271,768 research outputs found

    Delignification by Using Alkaline-acid Pretreatment on Bioethanol Production From Rice Straw

    Get PDF
    Rice straw as agricultural waste contains cellulose that potentially to produce ethanol. However, it has lignin content that will inhibit the enzyme in converting glucose into ethanol. In this research, pretreatment steps aim to release and breakdown lignin in rice straw. Pretreatment was conducted in two phases, alkaline pretreatment using NaOH (1%,2%,3%,4%,and 5%) and acid pretreatment using 1% H2SO4 with various heating time (30, 60, 90, 120 and 150 minutes) and used for ethanol production by means of Simultaneous Saccharification and Fermentation (SSF) with cellulose enzyme and Saccharomyces Cerevisiae. The results showed that higher NaOH concentration using on alkaline pretreatment and longer heating time on acid pretreatment made morbe degraded lignin content. The highest ethanol content produced was 48.38% from delignification treatment with NaOH concentration of 5% and acid pretreatment time of 150 minutes

    Literature review of physical and chemical pretreatment processes for lignocellulosic biomass

    Get PDF
    Different pretreatment technologies published in public literature are described in terms of the mechanisms involved, advantages and disadvantages, and economic assessment. Pretreatment technologies for lignocellulosic biomass include biological, mechanical, chemical methods and various combinations thereof. The choice of the optimum pretreatment process depends very much on the objective of the biomass pretreatment, its economic assessment and environmental impact. Only a small number of pretreatment methods has been reported as being potentially cost-effective thus far. These include steam explosion, liquid hot water, concentrated acid hydrolysis and dilute acid pretreatments

    Heat-shock pretreatment inhibits sorbitol-induced apoptosis in K562, U937 and HeLa cells.

    Get PDF
    The aim of this study was to determine whether heat-shock pretreatment exerted a protective effect against sorbitol-induced apoptotic cell death in K562, U937 and HeLa cell lines and whether such protection was associated with a decreased cytochrome c release from mithocondria and a decreased activation of caspase-9 and -3. Following heat-shock pretreatment (42 6 0.3C for 1 hr), these cell lines were exposed to sorbitol for 1 hr. Apoptosis was evaluated by DNA fragmentation, whereas caspase-9,-3 activation, cytochrome c release and heat-shock protein70 (HSP70) were assayed by Western Blot. Sorbitol exposure-induced apoptosis in these different cell lines with a marked activation of caspase-9 and caspase- 3, whereas heat-shock pretreatment before sorbitol exposure, induced expression of HSP70 and inhibited sorbitol-mediated cytochrome c release and subsequent activation of caspase-9 and caspase- 3. Similarly, overexpression of HSP70 in the three cell lines studied prevented caspase-9 cleavage and activation as well as cell death. Furthermore, we showed that the mRNA expression of iNOS decreased during both the heat-shock treatment and heat-shock pretreatment before sorbitol exposure. By contrast, the expression of Cu-Zn superoxide dismutase (SOD) and Mn-SOD proteins increased during heat-shock pretreatment before sorbitol exposure. We conclude that, heat-shock pretreatment protects different cell lines against sorbitol-induced apoptosis through a mechanism that is likely to involve SOD family members

    A study of 15N14N isotopic exchange over cobalt molybdenum nitrides

    Get PDF
    The 14N/15N isotopic exchange pathways over Co3Mo3N, a material of interest as an ammonia synthesis catalyst and for the development of nitrogen transfer reactions, have been investigated. Both the homomolecular and heterolytic exchange processes have been studied, and it has been shown that lattice nitrogen species are exchangeable. The exchange behavior was found to be a strong function of pretreatment with ca. 25% of lattice N atoms being exchanged after 40 min at 600 °C after N2 pretreatment at 700 °C compared to only 6% following similar Ar pretreatment. This observation, for which the potential contribution of adsorbed N species can be discounted, is significant in terms of the application of this material. In the case of the Co6Mo6N phase, regeneration to Co3Mo3N under 15N2 at 600 °C occurs concurrently with 14N15N formation. These observations demonstrate the reactivity of nitrogen in the Co–Mo–N system to be a strong function of pretreatment and worthy of further consideration

    Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection.

    Get PDF
    Prebiotic oligosaccharides are used to modulate enteric pathogens and reduce pathogen shedding. The interactions with prebiotics that alter Listeria monocytogenes infection are not yet clearly delineated. L. monocytogenes cellular invasion requires a concerted manipulation of host epithelial cell membrane receptors to initiate internalization and infection often via receptor glycosylation. Bacterial interactions with host glycans are intimately involved in modulating cellular responses through signaling cascades at the membrane and in intracellular compartments. Characterizing the mechanisms underpinning these modulations is essential for predictive use of dietary prebiotics to diminish pathogen association. We demonstrated that human milk oligosaccharide (HMO) pretreatment of colonic epithelial cells (Caco-2) led to a 50% decrease in Listeria association, while Biomos pretreatment increased host association by 150%. L. monocytogenes-induced gene expression changes due to oligosaccharide pretreatment revealed global alterations in host signaling pathways that resulted in differential subcellular localization of L. monocytogenes during early infection. Ultimately, HMO pretreatment led to bacterial clearance in Caco-2 cells via induction of the unfolded protein response and eIF2 signaling, while Biomos pretreatment resulted in the induction of host autophagy and L. monocytogenes vacuolar escape earlier in the infection progression. This study demonstrates the capacity of prebiotic oligosaccharides to minimize infection through induction of host-intrinsic protective responses

    Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO)

    Get PDF
    The aim of this study was to evaluate for the first time the effect of a thermo-alkaline pretreatment with lime (CaO) on microalgae anaerobic digestion. The pretreatment was carried out by adding different CaO doses (4 and 10%) at different temperatures (room temperature (25 °C), 55 and 72 °C). The exposure time was 4 days for pretreatments at 25 °C, and 24 h for pretreatments at 55 and 72 °C. Following, a biochemical methane potential test was conducted with pretreated and untreated microalgae. According to the results, the pretreatment enhanced proteins solubilisation by 32.4% and carbohydrates solubilisation by 31.4% with the highest lime dose and temperature (10% CaO and 72 °C). Furthermore, anaerobic digestion kinetics were improved in all cases (from 0.08 to 0.14 day- 1 for untreated and pretreated microalgae, respectively). The maximum biochemical methane potential increase (25%) was achieved with 10% CaO at 72 °C, in accordance with the highest biomass solubilisation. Thus, lime pretreatment appears as a potential strategy to improve microalgae anaerobic digestion.Peer ReviewedPostprint (author's final draft

    Development of an estimation model for the evaluation of the energy requirement of dilute acid pretreatments of biomass

    Get PDF
    This study aims to develop a mathematical model to evaluate the energy required by pretreatment processes used in the production of second generation ethanol. A dilute acid pretreatment process reported by National Renewable Energy Laboratory (NREL) was selected as an example for the model's development. The energy demand of the pretreatment process was evaluated by considering the change of internal energy of the substances, the reaction energy, the heat lost and the work done to/by the system based on a number of simplifying assumptions. Sensitivity analyses were performed on the solid loading rate, temperature, acid concentration and water evaporation rate. The results from the sensitivity analyses established that the solids loading rate had the most significant impact on the energy demand. The model was then verified with data from the NREL benchmark process. Application of this model on other dilute acid pretreatment processes reported in the literature illustrated that although similar sugar yields were reported by several studies, the energy required by the different pretreatments varied significantly

    Argon plasma treatment techniques on steel and effects on diamond-like carbon structure and delamination

    Get PDF
    Copyright © 2011 Elsevier B.V. All rights reserved.We demonstrate alteration in diamond-like carbon (DLC) film structure, chemistry and adhesion on steel, related to variation in the argon plasma pretreatment stage of plasma enhanced chemical vapour deposition. We relate these changes to the alteration in substrate structure, crystallinity and chemistry due to application of an argon plasma process with negative self bias up to 600 V. Adhesion of the DLC film to the substrate was assessed by examination of the spallated fraction of the film following controlled deformation. Films with no pretreatment step immediately delaminated. At 300 V pretreatment, the spallated fraction is 8.2%, reducing to 1.2% at 450 V and 0.02% at 600V. For bias voltages below 450V the adhesion enhancement is explained by a reduction in carbon contamination on the substrate surface, from 59at.% with no treatment to 26at.% at 450V, concurrently with a decrease in the surface roughness, Rq, from 31.5nm to 18.9nm. With a pretreatment bias voltage of 600V a nanocrystalline, nanostructured surface is formed, related to removal of chromium and relaxation of stress; X-ray diffraction indicates this phase is incipient at 450V. In addition to improving film adhesion, the nanotexturing of the substrate prior to film deposition results in a DLC film that shows an increase in sp3/sp2 ratio from 1.2 to 1.5, a reduction in surface roughness from 31nm to 21nm, and DLC nodular asperities with reduced diameter and increased uniformity of size and arrangement. These findings are consistent with the substrate alterations due to the plasma pretreatment resulting in limitation of surface diffusion in the growth process. This suggests that in addition to deposition phase processes, the parameters of the pretreatment process need to be considered when designing diamond-like carbon coatings.This work is partially supported by the Technology Strategy Board, reference BD266E

    Pretreatment of secondary effluents in view of optimal ozone-based AOP removal of trace organic contaminants : bench-scale comparison of efficiency and energy consumption

    Get PDF
    This study compares the performance of several ozone-based advanced oxidation processes (AOPs), in combination with filtration, in terms of trace organic contaminant (TrOC) removal efficiency and energy and cost requirement. It was shown that the hydroxyl radical ((OH)-O-center dot) scavenging rate of the secondary wastewater effluent decreased as a result of an additional pretreatment step, leading to an increase of ozone and (OH)-O-center dot exposures at the same ozone dose. Adding filtration such as sand filtration or granular activated carbon filtration (GACF) as a pretreatment increased the removal efficiency of TrOCs by all tested ozone-based AOPs and reduced the minimum effective ozone dose for TrOC elimination. When the applied ozone dose is more than this minimum effective ozone dose, the elimination of TrOCs can be observed. For example, because of the use of anion resin filtration, 17 alpha-ethinylestradiol elimination contributed by the process of ozone-based AOP increased from 34.6 to 42.1% at an ozone dose of 1.0 g O-3/g dissolved organic carbon. Ozone-based AOPs coupled with filtration as a pretreatment were found to be more cost-efficient than the single AOPs at all ozone dose levels. The energy consumption of ozone-based AOPs was decreased by more than 25% when applying GACF as a pretreatment. In comparison with other filtration techniques, the pretreatment of secondary effluents by GACF before ozonation was proven to be the most cost-effective method for TrOC elimination

    Association between pretreatment haemoglobin levels and morphometric characteristics of the tumour, response to neoadjuvant treatment and long-term outcomes in patients with locally advanced rectal cancers

    Get PDF
    Aim The study was carried out to investigate whether pretreatment haemoglobin (Hb) levels act as a biomar- ker in the management of patients with locally advanced rectal cancer. Method\ud We prospectively collected data on all patients within our cancer network with localized low rectal cancer treated with preoperative radiotherapy/chemora- diotherapy at Mount Vernon Centre for Cancer Treat- ment between March 1994 and July 2008. Pretreatment Hb level was assessed as an independent variable for the whole study sample and dichotomised at a value of 12 g/dl. A multivariate analysis of covariance (MANCOVA) was conducted on parameters that had significant association on univariate analysis of covariance (ANCOVA) and cor- relational (Kendall tau/Pearson) analyses. Kaplan – Meier survival analysis and Cox proportional hazard models were used to determine significant prognostic markers. Statistical significance was set at 0.05. Results 463 patients (male/female 2:1; median age = 66 years, interquartile range = 56.5 – 73.0) were included in the analysis. There was significant tumour response of T stage ( P < 0.001) and N stage ( P < 0.001), with 17.6% of patients achieving a pathological complete response. Pretreatment Hb value was inversely related to the craniocaudal vertical tumour length ( P = 0.02) and pretreatment T stage of the tumour ( P = 0.01). Patients with Hb levels of < 12 g/dl and moderately differenti- ated adenocarcinoma were less responsive. Local recur- rence was more common in patients with a pretreatment Hb of < 12 g/dl (hazard ratio = 1.78) over a median follow up of 24 months, but this was not statistically significant ( P = 0.08). Conclusion The pretreatment Hb level might be used as a biomarker of rectal tumour morphology, response to neoadjuvant chemoradiation and risk of local recur- renc
    corecore