54,704 research outputs found

    Influences of chloride immersion on zeta potential and chloride in concentration of cement-based materials

    Get PDF
    In this paper, the zeta potential of freshly mixed cement paste and hardened cement pastes, as well as the concentration index, was measured. The influences of chloride concentration in mixing water and slag content on zeta potential of freshly mixed pastes were studied. A proposed model was expressed to explain the relationship of zeta potential and concentration index of hardened cement pastes immersed in chloride solution. The results showed that the increase of chloride concentration in mixing water and slag replacement improved the zeta potential of freshly mixed cement, the hydration rate and concentration of ions in mixed water affects the zeta potential. With the increase of chloride concentration in soaking solution, the chloride concentration index and zeta potential of hardened cement paste all gradually decreased. The addition of slag gave some changes on chloride in concentration and zeta potential. The relationship among chloride concentration index, chloride concentration in soaking solution and slag replacement revealed by Gouy-Chapman model was in good agreement with the measured results

    Zeta potential control for electrophoresis cells

    Get PDF
    Zeta potential arises from fact that ions tend to be adsorbed on surface of cell walls. This potential interfaces with electric field sensed by migrating particles and degrades resolution of separation. By regulating sign and magnitude of applied potential induced charge can be used to increase or decrease effective wall zeta potential

    Zeta potential in ceramic industry

    Get PDF
    Deflocculation, electrical conductivity and zeta potential (ZP) are studied for the addition of 0 to 10000 ppm Na2SiO3 deflocculator to slips obtained from three argillaceous materials (kaolin d'Arvor, ball clay Hyplas 64, and/or Granger Clay No. 10). The quantity of Na2SO3 required to deflocculate a slip is independent of the density but differes for each clay. The ZP is directly related to the density of the slip. The higher the ZP the more stable a slip is; the value of the ZP of a mixture does not follow a simple law but the electrical resistance of a mixture does follow a simple additive law. The ZP appears to have linear relation with the specific surface of the argillaceous material

    Zeta Potential of Modified Multi-walled Carbon Nanotubes in Presence of poly (vinyl alcohol) Hydrogel

    Get PDF
    The main objective of this study is investigate the behavior of the Zeta Potential of the MWCNT modified with SDS(Sodium Dodecyl Sulfate) and CTAB(Cetyl Tetraethyl Ammonium Bromide) in presence of PVA. Full hydrolyzed PVA was used. As a result, adding PVA in the CNT solution led to decrease the Zeta Potential. The Zeta Potential of suspended colloid varied from 42.00mV to 6.48mV and -45.00mV to -6.4mV at 1.5% concentration of PVA; according with the changing pH, the Zeta Potential dropped to near zero at pH 3 and 11. The pH and PVA has strong influence in the reduction of ZP of MWCNT solution. MWCNT-PVA solution with 33.30mV, -35.69mV at 0.01% of PVA was exposed under AC field; a uniform coat was obtained, with the SDS-MWCNT-PVA solution.National Natural Science Foundation of China Project (Grant No.51073024), the Royal Society-NSFC international joint project (Grant No.51111130207) and Beijing Municipal Science and Technology Plan Projects (No. Z111103066611005)

    Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high selenity

    Get PDF
    We report experimental measurements of the streaming potential coupling coefficient in sandstones saturated with NaCl-dominated artificial and natural brines up to 5.5 M (321.4 g L−1 of NaCl; electrical conductivity of 23 S m−1). We find that the magnitude of the coupling coefficient decreases with increasing brine salinity, as observed in previous experimental studies and predicted by models of the electrical double layer. However, the magnitude of the coupling coefficient remains greater than zero up to the saturated brine salinity. The magnitude of the zeta potential we interpret from our measurements also decreases with increasing brine salinity in the low-salinity domain (0.4 M). We hypothesize that the constant value of zeta potential observed at high salinity reflects the maximum packing of counterions in the diffuse part of the electrical double layer. Our hypothesis predicts that the zeta potential becomes independent of brine salinity when the diffuse layer thickness is similar to the diameter of the hydrated counterion. This prediction is confirmed by our experimental data and also by published measurements on alumina in KCl brine. At high salinity (>0.4 M), values of the streaming potential coupling coefficient and the corresponding zeta potential are the same within experimental error regardless of sample mineralogy and texture and the composition of the brine

    Zeta potential in intact natural sandstones at elevated temperatures

    Get PDF
    Supporting data are included in PDF and CSV files; any additional data may be obtained from the corresponding author (e-mail: [email protected]). TOTAL is thanked for partial support of Jackson's Chair in Geological Fluid Mechanics and for supporting the activities of the TOTAL Laboratory for Reservoir Physics at Imperial College London where these experiments were conducted. The Editor thanks Andre Revil and Paul Glover for their assistance in evaluating this paper.Peer reviewedPublisher PD

    Hydrodynamics within the Electric Double Layer on slipping surfaces

    Full text link
    We show, using extensive Molecular Dynamics simulations, that the dynamics of the electric double layer (EDL) is very much dependent on the wettability of the charged surface on which the EDL develops. For a wetting surface, the dynamics, characterized by the so-called Zeta potential, is mainly controlled by the electric properties of the surface, and our work provides a clear interpretation for the traditionally introduced immobile Stern layer. In contrast, the immobile layer disappears for non-wetting surfaces and the Zeta potential deduced from electrokinetic effects is considerably amplified by the existence of a slippage at the solid substrate.Comment: accepted for publication in Physical Review Letter
    corecore