720,272 research outputs found

    From Cavity Electromechanics to Cavity Optomechanics

    Full text link
    We present an overview of experimental work to embed high-Q mesoscopic mechanical oscillators in microwave and optical cavities. Based upon recent progress, the prospect for a broad field of "cavity quantum mechanics" is very real. These systems introduce mesoscopic mechanical oscillators as a new quantum resource and also inherently couple their motion to photons throughout the electromagnetic spectrum.Comment: 8 pages, 6 figures, ICAP proceedings submissio

    Effects of mode degeneracy in the LIGO Livingston Observatory recycling cavity

    Get PDF
    We analyze the electromagnetic fields in a Pound-Drever-Hall locked, marginally unstable, Fabry-Perot cavity as a function of small changes in the cavity length during resonance. More specifically, we compare the results of a detailed numerical model with the behavior of the recycling cavity of the Laser Interferometer Gravitational-wave Observatory (LIGO) detector that is located in Livingston, Louisiana. In the interferometer's normal mode of operation, the recycling cavity is stabilized by inducing a thermal lens in the cavity mirrors with an external CO2 laser. During the study described here, this thermal compensation system was not operating, causing the cavity to be marginally optically unstable and cavity modes to become degenerate. In contrast to stable optical cavities, the modal content of the resonating beam in the uncompensated recycling cavity is significantly altered by very small cavity length changes. This modifies the error signals used to control the cavity length in such a way that the zero crossing point is no longer the point of maximum power in the cavity nor is it the point where the input beam mode in the cavity is maximized.Comment: Eight pages in two-column format. Six color figures. To be published JOSA

    Observation of dressed intra-cavity dark states

    Full text link
    Cavity electromagnetically induced transparency in a coherently prepared cavity-atom system is manifested as a narrow transmission peak of a weak probe laser coupled into the cavity mode. We show that with a resonant pump laser coupling the cavity-confined four-level atoms from free space, the narrow transmission peak of the cavity EIT is split into two peaks. The two peaks represent the dressed intra-cavity dark states and have a frequency separation approximately equal to the Rabi frequency of the free-space pump laser. We observed experimentally the dressed intra-cavity dark states in cold Rb atoms confined in a cavity and the experimental results agree with theoretical calculations based on a semiclassical analysis.Comment: 10 pages, 6 figure

    Motion Induced Radiation from a Vibrating Cavity

    Get PDF
    We study the radiation emitted by a cavity moving in vacuum. We give a quantitative estimate of the photon production inside the cavity as well as of the photon flux radiated from the cavity. A resonance enhancement occurs not only when the cavity length is modulated but also for a global oscillation of the cavity. For a high finesse cavity the emitted radiation surpasses radiation from a single mirror by orders of magnitude.Comment: 4 pages, to appear in Physical Review Letter

    Cavity enhanced storage - preparing for high efficiency quantum memories

    Full text link
    Cavity assisted quantum memory storage has been proposed [PRA 82, 022310 (2010), PRA 82, 022311 (2010)] for creating efficient (close to unity) quantum memories using weakly absorbing materials. Using this approach we experimentally demonstrate a significant (about 20-fold) enhancement in quantum memory efficiency compared to the no cavity case. A strong dispersion originating from absorption engineering inside the cavity was observed, which directly affect the cavity line-width. A more than 3 orders of magnitude reduction of cavity mode spacing and cavity line-width from GHz to MHz was observed. We are not aware of any previous observation of several orders of magnitudes cavity mode spacing and cavity line-width reduction due to slow light effects.Comment: 13 pages, 5 figure

    Cavity QED with optically transported atoms

    Full text link
    Ultracold 87^{87}Rb atoms are delivered into a high-finesse optical micro-cavity using a translating optical lattice trap and detected via the cavity field. The atoms are loaded into an optical lattice from a magneto-optic trap (MOT) and transported 1.5 cm into the cavity. Our cavity satisfies the strong-coupling requirements for a single intracavity atom, thus permitting real-time observation of single atoms transported into the cavity. This transport scheme enables us to vary the number of intracavity atoms from 1 to >>100 corresponding to a maximum atomic cooperativity parameter of 5400, the highest value ever achieved in an atom--cavity system. When many atoms are loaded into the cavity, optical bistability is directly measured in real-time cavity transmission.Comment: 4 figures, 4 page

    Cavity basics

    Full text link
    The fields in rectangular and circular waveguides are derived from Maxwell's equations by superposition of plane waves. Subsequently the results are applied to explain cavity modes. Interaction of the cavity modes with a charged particle beam leads to the fundamental parameters used to describe the performance of accelerating cavities. Finally an introduction to multi-gap cavities is given by the example of travelling-wave structures.Comment: 17 pages, contribution to the CAS - CERN Accelerator School: Specialised Course on RF for Accelerators; 8 - 17 Jun 2010, Ebeltoft, Denmar
    • …
    corecore