491,457 research outputs found
A Novel Hybrid Framework for Co-Optimization of Power and Natural Gas Networks Integrated With Emerging Technologies
In a power system with high penetration of renewable power sources, gas-fired units can be considered as a back-up option to improve the balance between generation and consumption in short-term scheduling. Therefore, closer coordination between power and natural gas systems is anticipated. This article presents a novel hybrid information gap decision theory (IGDT)-stochastic cooptimization problem for integrating electricity and natural gas networks to minimize total operation cost with the penetration of wind energy. The proposed model considers not only the uncertainties regarding electrical load demand and wind power output, but also the uncertainties of gas load demands for the residential consumers. The uncertainties of electric load and wind power are handled through a scenario-based approach, and residential gas load uncertainty is handled via IGDT approach with no need for the probability density function. The introduced hybrid model enables the system operator to consider the advantages of both approaches simultaneously. The impact of gas load uncertainty associated with the residential consumers is more significant on the power dispatch of gas-fired plants and power system operation cost since residential gas load demands are prior than gas load demands of gas-fired units. The proposed framework is a bilevel problem that can be reduced to a one-level problem. Also, it can be solved by the implementation of a simple concept without the need for Karush–Kuhn–Tucker conditions. Moreover, emerging flexible energy sources such as the power to gas technology and demand response program are considered in the proposed model for increasing the wind power dispatch, decreasing the total operation cost of the integrated network as well as reducing the effect of system uncertainties on the total operating cost. Numerical results indicate the applicability and effectiveness of the proposed model under different working conditions
The Commonality of Earthquake and Wind Analysis
Earthquakes and wind loadings constitute dynamic effects that often must be considered in the design of buildings and structures. The primary purpose of this research
study was to investigate the common features of general dynamic analysis procedures
employed for evaluating the effects of wind and earthquake excitation. Another major
goal was to investigate and develop a basis for generating response spectra for wind
loading, which in turn would permit the use of modal analysis techniques for wind
analysis in a manner similar to that employed for earthquake engineering. In order to
generate wind response spectra, the wind loading is divided into two parts, a mean
load treated as a static component and a fluctuating load treated as a dynamic component.
The spectral representation of the wind loading constitutes a simple procedure
for estimating the forces associated with the dynamic component of the gusting wind.
Several illustrative examples are presented demonstrating the commonality.National Science Foundation Grants ENV 75-08456 and ENV 77-0719
Optimal design of wind turbine blades equipped with flaps
As a result of the significant growth of wind turbines in size, blade load control has become the main challenge for large wind turbines. Many advanced techniques have been investigated aiming at developing control devices to ease blade loading. Amongst them, trailing edge flaps have been proven as effective devices for load alleviation. The present study aims at investigating the potential benefits of flaps in enhancing the energy capture capabilities rather than blade load alleviation. A software tool is especially developed for the aerodynamic simulation of wind turbines utilising blades equipped with flaps. As part of the aerodynamic simulation of these wind turbines, the control system must be also simulated. The simulation of the control system is carried out via solving an optimisation problem which gives the best value for the controlling parameter at each wind turbine run condition. Developing a genetic algorithm optimisation tool which is especially designed for wind turbine blades and integrating it with the aerodynamic performance evaluator, a design optimisation tool for blades equipped with flaps is constructed. The design optimisation tool is employed to carry out design case studies. The results of design case studies on wind turbine AWT-27 (Aerodynamic Wind Turbine-27) reveal that, as expected, the location of flap is a key parameter influencing the amount of improvement in the power extraction. The best location for placing a flap is at about 70% of the blade span from the root of the blade. The size of the flap has also significant effect on the amount of enhancement in the average power. This effect, however, reduces dramatically as the size increases. For constant speed rotors, adding flaps without re-designing the topology of the blade can improve the power extraction capability as high as of about 5%. However, with re-designing the blade pretwist the overall improvement can be reached as high as 12%
Base-load cycling on a system with significant wind penetration
Certain developments in the electricity sector may result in suboptimal operation of base-load generating units in countries worldwide. Despite the fact they were not designed to operate in a flexible manner, increasing penetration of variable power sources coupled with the deregulation of the electricity sector could lead to these base-load units being shut down or operated at part-load levels more often. This cycling operation would have onerous effects on the components of these units and potentially lead to increased outages and significant costs. This paper shows the serious impact increasing levels of wind power will have on the operation of base-load units. Those base-load units which are not large contributors of primary reserve to the system and have relatively shorter start-up times were found to be the most impacted as wind penetration increases. A sensitivity analysis shows the presence of storage or interconnection on a power system actually exacerbates base-load cycling until very high levels of wind power are reached. Finally, it is shown that if the total cycling costs of the individual base-load units are taken into consideration in the scheduling model, subsequent cycling operation can be reduced.Thermal Power Generation; Wind Power Generation; Pumped Storage Power Generation; Interconnected Power Systems; Power System Modeling; Costs
Use of the WEST-1 wind turbine simulator to predict blade fatigue load distribution
To test the ability of WEST-1 to predict blade fatigue load distribution, actual wind signals were fed into the simulator and the response data were recorded and processed in the same manner as actual wind turbine data. The WEST-1 simulator was operated in a stable, unattended mode for six hours. The probability distribution of the cyclic flatwise bending moment for the blade was comparable to that for an actual wind turbine in winds with low turbulence. The input from a stationary anemometer was found to be inadequate for use in the prediction of fatigue load distribution for blade design purposes and modifications are necessary
The impact of red giant/AGB winds on AGN jet propagation
Dense stellar winds may mass-load the jets of active galactic nuclei,
although it is unclear what are the time and spatial scales in which the mixing
takes place. We study the first steps of the interaction between jets and
stellar winds, and also the scales at which the stellar wind may mix with the
jet and mass-load it. We present a detailed two-dimensional simulation,
including thermal cooling, of a bubble formed by the wind of a star. We also
study the first interaction of the wind bubble with the jet using a
three-dimensional simulation in which the star enters the jet. Stability
analysis is carried out for the shocked wind structure, to evaluate the
distances over which the jet-dragged wind, which forms a tail, can propagate
without mixing with the jet flow. The two-dimensional simulations point at
quick wind bubble expansion and fragmentation after about one bubble shock
crossing time. Three-dimensional simulations and stability analysis point at
local mixing in the case of strong perturbations and relatively small density
ratios between the jet and the jet dragged-wind, and to a possibly more stable
shocked wind structure at the phase of maximum tail mass flux. Analytical
estimates also indicate that very early stages of the star jet-penetration time
may be also relevant for mass loading. The combination of these and previous
results from the literature suggest highly unstable interaction structures and
efficient wind-jet flow mixing on the scale of the jet interaction height,
possibly producing strong inhomogeneities within the jet. In addition, the
initial wind bubble shocked by the jet leads to a transient, large interaction
surface. The interaction structure can be a source of significant non-thermal
emission.Comment: Accepted for publication in Astronomy & Astrophysic
Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays
Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied
Model-based Aeroservoelastic Design and Load Alleviation of Large Wind Turbine Blades
This paper presents an aeroservoelastic modeling approach for dynamic load alleviation
in large wind turbines with trailing-edge aerodynamic surfaces. The tower, potentially on a
moving base, and the rotating blades are modeled using geometrically non-linear composite
beams, which are linearized around reference conditions with arbitrarily-large structural
displacements. Time-domain aerodynamics are given by a linearized 3-D unsteady vortexlattice
method and the resulting dynamic aeroelastic model is written in a state-space
formulation suitable for model reductions and control synthesis. A linear model of a single
blade is used to design a Linear-Quadratic-Gaussian regulator on its root-bending moments,
which is finally shown to provide load reductions of about 20% in closed-loop on the full
wind turbine non-linear aeroelastic model
Integrated Generation Management for Maximizing Renewable Resource Utilization
Two proposed methods to reduce the effective intermittency and improve the efficiency of wind power generation in the grid are spatial smoothing of wind generation and utilization of short term electrical storage to deal with lulls in production. In this thesis, based on a concept called integrated generation management (IGM), we explore the impact of spatial smoothing and the use of emerging plug-in hybrid electric vehicles (PHEVs) as a potential storage resource to the smart-grid. IGM combines nuclear, slow load-following coal, fast load-following natural gas, and renewable wind generation with an optimal control method to maximize the renewable generation and minimize the fossil generation. With the increasing penetration of PHEVs, the power grid is seeing new opportunities to make itself smarter than ever by utilizing those relatively large batteries. Based on current projections of PHEV market penetration and various wind generation scenarios, we demonstrate the potential for efficient wind integration at levels of approaching 30% of the aver- age electrical load with utilization efficiency exceeding 65%. At lower levels of integration (e.g. 15%), efficiencies are possible exceeding 85%
- …
