecule. A 

sharp conductive AFM tip will be used to charge, discharge, and polarize the 

nanoparticles. Figure 3.4 shows the prototype of the memory cell we propose. 

 

 
 

Figure 3.4: (a) Schematic of SP1-GNP hybrid (b) Schematic representation of the 
proposed memory cell. 
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Chapter FOUR 

Results and Discussion 
 

4.1 Characterization of  SP1 protein 

 

Few micro letters of SP1solution are deposited on cleaved mica, after waiting for suitable 

incubation time, letting the SP1 solution to spread all over the mica substrate, the prepared 

sample is flushed with distilled water and dried with nitrogen gas. Through out the 

experiment, we tried to optimize the following parameters, concentration, incubation time 

and the amount of SP1 solution on mica to get separate single molecules and not monolayer 

or aggregate to perform single molecule based experiments. Most reproducible results are 

prepared with dilution ratio (1 SP1 "Concentration = 0.5 µg/ml ":50 Triple Distilled water), 

incubation time is 10 minutes.  

 

4.1.1 Morphological characterization of SP1 Molecules 
 

SP1 protein deposited on Mica surface was characterized using tapping mode AFM. Figure 

4.1 shows SP1 molecules, and their height profiles, with a histogram image shows the SP1 

molecules heights distributed in the range 2.2nm to 2.8 nm. 
 

 
 

Figure 4.1: (a) AFM Topography images of SP1protein without gold-nanoparticle 
acquired in tapping mode, (insert) cross section showing the height of SP1 molecules 
(c) histogram shows SP1 molecules heights distribution "Acquired at Nanotechnology 
Research Laboratory - Al-Quds University". 
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From the FZ-curves that are in figure 4.2, the tip-surface distance is found to be in the 

range (51nm ±2nm), the tip-surface distances differences are according to apply bias 

voltage on tip. Figure 4.2 shows the acquired FZ-curves for zero and +/-5V bias voltage, 

 

 
 

Figure 4.2: FZ-curves for SP1 complex with (a) zero bias voltage (Sample-tip distance 
= 50.7nm), (b) +5 bias voltage (Sample-tip distance = 51.2 nm), (c) -5 bias voltage 
(Sample-tip distance = 50.5 nm) "Acquired at Nanotechnology Research Laboratory - 
Al-Quds University". 

 

I found that the concentration and the incubation time does not affect the characteristics of 

the SP1 protein rings, in all cases the average height of the protein is (2.5 nm ± 0.25 nm) 

as appears in the figure 4.1. Also the tip-sample distance is not affected by changing the 

SP1 complex concentration or incubation time.  

 

4.1.2 EFM Images 

 

To perform an electrostatic force microscopy measurement, the tip is lifted and the phase 

shift between the derived signal on the tip and the actual tip position estimated via laser 

signal is measured in volt with disconnected feedback at lifted height that I choose in the 

range (10 nm – 18 nm), with various bias voltages applied to the tip, so surface electrical 

properties is investigated and polarizable, charged and insulator regions are determined. 

 

From the EFM results, figure 4.3, we see that there is no indication for electrical response. 

In fact, the EFM images give a proof that SP1 protein has no polarizability, since there is 

no electrical response appears in the EFM images when we change the bias voltage. 
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Where tip-sample distances 65.7 nm, 66.7 nm and 56.5 nm respectively (lift distance 

equals 15 nm). These images are shown in figures 4.3. 

 

 
 

Figure 4.3: (a) AFM topography image of SP1 molecules without GNP, "insert" cross 
section shows the height of SP1 molecule indicated on topography image, (b,c,d) Phase 
images for the area recorded in (a) with various bias voltages applied to the tip  +5V, 
0V and -5V respectively, "insert" cross section shows the phase shift in volts "Acquired 
at Nanotechnology Research Laboratory - Al-Quds University". 
 

4.2 Characterization of SP1-GNP Hybrids  

 

Gold nanoparticles of radius 1.8 nm and concentration of 2 % (w/v) in toluene and density 

of 0.8737 g/mL are added and mixed carefully with SP1 solution of concentration 0.5 

µg/ml, the resultant solution allowing self-assembly of gold nanoparticles and SP1 

molecules taking place, then the solution is diluted and deposited on mica substrates under 

the optimized conditions and parameters that SP1 samples are prepared. 
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4.2.1 Morphological  characterization of SP1-GNP Hybrids  

 

 Samples are prepared with optimized incubation time and dilution as before. Figure 4.4 

shows SP1-GNP hybrids on mica surface. 

 

 
 

Figure 4.4: (a) AFM topography image of SP1-GNP hybrid (insert) cross section of 
height profile of two SP1-GNP units, (b) histogram shows SP1 molecules heights 
distribution) "Acquired at Nanotechnology Research Laboratory - Al-Quds University". 

 

High resolution image of SP1 protein-GNP hybrid was obtained using ultra sharp tip, 

Laplace filter and contour techniques are used to produce images with more details for 

single SP1-GNP unit, these results are recorded in figure 4.5. 
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Figure 4.5: (a) Topography image of single SP1-GNP hybrid, (b) HAADF-STEM 
images of the SP1-GNP hybrid in a top view,  (c) A computer simulation of the SP1-
GNP  hybrid in a top view, (d) Filtered Image of (a) with Laplace filter, (d) 3D image 
of the filtered image shown in (d), (f) Contour image for the block shown in (a) 
"Acquired at Nanotechnology Research Laboratory - Al-Quds University".  

 

Tip-sample distances curves for the SP1-GNP complex are shown in figure 4.6, for the 

three bias cases, zero bias and +/-5V. In addition, here there are some small differences in 

these distances according to changes in bias voltage. 

 

 
 

Figure 4.6: FZ-curves for SP1-GNP complex with (a) zero bias voltage (Sample-tip 
distance = 63 nm), (b) +5 bias voltage (Sample-tip distance = 62.9 nm ), (c) -5 bias 
voltage (Sample-tip distance = 62.5 nm ) "Acquired at Nanotechnology Research 
Laboratory - Al-Quds University". 
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For images in figure 4.4, we see that the height of the SP1-GNP units are in the range of 

(3.2 nm ± 0.2nm), remember that the SP1 molecule is found to be in the range (2.5 nm ± 

0.25 nm). It is evidence from the height difference that GNP’s are bonded to the SP1 

molecules and the difference in height is due to those GNP. 

 

4.2.2 EFM Images 
 

EFM measurement is performed in the same procedure as for SP1 molecules, and Phase 

shift images are obtained, here the start-up height (lift distance) is 12 nm, and so the total 

tip-sample distance is approximately 65 nm. 

 

 
 

Figure 4.7: (a) AFM topography image of SP1-GNP unit (insert) cross section shows 
the height  of SP1-GNP unit (b) Phase image of the SP1-GNP unit in (a) with bias 
voltage +5V (insert) cross section shows the  EFM signal on the SP1-GNP indicated 
in (a), red curve is due to +5V bias, blue curve is due to 0V and green curve is due to 
-5V bias "Acquired at Nanotechnology Research Laboratory - Al-Quds University". 
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Figure 4.8: (a) AFM topography image of SP1-GNP units (b,c,d) Phase images of the 
SP1-GNP units in (a) with bias voltage +5V, 0V and -5V V, respectively (e) cross 
section shows the  height of SP1-GNP unit as indicated in (a) (height 3.2 nm), (f) 
cross section shows EFM signal on the SP1-GNP indicated in (a), red curve is due to 
+5V bias, blue curve is due to 0V and green curve is due to -5V bias "Acquired at 
Nanotechnology Research Laboratory - Al-Quds University". 

 
 

Phase images in figure 4.7 and figure 4.8 are for SP1-GNP blocks with bias voltages +5V, 

0V and -5V, phase images are recorded when the tip-surface distance is in the range 

(65.5nm – 66.7nm) these images give an evidence that the SP1-GNP hybrid is polarizable, 

while figure 4.3 shows that SP1 molecules are not  polarizable. So, the SP1-GNP hybrid 

polarizability is due existence of the GNP in the central cavity of the SP1 protein. 
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4.3 Ligo like fabrication  of  nano-electronic devices 

 

4.3.1 SP1-GNP Nano-wires  

 

The SP1- GNP complex is assembled with thiolated DNA molecules as described section 

3.2.1. More than one DNA molecule can be attached to the gold nanoparticle depending 

on three factors: (i) the depth to which the nanoparticle is imbedded inside the central 

cavity of the ring shaped protein (ii) the size of the nanoparticle (iii) number of gold 

nanoparticles inside the central cavity of the protein. Figure 4.9 shows AFM results that 

acquired in tapping mode, these results shows that the DNA is attached to the gold 

nanoparticles through the thiols.  

 

 
    

Figure 4.9: (a) AFM imaging of SP1 with GNP once shown with a dsDNA-ended with 
thiol connection (white arrow) of 22bp of length and once without (black arrow) (b,c,d 
insert) Cross sections of height profiles extracted from AFM scanning showing the 
different heights of the two pairs of SP1-GNP (e) Contour image shows the position of 
GNP in the central cavity of SP1 "Acquired at Nanotechnology Research Laboratory - 
Al-Quds University". 

 

Another striking form of behavior for SP1-GNP and DNA is shown in figure 4.10. AFM 

images show that a wire-like conduct can be obtained from deposition of the three 

components of SP1, GNP and thiolated DNA. 80bp thiolated DNA as in figure 3.4 (d) is 
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used for the same purposes of inter-connecting the SP1-GNP molecules. This AFM image 

shows the increased spacing between molecules if compared to the distance found 

between molecules in figure 4.9, where I use a shorter DNA of 22bp. AFM illustrates as 

well the possibility of connecting the DNA in several parts of the SP1 as shown in the 

same figure. The distance between the SP1-GNP molecules are as expected in the 

theoretical analysis. 

 

 
 

Figure 4.10: Different examples of  SP1-GNP nanowires (a) Topography of SP1-GNP 
and a dsDNA-ended with thiol group of multi-80bp of length connecting each pair of 
SP1 (insert) Diagram corresponding to the cross section exposed in the topography 
image depicting the height of the SP1, (b) Tapping mode imaging of a single connection 
between a pair of SP1-GNP blocks with ~130 nm as distance in between due to the 
hybridization of partial complementation of dsDNA (insert) the corresponding height 
diagram for the shown cross section in (b),  (c) Tapping mode imaging of a multi 
connection of dsDNA with SP1-GNP blocks due to the hybridization of partial 
complementation of dsDNA (insert) the corresponding height diagram for the shown 
cross section in (c), (d,e,f) contour images for the topography images 
(a,b,c)respectively shows the existence of GNP inside SP1 molecules "Acquired at 
Nanotechnology Research Laboratory - Al-Quds University". 
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EFM measurement was carried on the wire that is shown in topography of Figure 4.11 (a). 

The phase imaging of EFM is shown in Figure 4.11 (c). Polarizability was detected after 

applying positive and negative biases between the tip and the surface sample. No EFM 

signal was obtained at zero bias.  

 

 
 

Figure 4.11: (a) AFM topography imaging of SP1-GNP-DNA forming a wire like 
behavior (insert) Height diagram corresponding to the cross section shown (b) Phase 
shift image for an EFM process applied on the same SP1-GNP-dsDNA combination 
shown in (a)(c,d,e) EFM profiles corresponding to the cross section shown in (b) for 
+5V, 0V and -5V, respectively. "Acquired at Nanotechnology Research Laboratory - 
Al-Quds University". 

 

4.3.2 SP1-GNP Array 

 

SP1 array is produced with Langmuir-Blodgett technique on carbon grid.  Langmuir-

Blodgett film including a water bath having a spread region for spreading a material on a 

liquid surface, a compression region for compressing the material spread by the spread 

region to form a single molecular film, and a lamination region for laminating the single 

molecular film formed by the compression region on a substrate. So an array of SP1 

molecules as shown in figure 4.12 is prepared.  

 



 42

 
 

Figure 4.12: A TEM image of a self-assembled 2D crystalline array of recombinant 
SP1-GNP molecules formed under a charged lipid layer (dimension bar 60 nm) 
"Electron Microscopy Unit, Weizman Institute of Science, Rehovot-Israel". 

 

Unfortunately, the Langmuir-Blodgett technique is not suitable for forming two 

dimensional array on mica or gold surfaces, we tried to increase the concentration of 

SP1-GNP complex, promising results as shown in figure 4.13 where obtained and will 

be continued as future work, this image shows SP1-GNP sub-arrays with their 

corresponding  cross section that shows SP1-GNP heights. 

 

 
 

Figure 4.13: (a,d) AFM topography image of SP1-GNP hybrid acquired with taping 
mode (b,c) cross section shows heights for SP1-GNP units from images (a), height is in 
the range (3 nm – 3.4nm) "Acquired at Nanotechnology Research Laboratory - Al-
Quds University". 
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Chapter FIVE 

Conclusion and Future Work 
 

5.1 Conclusion 

 

In this work, a basic building block for construction of nanoelectronic devices in a 

bottom up approach is introduced; this building block consists of gold nanoparticle (1.8 

nm in dimension) embedded at the central cavity of a ring protein (outer diameter 10 

nm, inner diameter 4 nm and height 2.5 nm). The function of the gold nanoparticle is 

electron transport, while the function of the protein is a scaffold or a template to position 

and bind the gold nanoparticle. These building blocks are connected to each other by 

different mechanisms to form nanowires and 2D arrays. 

 

Tapping mode AFM results shows the height of the SP1 is in the range (2.5 ±0.25 nm), 

while the SP1-GNP block height is in the range (3.2 ±0.2 nm), which make it a good 

candidate a nanostructure building. EFM results shows that the bare SP1 molecules are 

electrically silent while GNP-SP1 hybrids are polarizable, which is a strong evidence of 

conductivity. 

 

5.2 Future Work  

 

The promising results in this work enhance the following future work; 

• To measure real conductivity in the constructed nanowires using electrical transport 

measurements. 

 

• Development of methods for “writing” and “reading” discrete states in each 

nanoparticle using a conducting atomic force microscope (AFM) tip and charging 

effects. 

 

• Attachment conducting and semiconducting nanoparticles in the central cavity of SP1, 

to construct different nanoelectronic components. 
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