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Fundamental measure theory for mixtures of parallel hard cubes.

II. Phase behaviour of the one-component fluid and of the binary mixture

Yuri Mart́ınez-Ratón∗ and José A. Cuesta†

Grupo Interdisciplinar de Sistemas Complicados (GISC), Departamento de Matemáticas, Escuela Politécnica Superior,
Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 – Leganés, Madrid, Spain

A previously developed fundamental measure functional [J. Chem. Phys. 107, 6379 (1997)] is
used to study the phase behaviour of a system of parallel hard cubes. The single-component fluid
exhibits a continuous transition to a solid with an anomalously large density of vacancies. The
binary mixture has a demixing transition for edge-length ratios below 0.1. Freezing in this mixture
reveals that at least the phase rich in large cubes always lies in the region where the uniform fluid
is unstable, hence suggesting a fluid-solid phase separation. A method is developed to study very
asymmetric binary mixtures by taking the limit of zero size ratio (scaling density and fugacity of
the solvent as appropriate) in the semi-grand ensemble where the chemical potential of the solvent
is fixed. With this procedure the mixture is exactly mapped onto a one-component fluid of parallel
adhesive hard cubes. At any density and solvent fugacity the large cubes are shown to collapse into
a close-packed solid. Nevertheless the phase diagram contains a large metastability region with fluid
and solid phases. Upon introduction of a slight polydispersity in the large cubes the system shows
the typical phase diagram of a fluid with an isostructural solid-solid transition (with the exception
of a continuous freezing). Consequences about the phase behaviour of binary mixtures of hard core
particles are then drawn.

PACS: 61.20.Gy, 64.75.+g, 82.70.Dd

I. INTRODUCTION

This paper is the sequel of a previous one1 (henceforth
referred to as I) in which the so-called fundamental mea-

sure theory (FMT) was applied to build a density func-
tional for the multicomponent system of parallel hard
cubes (PHC). In I we explained all fundamentals of the
theory and gave a full account of the technical details
involved in the derivation of the functional. We also dis-
cussed the pros and cons of the theory, as compared with
more standard density functional theories (DFTs), and
suggested some possible extensions.

In this paper we apply the formalism developed in I to
study the phase behaviour of the PHC fluid, with spe-
cial emphasis in its relevance for the understanding of
the phase behaviour of mixtures. The PHC fluid is a
rather academic model and it possesses a bunch of ‘pe-
culiarities’ which are rather odd for a fluid model, e.g.
the uniform fluid is anisotropic at small scales (the cubes
are kept parallel to each other), freezing occurs at very
low packing fractions (around 0.3–0.4) and it is a contin-
uous, instead of first order, transition (a consequence of
the lack of isotropy of the fluid phase), and the depletion
in the binary mixture is very strong compared to hard
spheres (HS). But in spite of these peculiarities—which
certainly make of this model a caricature of a fluid, the
physics one can learn from its phase behaviour can be
easily extended to more reasonable fluids, and it has the
important added value of being a much simpler model to
carry out analytical calculations (even more: FMT seems
to be somehow optimal for this model1,2).

There have been a few previous studies in the litera-
ture about the fluid of PHC3–8 scattered in the last forty

years, but the relevance of this model has only recently
become apparent when it has been proposed as a model of
a fluid able to demix by a purely entropic mechanism.9,10

Entropic demixing has been a long standing question
which only recently begins to be understood. It is well
known that different attractions between two types of
particles in a fluid can produce segregation into two
phases, each rich in one type of particles.11 The ques-
tion remains whether hard particles, for which only an
entropic balance can drive a phase transition, ever demix
and how. It is clear that nonadditive mixtures (mix-
tures in which particles of different type interact as if
they had a larger volume) do demix,12–15 but they have
the segregation mechanism introduced at the interac-
tion potential. So the nontrivial question concerns ad-
ditive hard-particle mixtures. The question is tricky be-
cause the simplest model of this type—HS—was solved
in Percus-Yevick (PY) approximation16 and shown never
to demix.17 It had to wait almost thirty years until the
PY result was questioned. By solving numerically the
Ornstein-Zernike equation with closure relations more ac-
curate than the PY one a spinodal instability was shown
to occur in a binary mixture of HS18–20 for a diameter
ratio below 0.1–0.25 (depending of the authors).

It was then believed that a sufficiently asymmetric HS
binary mixture undergoes fluid-fluid demixing in a cer-
tain region of the phase diagram. But successive exper-
iments performed in suspensions of polystyrene or silica
spheres (which to a large accuracy can be considered HS)
showed cumulative evidence that demixing is coupled to
freezing, and so one of the phases shows up as a crystal—
sometimes a glass—of large particles.21–24 Recent theo-
retical calculations confirm this scheme.25,26
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Direct computer simulations have run into troubles
when dealing with this problem due to the extremely low
probability of moving a larger particle in a sea of small
ones without overlapping any of them. Simulations are
still possible for not too dissimilar diameters, but they
do not show demixing.27,28 With the help of specially
designed cluster moves the first evidence of demixing has
recently been found in simulations for diameter ratios
smaller than 0.05.29 Unfortunately these cluster moves
do not help above the percolation threshold, and this sets
a relatively low upper bound for the total packing frac-
tion of the fluid. Besides, this method does not allow to
identify the coexisting phases, so it does not distinguish
fluid-fluid or fluid-solid demixing.

In order to elucidate the nature of demixing for very
asymmetric mixtures the attention has shifted to under-
stand the depletion interaction. An effective pair poten-
tial between the large spheres can be obtained by differ-
ent procedures.30–33 Its shape reveals a very deep and
narrow (one small-sphere diameter) well followed by a
couple of small oscillations extending two or three small-
sphere diameters. The depth and the amplitude of the
oscillations depend on the small spheres packing fraction.
In view of the phase behaviour of spheres with narrow
and deep attractive potentials34,35 fluid-fluid demixing
is ruled out for sufficient asymmetry, and instead fluid-
solid demixing or even expanded-dense solid demixing
(i.e. demixing once the large component has crystallised)
should appear. Simulations of a system of HS supple-
mented by the depletion potential31–33 confirm this con-
jecture if the diameter ratio is below 0.1. Expanded-
dense solid demixing is indeed shown in some of this sim-
ulations for ratios 0.132 or 0.05.33 This phase behaviour
has been recently corroborated by direct simulations of
the binary mixture,36 which have been shown to be pos-
sible in the relevant region of the phase diagram thanks
to the small amount of small spheres present in those
statepoints.

In the limit of zero size of the small spheres at constant
packing fraction the depletion potential becomes Baxter’s
adhesive potential.37,38 By applying a similar limit to the
FMT functional of a binary mixture of PHC1,2 we have
recently obtained a functional for parallel adhesive hard
cubes (PAHC).39 By avoiding the singularities of this po-
tential (we will treat this point in detail later on) we show
that the phase behaviour of this fluid is consistent with
the above described picture for the mixture of HS, with
the difference that expanded-dense solid demixing is the
most common scenario because PAHC freezing occurs at
rather low packing fractions.

II. THE ONE-COMPONENT FLUID

There are relatively few results in the literature con-
cerning the fluid of PHC. As concerns the uniform fluid
the virial coefficients, both in 2D and 3D, have been ex-

actly obtained through diagrammatic expansions up to
the seventh.3,4 They have also been obtained for differ-
ent approximate integral equation theories.5 The main
consequence one draws from this information is that the
virial expansion is very poorly convergent. For the 3D
fluid, the seventh order virial expansion exhibits a maxi-
mum in the pressure at η ≈ 0.6, and then goes down very
quickly to reach negative values.5 Its behaviour at moder-
ate densities strongly deviates from that of a sixth order
virial expansion—in contrast with what happens for HS.
This is the fingerprint of a nearby divergence. In fact, the
simulations of the fluid of PHC (3D)6,7 show a continu-
ous freezing into a simple cubic lattice at7 η = 0.48±0.02
(in contrast with the first order nature of the HS freez-
ing). This result has been proven to be exact in infi-
nite dimensions.8 The reason for a continuous freezing is
the lack of rotational symmetry of this system even in
the disordered phase8 (thus freezing does not brakes this
symmetry). Allowing the cubes to rotate restores the
first order nature of the freezing transition.7

FMT’s equation of state of the uniform PHC fluid is
simply that of the scaled particle theory (SPT), i.e., from
Eqs. (60) and (61) of I,

βP/ρ =
1

(1 − η)2
, (D = 2), (1)

βP/ρ =
1 + η

(1 − η)3
, (D = 3), (2)

with β the inverse absolute temperature in Boltzmann
constant units, P the pressure, ρ the number density,
and η the packing fraction, η = ρσD, σ being the cube
edge-length. In Fig. 1 the SPT equation of state (2) is
compared with the simulation data.

On the other hand freezing can be studied as usual in
DFT by parametrising the local density with a sum of
gaussians centered at the lattice points.40 Since the lat-
tice is simple cubic, this can be easily achieved by setting

ρ(r) =
∏

ν=x,y,z

∞∑

nν=−∞

g(ν − nνd) , (3a)

g(u) ≡
(α
π

)1/2

e−αu2

, (3b)

with d = η−1/3σ the lattice spacing, and α a variational
parameter determining the localisation of particles at the
lattice sites.

In I we expressed the free-energy functional of a multi-
component system with density profiles ρi(r) (i labeling
the species) as

F [{ρi(r)}] = F id[{ρi(r)}] + F ex[{ρi(r)}] , (4)

βF id[{ρi(r)}] =
∑

i

∫
dr ρi(r) [lnViρi(r) − 1] , (5)

βF ex[{ρi(r)}] =

∫
drΦ({nα(r)}) , (6)
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with Vi the thermal volume of species i, and nα =∑
i ρi ∗ ω(α)

i a set of four weighted densities (stars de-
notes convolution) defined by the weights

ω
(0)
i ≡ δx

i δ
y
i δ

z
i , (7a)

w
(1)
i ≡

(
θx

i δ
y
i δ

z
i , δ

x
i θ

y
i δ

z
i , δ

x
i δ

y
i θ

z
i

)
, (7b)

w
(2)
i ≡

(
δx
i θ

y
i θ

z
i , θ

x
i δ

y
i θ

z
i , θ

x
i θ

y
i δ

z
i

)
, (7c)

ω
(3)
i ≡ θx

i θ
y
i θ

z
i , (7d)

with θu
i ≡ Θ(σi/2 − |u|), and δu

i ≡ (1/2)δ(σi/2 − |u|).
As in I we will also need the two scalar densities ni =
ni,x + ni,y + ni,z, ni,ν , ν = x, y, z, being the vector com-
ponents of ni, i = 1, 2. The function Φ(r) is given in
terms of the nα’s as (see I)

Φ(r) = −n0 ln(1 − n3) +
n1 · n2

1 − n3
+
n2,xn2,yn2,z

(1 − n3)2 (8)

with n2,ν , ν = x, y, z, the components of n2.
For convenience let us introduce the functions

e(u) ≡ 1

2
erf
(√
αu
)
, (9)

p(u) ≡
∞∑

n=−∞

[e(u− nd+ σ/2) − e(u− nd− σ/2)] , (10)

q(u) ≡
∞∑

n=−∞

[g(u− nd+ σ/2) + g(u− nd− σ/2)] (11)

[notice that g(u) = e′(u)]. The latter two are periodic
with period d. In terms of these functions

n3 = p(x)p(y)p(z) , (12a)

n2 =
1

2

(
q(x)p(y)p(z), p(x)q(y)p(z), p(x)p(y)q(z)

)
, (12b)

n1 =
1

4

(
p(x)q(y)q(z), q(x)p(y)q(z), q(x)q(y)p(z)

)
, (12c)

n0 =
1

8
q(x)q(y)q(z) , (12d)

and accordingly Φ(r) = n0(r)ψ(r), where

ψ = − ln(1 − n3) +
n3

1 − n3
+

n2
3

(1 − n3)2
. (13)

This simplification occurs because of the factorisation of
the density (3a)—and hence of (12).

The free energy per particle, Ψ ≡ βF/N , of the solid
phase can be obtained as the integral over a unit cell of
the lattice of the free energy density. Hence the ideal
part turns out to be

Ψid =

∫ d/2

−d/2

dx

∫ d/2

−d/2

dy

∫ d/2

−d/2

dz ρ(r)[lnVρ(r) − 1]

= ln(V/σ3) − 1

+3

∫ ∞

−∞

dx g(x) ln

(
∞∑

n=−∞

σg(x− nd)

)
. (14)

The integrand is written in a suitable way to use Gauss-
Hermite numerical quadratures.41 As for the excess con-
tribution, similar manipulations lead to

Ψex =
1

8

∫ d/2

−d/2

dx q(x)

∫ d/2

−d/2

dy q(y)

∫ d/2

−d/2

dz q(z)ψ(x, y, z)

=
1

8

∫ ∞

−∞

dx g(x)

∫ ∞

−∞

dy g(y)

∫ ∞

−∞

dz g(z)

×
∑

{±}

ψ(x± σ/2, y ± σ/2, z ± σ/2) , (15)

where the last summation runs over all combinations of
signs. Again the latter expression is suitable for Gauss-
Hermite integration, which is crucial this time because
(15) involves a three-dimensional integration.

We can now minimise with respect to α to determine
the equilibrium profile. This yields a continuous freezing
at η = 0.348. As the transition is continuous we can make
a more accurate determination of the transition density
via a standard bifurcation analysis. This is equivalent to
finding the density at which the structure factor diverges
for some wavevector kc. The structure factor is expressed
in terms of the DCF as

S(k) =
1

1 − ρĉ(k)
, (16)

and the Fourier transform of the DCF, ĉ(k), is obtained
through Eq. (56) of I for a one-component fluid. In order
to simplify the final expression we exploit the symmetry
of the crystal by choosing kc = (kc, 0, 0) (the result would
be the same if we chose kc along the Y or Z axes). Thus
the condition to determine the critical point is

1 + 2ηc
4 − 3ηc + η2

c

(1 − ηc)3
j0(kσ)

+ η2
c

9 − 4ηc + η2
c

(1 − ηc)4
j0(kσ/2)2 ≥ 0 , (17)

the equality holding only for k = kc; j0(x) ≡ sinx/x is
the zeroth order spherical Bessel function. The solution
to this equation is ηc = 0.3143 . . . and kcσ = 4.8276 . . . .

It is noticeable the discrepancy between the value of
ηc obtained from the divergence of the structure factor
and that obtained using the profile (3). The reason for
this discrepancy can be inferred if we obtain from kc

the lattice spacing, dc/σ = 2π/kc = 1.3015 . . . ; thus
ηc(dc/σ)3 = 0.6929 . . . , what means that the resulting
crystal has a large fraction of vacancies (around 31% of
the lattice sites!). This is a strong effect that can be ac-
counted for by simply multiplying the r.h.s. of (3a) by an
average occupancy ratio ϑ and minimising with respect to

3



this new variational parameter. In the calculation pro-
cess this simply amounts to (i) add a term lnϑ to the
ideal free energy (14), and (ii) replace n3 by ϑn3 in the
definition of ψ [Eq. (13)]. Notice that d is now given by
d = σ(ϑ/η)1/3. As a result we obtain the correct value of
ηc and an occupancy ratio of ϑ ≈ 0.694, consistent with
the value obtained above.42

0.0 0.4 0.8
η

0

2

4

6

βP
σ3

FIG. 1. Equation of state of the PHC fluid. Solid lines
correspond to the pressure of the stable phase (fluid or solid)
at the given packing fraction, η. Dotted line is the unstable
fluid branch beyond freezing. Dashed line is the solid branch
computed without accounting for vacancies in the lattice (see
text). Full circles are the simulations of Ref. 6 and empty cir-
cles those of Ref. 7 (actually we have averaged the two data
sets reported for the largest system size).

The solid equation of state—with and without
vacancies—is plotted in Fig. 1 and compared with the
simulations. It is obtained as βPσ3 = η2∂Ψ/∂η. We
can see that the overall agreement is good, although the
freezing point is shifted down with respect to the simu-
lations because the SPT equation of state overestimates
the pressure of the fluid phase.

III. STABILITY OF THE BINARY FLUID

MIXTURE

Two are the requirements for a fluid mixture to be
stable:43 (i) the positiveness of the specific heat at con-
stant volume (cV ), and (ii) the positive definiteness of

the matrix

Mij ≡ β
∂2f

∂ρi∂ρj
, (18)

where f ≡ F/V , F being the Helmholtz free energy, and
ρi the number density of species i. Condition (i) is triv-
ially fulfilled, because any hard core model is athermal,
what means that the dependence of the free energy on
temperature is that of an ideal gas; hence the positiveness
of cV . Condition (ii) is a consequence of the equilibrium
state being a minimum of the free energy.

According to (6) the matrix M will be given by

Mij = β
∂µj

∂ρi
=

1

ρi
δij +

∑

αγ

ω̂
(γ)
i (0)ω̂

(α)
j (0)

∂2Φ

∂nγ∂nα
,

and relating the second term of the r.h.s. of this equa-
tion to the DCF of the fluid [Eq. (7) of I] it can simply
be written as

Mij =
1

ρi
δij − ĉij(0) . (19)

Now, for a binary mixture, M is a 2 × 2 matrix with
all its elements positive; thus the mixture will be stable
provided |M| > 0. The solution to the equation |M| = 0,
if it exist at all, will represent a spinodal curve. Such
a condition can be understood in terms of the structure
factor matrix of the mixture, given by

ρS(k) ≡ [P−1 − Ĉ(k)]−1 , (20)

where Ĉij ≡ ĉij and Pij ≡ ρiδij . Then, after (19),
|M| = 0 is the condition for the structure factor to di-
verge at zero wavevector (the uniform fluid).

In order to work out the expression of |M| let us in-
troduce the following notation: ηi ≡ σD

i ρi, the packing
fraction of species i; η ≡ η1 + η2 = ξD, the total packing
fraction of the fluid; r ≡ σ1/σ2, the large-to-small edge
ratio (r ≥ 1); and x ≡ η1/η, the relative packing fraction
of the large component. With these definitions as well as
the short-hand M ≡ ρ1ρ2|M| we obtain, after a tedious
but straightforward calculation,

M =
1 + η

(1 − η)3
, (21)

for D = 2, and10

M =
η2

(1 − η)4

[
1 +

4

η
+

1

η2
− 3(r − 1)2

r
x(1 − x)

]
,
(22)

for D = 3.
From (21) it follows that the 2D mixture is stable

whichever the values of η, r and x. Accordingly, parallel
hard squares never demix into two fluids with different
composition. Equation (22), however, tells us that the
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mixture of PHC will be stable provided the expression in
square brackets is positive, i.e.

1 +
4

η
+

1

η2
>

3(r − 1)2

r
x(1 − x) . (23)

Since the minimum of the function 1 + 4/η + 1/η2, for
0 ≤ η ≤ 1, is 6 (reached when η = 1) and the maximum
of x(1−x), for 0 ≤ x ≤ 1, is 1/4 (reached when x = 1/2),
(23) will hold for any η and x whenever

6 >
3(r − 1)2

r

1

4
⇐⇒ r2 − 10r + 1 < 0 ,

which means for any 1/rc < r < rc, where

rc = 5 +
√

24 ≈ 9.98 (24)

(or, equivalently, as we have defined r ≥ 1, for any
1 ≤ r < rc). For r ≥ rc there will exist values of η
and x for which (23) does not hold, and thus the mixture
demixes. From (23) it is very simple to find that those
values correspond to the region above the curve

1

η
=

√
3

√
1 +

(r − 1)2

r
x(1 − x) − 2 , (25)

which therefore defines the spinodal. Figure 2 shows this
curve for a few values of r. It is interesting to notice the
symmetry of the spinodal with respect to x = 1/2. This
means that for a given packing fraction, η, the stability
of the mixture depends on the fraction of occupied vol-
ume of any of the particles, regardless their type, large
or small.

The existence of a spinodal instability of this type
means that if the system is kept at constant pressure,
there is a certain region in the density-composition phase
diagram in which the fluid is stable in two coexisting
phases, one rich in small particles and the other one rich
in large particles. In order to determine the values of η
and x of the two coexisting phases we must solve, at a
given pressure, the equilibrium equations. If we denote
ηs, xs (respectively η l, x l) the values of the small-particle
(respectively large-particle) rich phase, those equations
can be written

P (ηs, xs) = P (η l, x l) = p ,

µ1(ηs, xs) = µ1(η l, x l) ,

µ2(ηs, xs) = µ2(η l, x l) ,

p being the externally fixed pressure. This equations
express equality of the pressure and chemical potentials
of both kinds of particles in each of the two coexisting
phases. For the present binary mixture, µ1, µ2 and P
are given by

βPσ3
1 = y(r3 − (r3 − 1)x) + 2y3(r − (r − 1)x)3

+3y2(r2 − (r2 − 1)x)(r − (r − 1)x) , (26)

β∆µ1 = ln(xy) + 3y(r2 + r − (r2 + r − 2)x)

+3y2(r − (r − 1)x)2 + βPσ3
1 , (27)

β∆µ2 = ln[(1 − x)y] + 3y(2 − (2 − r−1 − r−2)x)

+3y2(1 − (1 − r−1)x)2 + βPσ3
1r

−3 , (28)

where y = η/(1 − η), and β∆µi = βµi − ln(Λi/σi)
3.

0.0 0.5 1.0
x

0.0

0.5

1.0

η

15

20

30

50

FIG. 2. Phase diagram of the demixing transition of par-
allel hard cubes; η is the fraction of volume occupied by all
cubes, whereas x ≡ η1/η is the fraction of volume occupied
by the large cubes. Short-dashed lines represent the spinodals
for different values of the edge-to-edge ratio; solid lines are the
corresponding coexistence lines (the actual transition lines);
the dotted line is the line of critical points of the demixing
transition for all values of r > rc; finally, the long-dashed
segments joining black dots are two examples of coexisting
states.

To determine the critical point of this transition we
use the fact that this point is the only one for which the
spinodal and the coexistence line coincide, and it cor-
responds to the minimum value of the pressure on the
spinodal. Hence Eqs. (25) and (26) allow us to deter-
mine this point for every value of the edge-ratio r.

The phase diagram (Fig. 2) shows a few features that
are worth noticing. First of all, it is interesting to see
that the critical line collides, when r → ∞, with the
x = 1 edge of the phase diagram at a nonzero packing
fraction. What this suggests is that in this limit the pack-
ing fraction of the small component goes to zero but it
still remains a residual depletion between the large cubes.
This depletion forces the one-component effective fluid of
large cubes to collapse beyond a certain packing fraction.
We will explore this matter in full detail in Sec. V.

Another interesting feature of the phase diagram is
the remaining impurity of the two separated phases even
when the system undergoes an infinite pressure. This
reflects in the fact that the coexistence lines end up at
values of x other than 1 or 0 (pure components) when

5



η = 1 (actually, this effect is noticeable only for the values
of the large-cube rich phase, although it is also present
in the other phase). The prominent asymmetry of the
coexistence line is another striking feature, but easy to
understand: it arises from the enormous volume differ-
ence between large and small cubes necessary to produce
demixing (notice that demixing begins for r ≈ 10, and
this means that large cubes occupy a volume 1000 times
larger than the small ones). This forces the large-cube
impurities in the small-cube rich phase to be in an ex-
tremely low concentration. The wide metastability re-
gion in the small-cube rich side means that for those
compositions the mixture is less sensitive to variations
in composition.

IV. FREEZING OF THE BINARY MIXTURE

In order to check to which extent the demixing scenario
found in the previous section holds we have to determine
whether the fluids are stable against spatial modulations
at the coexisting compositions. Spatial inhomogeneities
cause a divergence of the structure factor matrix (20) at
a certain nonzero wavevector. Thus for a given composi-
tion, x, the spatial instability is found as the lowest total
packing fraction at which the determinant

M(k) ≡
∣∣∣P−1 − Ĉ(k)

∣∣∣ (29)

vanishes for at least one vector k. We can use the expres-
sion for the DCF found in I [Eqs. (53), (54), and (57) of
I] and simplify the problem by simply looking for insta-
bilities along the three coordinate axes. By symmetry,
this amounts to take k = (k, 0, 0).

The value of η at which M(k) = 0, as a function of x,
is plotted in Fig. 3 for different values of r; these lines of
instability are compared with the coexistence lines of the
demixing transition (Fig. 2). It is clear from the figure
that the critical points of the latter are always in the un-
stable region; therefore, for any pair of coexisting fluids,
at least one (the large-cube rich one) is always unstable
against spatial inhomogeneities. In other words, of the
two phases in which the system phase separates, the one
rich in large cubes must always be a solid. Notice, on the
other hand, that the other phase is also unstable for size
ratios smaller than r ≈ 30. One is then tempted to con-
clude that fluid-fluid demixing is preempted by freezing
in this system. However coexistence between a large-
cube rich solid phase and a small-cube rich fluid phase
may change drastically the compositions of the coexisting
phases and thus make a fluid-solid demixing more stable
than just a freezing of the whole system. The only conclu-
sion we can draw from Fig. 3 is that the fluid-fluid demix-
ing transition found in Sec. III is always metastable.

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 3. Phase diagram of the demixing transition of par-
allel hard cubes; η is the fraction of volume occupied by all
cubes, whereas x ≡ η1/η is the fraction of volume occupied by
the large cubes. Dashed lines represent the coexistence lines
of the demixing transition for different values of r = σ1/σ2;
solid lines are the freezing spinodals for the same values of
r; finally, the dotted line is the line of critical points for all
r > rc.

V. INFINITELY ASYMMETRIC BINARY

MIXTURE: PARALLEL ADHESIVE HARD

CUBES

A. The binary mixture as an effective

one-component fluid

In order to study the phase behaviour of a very asym-
metric binary mixture let us first consider the effect on
the interaction of the big particles induced by the small
ones (depletion). To this purpose let us use a semi-grand
ensemble in which the small particles (solvent) are kept
at constant chemical potential. This is the usual exper-
imental setup in colloidal suspensions. In this situation
the element of the structure-factor matrix (20) corre-
sponding to the correlations between large particles can
be considered as the structure factor of an equivalent one-
component fluid made of the large particles interacting
via the effective potential induced by the solvent. This
turns out to be a very useful viewpoint. Let us see how
this come about.

The appropriate thermodynamic potential for the
semi-grand ensemble is obtained through a Legendre
transformation of the Helmholtz free energy, namely

Υ(µ2, [ρ1]) = F [ρ1, ρ2] − µ2

∫
dr ρ2(r) , (30)

µ2 =
δF

δρ2(r)
= β−1 lnV2ρ2(r) +

δF ex

δρ2(r)
, (31)
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where Eq. (31) provides the equilibrium density of the
solvent for a given chemical potential µ2 and a solute
density profile ρ1(r), thus allowing us to eliminate ρ2(r)
from the r.h.s. of (30). The thermodynamic potential Υ
can also be looked at as the Helmholtz free energy func-
tional of an effective one-component fluid, for which µ2

is just an external parameter tuning the interaction be-
tween its particles. Accordingly we can separate out the
ideal and excess parts,

Υ(µ2, [ρ1]) = β−1

∫
dr ρ1(r) [lnV1ρ1(r) − 1]

+ Υex(µ2, [ρ1]) , (32)

where, upon comparison with (30),

Υex(µ2, [ρ1]) ≡ β−1

∫
dr ρ2(r) [lnV2ρ2(r) − 1]

+ F ex[ρ1, ρ2] − µ2

∫
dr ρ2(r) , (33)

with ρ2(r) determined by Eq. (31).
Now, the DCF of the effective fluid will be

ceff(r, r′) = −β δ2Υex

δρ1(r)δρ1(r′)
. (34)

The first functional derivative of Υex can be written

δΥex

δρ1(r)
=

∫
ds

{
β−1 lnV2ρ2(s) +

δF ex

δρ2(s)
− µ2

}
δρ2(s)

δρ1(r)

+
δF ex

δρ1(r)
=

δF ex

δρ1(r)
, (35)

A new derivative yields

ceff(r, r′) = c11(r, r
′) +

∫
dsA(r, s)c21(s, r

′) ,
(36)

where we have used (34), the usual DCF matrix defini-
tion cij(r, s) = −βδ2F ex/δρi(r)δρj(s), and the shorthand
A(r, s) ≡ δρ2(s)/δρ1(r).

The functional A(r, s) can be readily obtained by de-
riving (31) with respect to ρ1(r), which leads to

1

ρ2(s)
A(r, s) − c12(r, s) −

∫
dtA(r, t)c22(t, s) = 0 .

(37)

Then

A(r, s) =

∫
dt c12(r, t)B(t, s) , (38)

where B is the solution to

∫
dt

{
1

ρ2(r)
δ(r − t) − c22(r, t)

}
B(t, s) = δ(r − s) .

(39)

Substitution of (38) into (36) finally leads to

ceff(r, r′) = c11(r, r
′) +

∫∫
dtds c12(r, t)B(t, s)c21(s, r

′) .
(40)

This expressions have full generality: it is valid for
any binary mixture of any kind and in any particular
phase. But we can get a bit further if we particularise
for the uniform fluid. In this case the density profiles
are constant and all the above functions depend on the
difference of their arguments, because of translational in-
variance. Then, a Fourier transform of Eq. (39) permits
to obtain explicitly B as

B̂(k) =
ρ2

1 − ρ2ĉ22(k)
. (41)

Again Fourier transforming (40) and using (41) finally
yields

ĉeff(k) = ĉ11(k) +
ρ2ĉ12(k)2

1 − ρ2ĉ22(k)
. (42)

In order to understand the meaning of Eq. (42) let us
compute the structure factor of the effective fluid:

ρ1Seff(k) =
1

ρ−1
1 − ĉeff(k)

=
ρ−1
2 − ĉ22(k)∣∣∣P−1 − Ĉ(k)

∣∣∣
;

(43)

the resulting expression is but the (1, 1)-element of the

structure-factor matrix ρŜ(k), according to its definition
(20). This was, by the way, the starting point from which
the effective fluid was defined in Ref. 38.

Further insight can be gained if we expand the second
term of (42) in powers of ρ2:

ĉeff(k) = ĉ11(k) + ρ2

∞∑

n=0

ρn
2 ĉ12(k)[ĉ22(k)]nĉ21(k) ,

(44)

where it can be explicitly seen that while the first term in
(42) represent the direct correlation between two solute
particles via the direct potential between them, the sec-
ond term accounts for the indirect contributions to this
correlation due to interaction with one, two, three, etc,
intermediate solvent particles. Is this effect that accounts
for depletion in the binary mixture of hard particles.

B. Depletion in the binary mixture of parallel hard

cubes

Let us first compare the effective attraction between
large particles induced by the small ones (depletion). A
simple way to achieve this is by computing the work we
have to make against the system in order to separate two
big particles further than the diameter of a small one.
This work will be simply P∆V , with P the pressure of

7



the fluid and ∆V the free volume lost by the small parti-
cles due to the disappearance of the overlap between the
excluded regions of the large particles (shaded in Fig. 4).

In the case of HS ∆V = (3v0/2)ǫ2 + O(ǫ3), with v0
the volume of a big sphere and ǫ the small-to-large di-
ameter ratio. It means that in the diluted regime of the
small particles (P ∼ ρ2) this work can be estimated as
∼ β−1(3/2)η2/ǫ. In the case of PHC ∆V = v0ǫ+O(ǫ2),
with v0 the volume of a big cube and ǫ the small-to-large
edge-length ratio. Again in the diluted regime of the
small cubes the work is ∼ β−1η2/ǫ

2.

σε/2

σ

(a)

σε

σε/2

σ

(b)

FIG. 4. Increment in the total volume volume, ∆V , avail-
able to the small particles when two large particles come to
touch each other (shaded region). If v0 denotes the volume
of a large particle, ∆v is (a) v0ǫ

2(3/2 + ǫ) for HS, and (b)
v0ǫ(1 + ǫ2), for PHC.

In other words, the depletion induced by PHC is much
stronger than that induced by HS. In the infinite asym-
metry limit, the binary mixture HS has been shown to
reduce to the fluid of adhesive HS, provided η2 is kept
constant.38 According to our estimation, in order to have
a similar limit for the binary mixture of PHC we must
scale the packing fraction of the small cubes as η2 = ǫξ,
with ξ a constant.

We can now assume this scaling of η2 and take the
ǫ → 0 limit in Eq. (42). A tedious but straightforward
calculation leads to

ceff(r) = cPHC(r) + cad(r) , (45)

cad(r) =
ξ

2(1 − η)2
{
δS(r) + yS(r) + 6y2V (r)

}
, (46)

where y ≡ η1/(1 − η1), cPHC(r) is the DCF of the one-
component PHC fluid [Eq. (56) of I], and

δS(r) = A(x, y, z) +A(y, z, x) +A(z, x, y) , (47)

A(u, v, w) ≡ δ(σ1 − |u|)L(v)L(w) , (48)

L(u) ≡ (σ1 − |u|)Θ(σ1 − |u|) , (49)

Θ(t) being the usual Heaviside step function. Equation
(47) represents a delta function at contact of two large
cubes, multiplied by the contact surface. The functions
S(r) and V (r) are the overlap surface and volume, re-
spectively, which already appear in the definition of cPHC

[Eq. (53) of I]. In the zero density limit ceff becomes

ceff(r) ∼ f(r) + ξδS(r) , (50)

with f(r) the Mayer function of the large cubes; so, as
in HS, in the infinitely asymmetric mixture depletion in-
duces an adhesive potential (in this case, of strength ξ).
We will henceforth refer to this effective fluid as the fluid
of parallel adhesive hard cubes (PAHC).

C. Free energy functional of the fluid of parallel

adhesive hard cubes

Let us now take the ǫ→ 0 limit in the functional (30)
to obtain the Helmholtz free-energy functional for the
fluid of PAHC. In the limit we will find that Υ → ∞;
however, this is not a problem as long as for every fixed
ǫ there is a well-defined functional giving rise to a phase
behaviour which do have a finite limit when ǫ → 0. We
will show that this is the case, and thus this functional
will be the effective functional we are looking for. We
will see that the infinite contribution is just a constant

shift in the origin of free energies, absolutely irrelevant
for the phase behaviour.

Let us begin by recalling what FMT prescribes for
the semi-grand potential (30). It is convenient to in-
troduce two dimensionless densities, η(r) ≡ σ3

1ρ1(r), and
ξ(r) ≡ σ3

1ǫ
2ρ2(r). [There is no possible confusion be-

tween the function η(r) and the total packing fraction,
because when ǫ → 0 the total packing fraction is simply
the packing fraction of the large component, i.e. the av-
erage of η(r).] In what follows we will fix the unit length
of our system by choosing σ1 = 1. In terms of these
functions the FMT form of the functional (30) is

βΥ = βF
id

+

∫
drΦ(r)

+ǫ−2

∫
dr ξ(r)

(
ln[V2ǫ

−2ξ(r)] − 1 − βµ2

)
, (51)

βF
id

=

∫
dr η(r)

(
ln[V1η(r)] − 1

)
. (52)

Equation (52) is just the ideal Helmholtz free energy of
the effective fluid, and Φ(r) is given by (8), where, in the

current notation, nα = η∗ω(α)
1 +ǫ−2ξ∗ω(α)

2 . But ξ(r) is a
dependent variable which should be eliminated in terms
of η(r) and µ2 via Eq. (31), which in our case reads

ln ξ(r) = ln z −
∑

α

∂Φ

∂nα
∗ ω(α)(r) , (53)

where we have defined the renormalised fugacity z ≡
ǫ2 exp(βµex

2 ), µex
2 ≡ µ2 − β−1 lnV2. For ξ(r) to have

a well-defined expansion in powers of ǫ we are forced to
assume that z = O(1).
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We are almost ready to carry out the ǫ-expansion. It
only remains to determine the contributions to this ex-

pansion coming from convolutions with ω
(α)
2 . Let f(u)

be an arbitrary function of a single variable u. Then

f ∗ θu
2 =

∫ u+ǫ/2

u−ǫ/2

f(t) dt = ǫf(u) +O(ǫ3) , (54)

f ∗ δu
2 =

1

2
[f(u+ ǫ/2) + f(u− ǫ/2)]

= f(u) +
ǫ2

8
f ′′(u) +O(ǫ4) . (55)

Accordingly if f(r) is an arbitrary function of r, from the
definitions (7) and the expansions above it follows

f ∗ ω(0)
2 = f + (ǫ2/8)∇2f +O(ǫ4) , (56a)

f ∗ ω(α)
2 = ǫαf +O(ǫα+2) , (56b)

for α = 3 or any vector component of α = 2 and 1.
Then, assuming ξ = ξ0 + ξ1ǫ+ ξ2ǫ

2 +O(ǫ3), the weighted
densities nα can be expanded as

n0 = ξ0ǫ
−2 + ξ1ǫ

−1 +

{
n0 + ξ2 +

1

8
∇2ξ0

}
+O(ǫ) , (57a)

n1 = ξ0uǫ
−1 + {ξ1u + n1} +O(ǫ) , (57b)

n2 = {ξ0u + n2} + ξ1uǫ+O(ǫ2) , (57c)

n3 = n3 + ǫξ0 + ǫ2ξ1 + ǫ3ξ2 +O(ǫ4) , (57d)

where u ≡ (1, 1, 1) and nα ≡ η ∗ ω(α)
1 .

From the expansions (56), (57), we can obtain

∑

α

∂Φ

∂nα
∗ ω(α)

2 = − ln(1 − n3) +
8ξ0 + n2

1 − n3
ǫ

+

{
1

8
∇ ·
( ∇n3

1 − n3

)
+

1

2

n2
2 − n2 · n2

(1 − n3)2
+

8ξ1 + n1

1 − n3
+

(27/2)ξ20 + 4ξ0n2

(1 − n3)2

}
ǫ2 +O(ǫ3) . (58)

On the other hand, ln ξ = ln ξ0 + ξ1

ξ0

ǫ+
{

ξ2

ξ0

− ξ2

1

2ξ2

0

}
ǫ2 +O(ǫ3), hence (53) implies

ξ0 = z(1 − n3) , (59a)

ξ1 = −zn2 − 8z2(1 − n3) , (59b)

ξ2 = −z
8
∇2n3 − zn1 + 12z2n2 +

37

2
z3(1 − n3) − Φad , (59c)

where for convenience we have introduced the shorthand

Φad ≡ z

8

|∇n3|2 − 4n2 · n2

1 − n3
. (60)

We have already explicitly eliminated ξ in terms of η and z, with the help of the expansion in ǫ. We can now
proceed to expand Υ itself, but before, let us rewrite the excess part appearing in (51) as

βΥex = ǫ−2

∫
ξ

[
ln

(
ξ

z(1 − n3)

)
− 1

]
+

∫ {
Φ + ǫ−2ξ ln(1 − n3)

}
; (61)

then, using (57) and (59), and defining Φ as in (8) with the nα replaced by nα (i.e., the excess free-energy functional
of the one-component PHC fluid),

Φ + ǫ−2ξ ln(1 − n3) =
{
zn2 + 4z2(1 − n3)

}
ǫ−1 (62)

+

{
zn1 − 14z2n2 −

119

2
z3(1 − n3) −

z

2

n2
2

1 − n3
+
z

8
∇ ·
[
ln(1 − n3)∇n3

]
+ Φ + Φad

}
+O(ǫ) ,

ξ ln

(
ξ

z(1 − n3)

)
− ξ = −z(1 − n3) +

{
8z2n2 + 32z3(1 − n3) +

z

2

n2
2

1 − n3

}
ǫ2 +O(ǫ3) . (63)
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Substituting these two expansions into (61), and using∫
∇ · [ln(1 − n3)∇n3] = 0, which holds if the density is

constant at the boundaries or if it is a periodic function,
we finally obtain

Υ = −Π0(ǫ)V + µ0(ǫ)N + F + F ad +O(ǫ) ,
(64)

where F is the FMT free-energy functional of the fluid
of the large PHC; V and N are, respectively, the system
volume and the number of large cubes; F ad =

∫
Φad is

the new adhesive term; and Π0 and µ0 are given by

βΠ0(ǫ) = zǫ−2 − 4z2ǫ−1 +
55

2
z3 +O(ǫ) , (65)

βµ0(ǫ) = zǫ−2 + {3z − 4z2}ǫ−1

+

{
55

2
z3 − 18z2 + 3

}
+O(ǫ) . (66)

The term −Π0(ǫ)V + µ0(ǫ)N is divergent with ǫ → 0.
It is the contribution of the small cubes to the free energy
(as a matter of fact, their density is infinite in this limit).
However it is irrelevant for the phase behaviour of the
effective fluid because it simply adds Π0 to the pressure
and µ0 to the chemical potential; as these two terms are
independent of the density, they just cancel out in the
equilibrium equations. Accordingly the final free energy
functional for the effective one-component PAHC fluid
turns out to be

FPAHC([ρ]; z) = FPHC[ρ] + F ad([ρ]; z) . (67)

As a selfconsistency test, it is straightforward to show [us-
ing Eq. (59a)] that cad(r − r

′) = −βδ2F ad/δρ(r)δρ(r′),
for the cad function defined in (46).

D. Phase behaviour of the infinitely asymmetric

binary mixture

The phase behaviour of a very asymmetric binary mix-
ture of PHC can be understood from that of the effec-
tive fluid of PAHC, whose FMT free-energy functional
we have just derived.

As concerns the phase behaviour of the uniform PAHC
fluid, from (67), (8), and (60) we can readily obtain the
free energy per unit volume,

βf = η
{
lnV1 − 1 + ln y + 3(1 − z/2)y + y2

}
.

(68)

The pressure, P = −∂F/∂V = y2∂(f/η)/∂y, turns out
to be

βP = y + 3(1 − z/2)y2 + 2y3 . (69)

This equation has a van der Waals loop; the critical point
can be found as the solution of the equations ∂P/∂η = 0
and ∂2P/∂η2 = 0,43 i.e.

1 + 6(1 − zc/2)yc + 6y2
c = 0 , (70a)

1 − zc/2 + 2yc = 0 , (70b)

which is zc = 2(1 +
√

2/3) ≈ 3.63, and yc = 1/
√

6, i.e.

ηc = 1/(1 +
√

6) ≈ 0.29. On the other hand, the equa-
tion of the spinodal (∂P/∂η = 0) of this vapor-liquid
transition is

z =
1 + 4η + η2

3η(1 − η)
; (71)

it is plotted in Fig. 5. Notice that this spinodal could
have been obtained directly from (22) by taking the limit
r → ∞, x → 1, under the constraint rη(1 − x) = ξ →
z(1−η) [the limit follows from (59a)]. Thus it is not sur-
prising that the line of critical points in Fig. 2 reaches ηc

for x→ 1. This makes clear the double interpretation of
this transition: as a vapor-liquid transition of the PAHC
fluid (with z−1 playing the role of a temperature), or as
a demixing transition of the infinitely asymmetric binary
mixture.

Freezing of this system into a simple cubic lattice is
again a continuous transition. Hence the transition line
can be determine by the procedure described in Sec. II,
i.e. as the divergence of the structure factor [Eq. (16)]
with the effective DCF (45). The result is the line shown
in Fig. 5. As it occurred for the general binary mixture
(see Sec. III), the freezing line crosses the demixing spin-
odal at a packing fraction smaller than ηc; in other words
fluid-fluid demixing is a metastable transition.

So far we have gone no further than we did in Secs.
III, IV. However this time we can study fluid-solid coex-
istence because the density profile of the solvent is absent
from the description. To proceed we again parametrise
the density of the large cubes as in (3), also with a pref-
actor ϑ to account for vacancies. We recall that the
lattice parameter is related to this occupancy ratio by
d = (ϑ/η)1/3. The ideal contribution to the free energy
per particle, Ψ, is again given by (14) (adding lnϑ from
the vacancies), and the hard-core part of the excess con-
tribution is given by (15) [with n3(r) = ϑp(x)p(y)p(z)].
We now need to work out the adhesive term. To this
purpose first notice that

p′(u)2 − q(u)2 = −4

∞∑

n,m=−∞

g(u− nd+ 1/2)

×g(u−md− 1/2) ; (72)

hence the adhesive free energy per particle can be written

Ψad = −3

2
ϑz

∞∑

n,m=−∞

∫ d/2

−d/2

dx

×g(x− nd+ 1/2)g(x−md− 1/2)U(x)

= −3

2
ϑz

∫ ∞

−∞

dx g(x)

×
[

∞∑

n=−∞

g(x− nd+ 1)

]
U(x+ 1/2) , (73)
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where U(x) is defined as

U(x) ≡
∫ d/2

−d/2

dy

∫ d/2

−d/2

dz
p(y)2p(z)2

1 − ϑp(x)p(y)p(z)
,

(74)

and it is periodic with period d [we have made use of
periodicity in obtaining (73)].

It is convenient to rewrite Eq. (74) integrating by part
with respect to both variables, y and z; in doing so this
equation becomes

U(x) =

∫ d/2

−d/2

dy p′(y)

∫ d/2

−d/2

dz p′(z)V (x, y, z) , (75)

V (r) ≡ T (y)p(y)T (z)p(z)
4− 3n3(r) + 3n3(r)

2

1 − n3(r)
, (76)

where T (u) = u if u ∈ (−d/2, d/2) [the only relevant in-
terval in (75)] and it is d-periodic. Function V (x, y, z) is
then also d-periodic in all its three arguments; accord-
ingly Eq. (75) can be rewritten as

U(x) =

∫ ∞

−∞

dy g(y)

∫ ∞

−∞

dz g(z) [V (x, y + 1/2, z + 1/2)− 2V (x, y + 1/2, z − 1/2) + V (x, y − 1/2, z − 1/2)] ,
(77)

and therefore

Ψad = −3

2
ϑz

∫ ∞

−∞

dx g(x)

∫ ∞

−∞

dy g(y)

∫ ∞

−∞

dz g(z)

[
∞∑

n=−∞

g(x− nd+ 1)

]

× [V (x+ 1/2, y+ 1/2, z + 1/2) − 2V (x+ 1/2, y + 1/2, z − 1/2) + V (x+ 1/2, y− 1/2, z − 1/2)] , (78)

also suitable for Gauss-Hermite numerical integration.
In order to understand the effect of the adhesive con-

tribution (73) let us see its asymptotic behaviour when
α→ ∞ and d→ 1+ (equivalently ϑ→ η+), a limit which
would represent a close packed solid. From its definition
(10) p(u) ∼ 1 in this limit; thus U(x) ∼ 1/(1 − η). On
the other hand, g(u) is very sharply peaked, so

∫ ∞

−∞

dx g(x)
∞∑

n=−∞

g(x− nd+ 1) ∼ g(0) =
(α
π

)1/2

,

therefore

Ψad ∼ −3

2
z

η

1 − η

(α
π

)1/2

→ −∞ . (79)

On the other hand Ψex = O(1) in this limit, while
Ψid ∼ 3 ln g(0) ∼ (3/2) lnα. In other words, the to-
tal free energy per particle of the effective fluid mono-
tonically decreases as the system approaches the close
packing, regardless the value of density and solvent fu-
gacity. This means that the system always collapses, i.e.
the equilibrium phase behaviour is always a close-packed
solid coexisting with an infinitely diluted gas. This sin-
gular phase diagram is not exclusive of PAHC. For ad-
hesive HS, the adhesiveness vs. packing fraction phase
diagram (z plays the role of adhesiveness for PAHC) has
recently been mapped out from simulations of the square-
well fluid in the limit of narrow and deep wells.34 These
simulations prove that the only stable phases of this sys-
tem are also a close-packed solid and an infinitely diluted
gas. The reason for this pathology was put forward some
years ago by Stell,44 who showed that the partition func-
tion of adhesive HS diverges if the number of particles

is N ≥ 12 (precisely the coordination number of the fcc
solid lattice).

0 0.5 1 
η

0.1

1

10

z

MF

MS

U

FIG. 5. Solvent fugacity, z, vs. solute packing fraction,
η, of the infinitely asymmetric binary mixture of PHC. The
thick solid line separates the unstable region (U) from the
metastable one; the thin one marks the (continuous) transi-
tion from a metastable fluid (MF) to a metastable solid (MS);
the dashed one is the fluid-fluid spinodal.

In spite of the above we have seen that, as a function
of α and ϑ, the free energy per particle exhibits local
minima at any value of z for some range of densities,
the smaller z the wider this range. These local minima
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correspond to metastable phases. The upper bound to
the packing fractions at which local minima exist for a
given z can be determined as the point where the com-
pressibility vanishes. This upper bound, as a function of
z, appears in Fig. 5. This figure shows the metastable
phases. Notice that the region of metastability widens as
z decreases. At low z these metastable phases are sepa-
rated from the “collapse” by a large free energy barrier,
so the system spends a long time in them before eventu-
ally becoming a close-packed solid. As a matter of fact,
if the system is prepared as a metastable solid at low z,
for a long time it will show a pseudo-coexistence between
two solid phases (an expanded solid and a close-packed
solid). The situation resembles the isostructural solid-
solid transition reported to occur in some colloidal fluids
with a narrow and deep attractive well.34,35 At higher z
the same pseudo-coexistence should be observed between
a diluted fluid and a close-packed solid.

It is interesting to compare this phase behaviour with
what has been determined to occur for adhesive HS using
an effective-liquid DFT.45 Fluid and solid also appear as
local minima of the free energy per particle as a function
of the gaussian width; however, above a certain line the
free energy becomes concave up to close packing. This
puzzling behaviour was interpreted in Ref. 45 as a per-
colation transition. In the light of our findings it is the
equivalent to the instability line of Fig. 5. The fluid of ad-
hesive HS also collapses into a close-packed solid.34 The
reason why this collapse has not been observed in Ref.
45 is that the theory used there does not account for va-
cancies, and this forces the lattice parameter to be larger
than 1 at any packing fraction. The instability manifests
itself as the reported loss of convexity of the free energy.

E. Polydispersity in the large cubes

The singularity of the adhesive potential can be
avoided by introducing polydispersity in the size of the
particles.44,46 It is clear that this prevents the system to
form a perfectly packed solid. To see this effect on the bi-
nary mixture we have introduced a small amount of poly-
dispersity in the size of the large cubes. It is very easy
to realise that starting off from a mixture of polydisperse
large cubes and small cubes and repeating the process
described in Sec. VC we end up with exactly the same
form of the functional (67), with the nα’s now replaced
by those corresponding to the polydisperse mixture.

In order to make the simplest choice we consider the
cubes as parallelepipeds and choose the length of each
axis independently from a gaussian distribution of mean
1 and variance ∆σ. This particular choice has two im-
portant advantages (they will be made clear below): (i)
the free energy of the fluid phase is the same as that of
the monodisperse system (hence its phase behaviour as
well), and (ii) formally the expressions for the free en-
ergy of the solid phase change very little. It also has two

drawbacks: (i) particles are not cubic anymore, and (ii)
there is a nonzero contribution in the negative lengths.
As these two inconvenients disappear when ∆σ → 0 they
can be overcome by choosing ∆σ ≪ 1. This choice also
allows us to make two more simplifying assumptions: (i)
the ordered phase must be a substitutional solid, i.e. the
density profile can be expressed as ρ(r)P(σ), with P the
normalised size distribution, σ ≡ (σx, σy, σz), and (ii)
phase separation induced by polydispersity47 can be ig-
nored.

Then, according to the definition of the nα’s

nα(r) =

∫
dσP(σ)ρ ∗ ω(α)

σ
(r) = ρ ∗ ω̃(α)(r) ,

(80)

i.e. it has the same definition as in the monodis-
perse case, but the weights are redefined as ω̃(α)(r) ≡∫
dσP(σ)ω

(α)
σ (r). This amounts to replacing θu and δu

in (7) by

θ̃u =
1

2

[
1 − erf

(√
2
|u| − 1/2

∆σ

)]
, (81a)

δ̃u =
1√

2π∆σ

∑

{±}

exp

{
−2

(u± 1/2)2

∆σ2

}
, (81b)

which are like smoothed counterparts of the original
weights. Since

∫∞

−∞ du θ̃u =
∫∞

−∞ du δ̃u = 1, it follows
that the free energy of the uniform fluid is the same as
that of the monodisperse system. Hence the fluid-fluid
spinodal is the same as that shown in Fig. 5.

We can determine the coexistence between the two
fluid phases by means of the usual double tangent
construction.43 Figure 6 shows the resulting coexistence
line.

We can also assume a solid-like density profile as in
the monodisperse case. Surprisingly enough, in spite of
the striking difference of the smoothed weights defined
by (81) with respect to the original ones, when we obtain
the corresponding weighted densities and work out the
expressions a little bit, it turns out that the free-energy
per particle of the polydisperse solid is simply given by
Ψ = Ψpoly + Ψid + Ψex + Ψad, where the last three con-
tributions are given by Eqs. (14), (15), and (78), with
the slight modification that the parameter α appearing
in the definitions (3b) and (9) must be replaced by

α̃ =
α

1 + α∆σ2/2
(82)

(of course, in these expressions σ = 1, the mean value,
and Ψid carries the additional lnϑ to account for vacan-
cies), and where Ψpoly = − ln

(√
2π∆σ

)
−1 is the entropy

of mixing (an irrelevant constant).
From Eq. (82) it can be seen that no matter how small

∆σ be, for small α’s (α ≪ ∆σ−2) α̃ ∼ α, and the sys-
tem is “blind” to polydispersity, whereas for large α’s
(α≫ ∆σ−2) α̃ ∼ 2∆σ−2, i.e. the system never collapses.
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As a consequence the singular behaviour of the monodis-
perse system is removed, and we can readily determine
phase equilibria. A typical result for a small value of ∆σ
is shown in Fig. 6. This figure reveals several remarkable
features. Firstly, it shows that the fluid-fluid transition
is metastable. Secondly, there is an isostructural solid-
solid transition for a certain interval of z. In this inter-
val the expanded solid (S1) appears after a continuous
transition from the fluid phase (F). The expanded solid
(S1)-dense solid (S2) transition ends at a critical point,
zs, below which we can only find a fluid and a single
solid, separated by a continuous transition. Thirdly, as
z increases from zs the expanded solid packing fraction
decreases down to meeting the freezing packing fraction.
Above the point where this occurs coexistence is between
a fluid and a dense solid (S2), the former quickly be-
coming highly diluted and the latter highly packed. No-
tice the strong resemblance between this true equilibrium
phase behaviour and the metastable behaviour described
to occur the monodisperse PAHC fluid (Sec. VD).

 0 0.5 1
η

0.1

1

10

z

F S1
S2

FIG. 6. Same as Fig. 5 for the polydisperse PAHC fluid
(∆σ = 0.045). The thick solid line marks the fluid-solid or
solid-solid coexistence; the thin one marks again the (contin-
uous) fluid-solid transition below the coexistence region; the
dotted line is the metastable fluid-fluid coexistence.

VI. DISCUSSION AND CONCLUSIONS

The fluid of PHC is a rather academic one which
however has the great advantage of being analytically
tractable in contexts where the fluid of HS is not, thanks
to its adequacy to a fundamental measure description.
Yet, with some peculiarities due to the lack of rota-
tional symmetry,8,7 the physics it reveals is similar to
that of more realistic fluids. It then allows for theoreti-
cal investigation on fluid phase behaviour otherwise very

difficult (the closely related fluid of parallel hard paral-
lelepipeds has been recently used in the context of as-
sociating fluids48 and liquid crystals49). The main con-
tribution of the fluid of PHC is to the understanding
of the phase diagram of a binary mixture. This fluid
proved to undergo stronger depletion than HS.9,10 How-
ever, as it has been shown in this work, this feature is
irrelevant when the effect of depletion in the solid phase
is accounted for. Spatial order of the large component
strongly enhances demixing, so that fluid-solid demixing
becomes the main scenario of the phase diagram of bi-
nary mixtures. But this transition can be preempted by
the freezing of the large component, and when this hap-
pens the system phase separates into two fcc solids with
a different lattice parameter. This effect, very clearly
shown here for the mixture of PHC (in the limit of infi-
nite asymmetry), has also been confirmed in simulations
of HS interacting via an effective depletion potential,32,33

and very recently also in direct simulations on the true bi-
nary mixture.36 The simulations also show that the solid-
solid transition disappears as the asymmetry of the two
components decreases, but it is anyhow categoric with
respect to the fluid-solid nature of demixing.

A final remark concerns the two-dimensional mixture.
We have made preliminary calculations in this case and
have found an adhesive contribution similar to the three-
dimensional one. We have nor carried out a detailed anal-
ysis yet, but the same collapse is present in this case, thus
indicating a behaviour qualitatively similar to the one
shown here, except that we cannot say anything on the
existence of a solid-solid transition. This results are in
perfect qualitative agreement with recent simulations.50

ACKNOWLEDGMENTS

We like to thank Daan Frenkel, Richard Sear, and Pe-
dro Tarazona for very useful discussions, and Eduardo
Jagla for kindly sending us his simulations data. JAC’s
work is part of the research project PB96–0119 of the
Dirección General de Enseñanza Superior (Spain).
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