5,003 research outputs found

    AIDS, Economic Growth and the HIPC Initiative in Honduras

    Get PDF
    AIDS, Heavily indebted poor countries, Economic growth, Foreign capital flows

    Phase behavior of hard-core lattice gases: A Fundamental Measure approach

    Full text link
    We use an extension of fundamental measure theory to lattice hard-core fluids to study the phase diagram of two different systems. First, two-dimensional parallel hard squares with edge-length σ=2\sigma=2 in a simple square lattice. This system is equivalent to the lattice gas with first and second neighbor exclusion in the same lattice, and has the peculiarity that its close packing is degenerated (the system orders in sliding columns). A comparison with other theories is discussed. Second, a three-dimensional binary mixture of parallel hard cubes with σL=6\sigma_{\rm{L}}=6 and σS=2\sigma_{\rm{S}}=2. Previous simulations of this model only focused on fluid phases. Thanks to the simplicity introduced by the discrete nature of the lattice we have been able to map out the complete phase diagram (both uniform and nonuniform phases) through a free minimization of the free energy functional, so the structure of the ordered phases is obtained as a result. A zoo of entropy-driven phase transitions is found: one-, two- and three-dimensional positional ordering, as well as fluid-ordered phase and solid-solid demixings.Comment: 14 pages, 16 figure

    Neutral networks of genotypes: Evolution behind the curtain

    Get PDF
    Our understanding of the evolutionary process has gone a long way since the publication, 150 years ago, of "On the origin of species" by Charles R. Darwin. The XXth Century witnessed great efforts to embrace replication, mutation, and selection within the framework of a formal theory, able eventually to predict the dynamics and fate of evolving populations. However, a large body of empirical evidence collected over the last decades strongly suggests that some of the assumptions of those classical models necessitate a deep revision. The viability of organisms is not dependent on a unique and optimal genotype. The discovery of huge sets of genotypes (or neutral networks) yielding the same phenotype --in the last term the same organism--, reveals that, most likely, very different functional solutions can be found, accessed and fixed in a population through a low-cost exploration of the space of genomes. The 'evolution behind the curtain' may be the answer to some of the current puzzles that evolutionary theory faces, like the fast speciation process that is observed in the fossil record after very long stasis periods.Comment: 7 pages, 7 color figures, uses a modification of pnastwo.cls called pnastwo-modified.cls (included

    Fundamental measure theory for mixtures of parallel hard cubes. II. Phase behavior of the one-component fluid and of the binary mixture

    Get PDF
    A previously developed fundamental measure fucntional [J. Chem. Phys. vol.107, 6379 (1997)] is used to study the phase behavior of a system of parallel hard cubes. The single-component fluid exhibits a continuous transition to a solid with an anomalously large density of vacancies. The binary mixture has a demixing transition for edge-length ratios below 0.1. Freezing in this mixture reveals that at least the phase rich in large cubes lies in the region where the uniform fluid is unstable, hence suggesting a fluid-solid phase separation. A method is develop to study very asymmetric binary mixtures by taking the limit of zero size ratio (scaling the density and fugacity of the solvent as appropriate) in the semi-grand ensemble where the chemical potential of the solvent is fixed. With this procedure the mixture is exactly mapped onto a one-component fluid of parallel adhesive hard cubes. At any density and solvent fugacity the large cubes are shown to collapse into a close-packed solid. Nevertheless the phase diagram contains a large metastability region with fluid and solid phases. Upon introduction of a slight polydispersity in the large cubes the system shows the typical phase diagram of a fluid with an isostructural solid-solid transition (with the exception of a continuous freezing). Consequences about the phase behavior of binary mixtures of hard core particles are then drawn.Comment: 14 pages, 6 eps figures, uses revtex, amstex, epsfig, and multicol style file

    Phase diagrams of Zwanzig models: The effect of polydispersity

    Get PDF
    The first goal of this article is to study the validity of the Zwanzig model for liquid crystals to predict transitions to inhomogeneous phases (like smectic and columnar) and the way polydispersity affects these transitions. The second goal is to analyze the extension of the Zwanzig model to a binary mixture of rods and plates. The mixture is symmetric in that all particles have equal volume and length-to-breadth ratio, Îș\kappa. The phase diagram containing the homogeneous phases as well as the spinodals of the transitions to inhomogeneous phases is determined for the cases Îș=5\kappa=5 and 15 in order to compare with previous results obtained in the Onsager approximation. We then study the effect of polydispersity on these phase diagrams, emphasizing the enhancement of the stability of the biaxial nematic phase it induces.Comment: 11 pages, 12 figure

    The Shared Reward Dilemma

    Get PDF
    One of the most direct human mechanisms of promoting cooperation is rewarding it. We study the effect of sharing a reward among cooperators in the most stringent form of social dilemma, namely the Prisoner's Dilemma. Specifically, for a group of players that collect payoffs by playing a pairwise Prisoner's Dilemma game with their partners, we consider an external entity that distributes a fixed reward equally among all cooperators. Thus, individuals confront a new dilemma: on the one hand, they may be inclined to choose the shared reward despite the possibility of being exploited by defectors; on the other hand, if too many players do that, cooperators will obtain a poor reward and defectors will outperform them. By appropriately tuning the amount to be shared a vast variety of scenarios arises, including traditional ones in the study of cooperation as well as more complex situations where unexpected behavior can occur. We provide a complete classification of the equilibria of the nn-player game as well as of its evolutionary dynamics.Comment: Major rewriting, new appendix, new figure

    First-principles derivation of density functional formalism for quenched-annealed systems

    Get PDF
    We derive from first principles (without resorting to the replica trick) a density functional theory for fluids in quenched disordered matrices (QA-DFT). We show that the disorder-averaged free energy of the fluid is a functional of the average density profile of the fluid as well as the pair correlation of the fluid and matrix particles. For practical reasons it is preferable to use another functional: the disorder-averaged free energy plus the fluid-matrix interaction energy, which, for fixed fluid-matrix interaction potential, is a functional only of the average density profile of the fluid. When the matrix is created as a quenched configuration of another fluid, the functional can be regarded as depending on the density profile of the matrix fluid as well. In this situation, the replica-Ornstein-Zernike equations which do not contain the blocking parts of the correlations can be obtained as functional identities in this formalism, provided the second derivative of this functional is interpreted as the connected part of the direct correlation function. The blocking correlations are totally absent from QA-DFT, but nevertheless the thermodynamics can be entirely obtained from the functional. We apply the formalism to obtain the exact functional for an ideal fluid in an arbitrary matrix, and discuss possible approximations for non-ideal fluids.Comment: 19 pages, uses RevTeX

    Weak-Scale Hidden Sector and Energy Transport in Fireball Models of Gamma-Ray Bursts

    Full text link
    The annihilation of pairs of very weakly interacting particles in the neibourghood of gamma-ray sources is introduced here as a plausible mechanism to overcome the baryon load problem. This way we can explain how these very high energy gamma-ray bursts can be powered at the onset of very energetic events like supernovae (collapsars) explosions or coalescences of binary neutron stars. Our approach uses the weak-scale hidden sector models in which the Higgs sector of the standard model is extended to include a gauge singlet that only interacts with the Higgs particle. These particles would be produced either during the implosion of the red supergiant star core or at the aftermath of a neutron star binary merger. The whole energetics and timescales of the relativistic blast wave, the fireball, are reproduced.Comment: 4 pp, 1 ps fig, text revised and improve