Abstract

The influence of a Lorentz-violation on soliton solutions generated by a system of two coupled scalar fields is investigated. Lorentz violation is induced by a fixed tensor coefficient that couples the two fields. The Bogomol'nyi method is applied and first-order differential equations are obtained whose solutions minimize energy and are also solutions of the equations of motion. The analysis of the solutions in phase space shows how the stability is modified with the Lorentz violation. It is shown explicitly that the solutions preserve linear stability despite the presence of Lorentz violation. Considering Lorentz violation as a small perturbation, an analytical method is employed to yield analytical solutions.Comment: (9 pages, 11 figures

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019