Asymmetric Supramolecular Primary Amine Catalysis in Aqueous Buffer: Connections of Selective Recognition and Asymmetric Catalysis

Abstract

A new approach of asymmetric supramolecular catalysis has been developed by combining the supramolecular recognition of β-cyclodextrin (β-CD) and the superior property of a chiral primary amine catalyst. The resulted β-CD enamine catalysts could effectively promote asymmetric direct aldol reactions with excellent enantioselectivity in an aqueous buffer solution (pH = 4.80). The identified optimal catalyst CD-1 shows interesting characteristics of supramolecular catalysis with selective recognition of aldol acceptors and donors. A detailed mechanistic investigation on such supramolecular catalysis was conducted with the aid of NMR, fluorescence, circular dichroism, and ESI-MS analysis. It is revealed that the reaction is initialized first by binding substrates into the cyclodextrin cavity via a synergistic action of hydrophobic interaction and noncovalent interaction with the CD-1 side chain. A rate-limiting enamine forming step is then involved which is followed by the product-generating C−C bond formation. A subsequent product release from the cavity completes the catalytic cycle. The possible connections between molecular recognition and asymmetric catalysis as well as their relevance to enamine catalysis in both natural enzymes and organocatalysts are discussed based on rational analysis

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0