976,175 research outputs found

    Effects of mode degeneracy in the LIGO Livingston Observatory recycling cavity

    Get PDF
    We analyze the electromagnetic fields in a Pound-Drever-Hall locked, marginally unstable, Fabry-Perot cavity as a function of small changes in the cavity length during resonance. More specifically, we compare the results of a detailed numerical model with the behavior of the recycling cavity of the Laser Interferometer Gravitational-wave Observatory (LIGO) detector that is located in Livingston, Louisiana. In the interferometer's normal mode of operation, the recycling cavity is stabilized by inducing a thermal lens in the cavity mirrors with an external CO2 laser. During the study described here, this thermal compensation system was not operating, causing the cavity to be marginally optically unstable and cavity modes to become degenerate. In contrast to stable optical cavities, the modal content of the resonating beam in the uncompensated recycling cavity is significantly altered by very small cavity length changes. This modifies the error signals used to control the cavity length in such a way that the zero crossing point is no longer the point of maximum power in the cavity nor is it the point where the input beam mode in the cavity is maximized.Comment: Eight pages in two-column format. Six color figures. To be published JOSA

    Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors

    Get PDF
    For optical pulse incidence as compared with continuous-wave incidence, the enhancement of two-photon absorption inside a high-finesse planar microcavity is reduced, the pulse inside the cavity and the cavity spectrum are broadened. The analysis shows that for transform-limited pulse incidence, the true pulsewidth and the cavity frequency resolution can be estimated if the cavity lifetime or the cavity bandwidth has been obtained from the reflection or transmission spectrum of the cavit

    Field Fluctuations in a One-Dimensional Cavity with a Mobile Wall

    Full text link
    We consider a scalar field in a one-dimensional cavity with a mobile wall. The wall is assumed bounded by a harmonic potential and its mechanical degrees of freedom are treated quantum mechanically. The possible motion of the wall makes the cavity length variable, and yields a wall-field interaction and an effective interaction among the modes of the cavity. We consider the ground state of the coupled system and calculate the average number of virtual excitations of the cavity modes induced by the wall-field interaction, as well as the average value of the field energy density. We compare our results with analogous quantities for a cavity with fixed walls, and show a correction to the Casimir potential energy between the cavity walls. We also find a change of the field energy density in the cavity, particularly relevant in the proximity of the mobile wall, yielding a correction to the Casimir-Polder interaction with a polarizable body placed inside the cavity. Similarities and differences of our results with the dynamical Casimir effect are also discussed.Comment: 5 pages, 2 figure

    From Cavity Electromechanics to Cavity Optomechanics

    Full text link
    We present an overview of experimental work to embed high-Q mesoscopic mechanical oscillators in microwave and optical cavities. Based upon recent progress, the prospect for a broad field of "cavity quantum mechanics" is very real. These systems introduce mesoscopic mechanical oscillators as a new quantum resource and also inherently couple their motion to photons throughout the electromagnetic spectrum.Comment: 8 pages, 6 figures, ICAP proceedings submissio

    Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED

    Full text link
    We propose a scheme to implement the 121\to2 universal quantum cloning machine of Buzek et.al [Phys. Rev.A 54, 1844(1996)] in the context of cavity QED. The scheme requires cavity-assisted collision processes between atoms, which cross through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited to face the decoherence problem. That's why the requirements on the cavity quality factor can be loosened.Comment: to appear in PR

    Cavity enhanced storage - preparing for high efficiency quantum memories

    Full text link
    Cavity assisted quantum memory storage has been proposed [PRA 82, 022310 (2010), PRA 82, 022311 (2010)] for creating efficient (close to unity) quantum memories using weakly absorbing materials. Using this approach we experimentally demonstrate a significant (about 20-fold) enhancement in quantum memory efficiency compared to the no cavity case. A strong dispersion originating from absorption engineering inside the cavity was observed, which directly affect the cavity line-width. A more than 3 orders of magnitude reduction of cavity mode spacing and cavity line-width from GHz to MHz was observed. We are not aware of any previous observation of several orders of magnitudes cavity mode spacing and cavity line-width reduction due to slow light effects.Comment: 13 pages, 5 figure
    corecore