Abstract

We present a facile method to grow millimeter-size, hexagon-shaped, monolayer, single-crystal graphene domains on commercial metal foils. After a brief <i>in situ</i> treatment, namely, melting and subsequent resolidification of copper at atmospheric pressure, a smooth surface is obtained, resulting in the low nucleation density necessary for the growth of large-size single-crystal graphene domains. Comparison with other pretreatment methods reveals the importance of copper surface morphology and the critical role of the melting–resolidification pretreatment. The effect of important growth process parameters is also studied to determine their roles in achieving low nucleation density. Insight into the growth mechanism has thus been gained. Raman spectroscopy and selected area electron diffraction confirm that the synthesized millimeter-size graphene domains are high-quality monolayer single crystals with zigzag edge terminations

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.