Pharmacokinetics (PK), Pharmacodynamics (PD) and Integrated PK/PD Modeling of a Novel Long Acting FGF21 Clinical Candidate PF-05231023 in Diet-Induced Obese and Leptin-Deficient Obese Mice

Abstract

<div><p>Pharmacological administration of fibroblast growth factor 21 (FGF21) improves metabolic profile in preclinical species and humans. FGF21 exerts its metabolic effects through formation of beta-klotho (KLB)/FGF receptor 1c FGFR1c complex and subsequent signaling. Data from various <i>in vitro</i> systems demonstrate the intact C- and N-terminus of FGF21 is required for binding with KLB, and interaction with FGFR1c, respectively. However the relative roles of the termini for <i>in vivo</i> pharmacological effects are unclear. Here we report PF-05231023, a long-acting FGF21 analogue which is unique in that the half-life and subcutaneous (SC) bioavailability of the intact C-terminus are significantly different from those of the intact N-terminus (2 vs. 22 hr for half-life and 4~7 vs. ~50% SC bioavailability). Therefore, this molecule serves as a valuable tool to evaluate the relative roles of intact C-terminus vs. N-terminus in <i>in vivo</i> pharmacology studies in preclinical species. We determined the effects of PF-05231023 administration on body weight (BW) loss and glucose reduction during an oral glucose tolerance test (OGTT) following SC and intravenous (IV) administration in diet-induced obese (DIO) and leptin-deficient obese (ob/ob) mice, respectively. Our data show that the intact N-terminus of FGF21 in PF-05231023 appears to be sufficient to drive glucose lowering during OGTT and sustain BW loss in DIOs. Further, PK/PD modeling suggests that while the intact FGF21 C-terminus is not strictly required for glucose lowering during OGTT in ob/ob mice or for BW reduction in DIO mice, the higher potency conferred by intact C-terminus contributes to a rapid initiation of pharmacodynamic effects immediately following dosing. These results provide additional insight into the strategy of developing stabilized versions of FGF21 analogs to harness the full spectrum of its metabolic benefits.</p></div

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.